|
[1] F. Sammartino, F. C. Yeh, and V. Krishna, “Longitudinal analysis of structural changes following unilateral focused ultrasound thalamotomy,” Neuroimage Clin, vol. 22, pp. 101754, 2019. [2] D. Jeanmonod, B. Werner, A. Morel et al., “Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain,” Neurosurg Focus, vol. 32, no. 1, pp. E1, Jan, 2012. [3] N. McDannold, G. T. Clement, P. Black et al., “Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients,” Neurosurgery, vol. 66, no. 2, pp. 323-32; discussion 332, Feb, 2010. [4] S. Monteith, J. Sheehan, R. Medel et al., “Potential intracranial applications of magnetic resonance-guided focused ultrasound surgery,” J Neurosurg, vol. 118, no. 2, pp. 215-21, Feb, 2013. [5] K. Eguchi, T. Shindo, K. Ito et al., “Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia - Crucial roles of endothelial nitric oxide synthase,” Brain Stimul, vol. 11, no. 5, pp. 959-973, Sep - Oct, 2018. [6] E. J. Lee, A. Fomenko, and A. M. Lozano, “Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening,” J Korean Neurosurg Soc, vol. 62, no. 1, pp. 10-26, Jan, 2019. [7] K. Hynynen, N. McDannold, N. Vykhodtseva et al., “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology, vol. 220, no. 3, pp. 640-6, Sep, 2001. [8] N. McDannold, N. Vykhodtseva, S. Raymond et al., “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits,” Ultrasound Med Biol, vol. 31, no. 11, pp. 1527-37, Nov, 2005. [9] L. H. Treat, N. McDannold, Y. Zhang et al., “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma,” Ultrasound Med Biol, vol. 38, no. 10, pp. 1716-25, Oct, 2012. [10] B. Baseri, J. J. Choi, T. Deffieux et al., “Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles,” Phys Med Biol, vol. 57, no. 7, pp. N65-81, Apr 7, 2012. 41 [11] K. F. Timbie, B. P. Mead, and R. J. Price, “Drug and gene delivery across the blood-brain barrier with focused ultrasound,” J Control Release, vol. 219, pp. 61-75, Dec 10, 2015. [12] F. Marquet, Y. S. Tung, T. Teichert et al., “Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo,” PLoS One, vol. 6, no. 7, pp. e22598, 2011. [13] A. Carpentier, M. Canney, A. Vignot et al., “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci Transl Med, vol. 8, no. 343, pp. 343re2, Jun 15, 2016. [14] N. McDannold, C. D. Arvanitis, N. Vykhodtseva et al., “Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques,” Cancer Res, vol. 72, no. 14, pp. 3652-63, Jul 15, 2012. [15] J. Park, Y. Zhang, N. Vykhodtseva et al., “The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound,” J Control Release, vol. 162, no. 1, pp. 134-42, Aug 20, 2012. [16] F. Vlachos, Y. S. Tung, and E. E. Konofagou, “Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynamic contrast-enhanced MRI,” Phys Med Biol, vol. 55, no. 18, pp. 5451-66, Sep 21, 2010. [17] F. S. Foster, P. N. Burns, D. H. Simpson et al., “Ultrasound for the visualization and quantification of tumor microcirculation,” Cancer and Metastasis Reviews, vol. 19, no. 1-2, pp. 131-138, Jun, 2000. [18] R. Gramiak, and P. M. Shah, “Echocardiography of the aortic root,” Invest Radiol, vol. 3, no. 5, pp. 356-66, Sep-Oct, 1968. [19] S. T. Kang, and C. K. Yeh, “Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design,” Chang Gung Med J, vol. 35, no. 2, pp. 125-39, Mar-Apr, 2012. [20] Q. Ma, Y. Ma, X. Gong et al., “Improvement of tissue harmonic imaging using the pulse-inversion technique,” Ultrasound Med Biol, vol. 31, no. 7, pp. 889-94, Jul, 2005. [21] C. C. Shen, S. Y. Su, C. H. Cheng et al., “Phantom investigation of phase-inversion-based dual-frequency excitation imaging for improved contrast display,” Ultrasonics, vol. 52, no. 1, pp. 25-32, Jan, 2012. [22] W. A. Banks, “From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery,” Nat Rev Drug Discov, vol. 15, no. 4, pp. 275-92, Apr, 2016. [23] N. J. Abbott, A. A. Patabendige, D. E. Dolman et al., “Structure and function of 42 the blood-brain barrier,” Neurobiol Dis, vol. 37, no. 1, pp. 13-25, Jan, 2010. [24] N. deJong, P. Frinking, F. tenCate et al., “Characteristics of contrast agents and 2D imaging,” 1996 Ieee Ultrasonics Symposium, Proceedings, Vols 1 and 2, pp. 1449-1458, 1996. [25] K. Beccaria, M. Canney, L. Goldwirt et al., “Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits Laboratory investigation,” Journal of Neurosurgery, vol. 119, no. 4, pp. 887-898, Oct, 2013. [26] K. Hynynen, N. McDannold, N. Vykhodtseva et al., “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology, vol. 220, no. 3, pp. 640-646, Sep, 2001. [27] F. Vignon, W. T. Shi, J. E. Powers et al., “Microbubble Cavitation Imaging,” Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 60, no. 4, pp. 661-670, Apr, 2013. [28] M. Reinhard, A. Hetzel, S. Kruger et al., “Blood-brain barrier disruption by low-frequency ultrasound,” Stroke, vol. 37, no. 6, pp. 1546-1548, Jun, 2006. [29] N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound in Medicine and Biology, vol. 34, no. 5, pp. 834-840, May, 2008. [30] J. J. Choi, K. Selert, F. Vlachos et al., “Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 40, pp. 16539-16544, Oct 4, 2011. [31] Y. Negishi, M. Yamane, N. Kurihara et al., “Enhancement of Blood-Brain Barrier Permeability and Delivery of Antisense Oligonucleotides or Plasmid DNA to the Brain by the Combination of Bubble Liposomes and High-Intensity Focused Ultrasound,” Pharmaceutics, vol. 7, no. 3, pp. 344-362, Sep, 2015. [32] M. Kinoshita, N. McDannold, F. A. Jolesz et al., “Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound,” Biochemical and Biophysical Research Communications, vol. 340, no. 4, pp. 1085-1090, Feb 24, 2006. [33] G. Samiotaki, and E. E. Konofagou, “Dependence of the Reversibility of Focused-Ultrasound-Induced Blood-Brain Barrier Opening on Pressure and Pulse Length In Vivo,” Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 60, no. 11, pp. 2257-2265, Nov, 2013. [34] K. Hynynen, N. McDannold, N. Vykhodtseva et al., “Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery,” Journal of Neurosurgery, vol. 105, no. 3, 43 pp. 445-454, Sep, 2006. [35] M. Kinoshita, N. McDannold, F. A. Jolesz et al., “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 31, pp. 11719-11723, Aug 1, 2006. [36] N. McDannold, G. T. Clement, P. Black et al., “Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery of Brain Tumors: Initial Findings in 3 Patients,” Neurosurgery, vol. 66, no. 2, pp. 323-332, Feb, 2010. [37] N. Lipsman, Y. Meng, A. J. Bethune et al., “Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound,” Nature Communications, vol. 9, Jul 25, 2018. [38] N. McDannold, N. Vykhodtseva, and K. Hynynen, “Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity,” Phys Med Biol, vol. 51, no. 4, pp. 793-807, Feb 21, 2006. [39] W. T. Shi, F. Forsberg, J. S. Raichlen et al., “Pressure dependence of subharmonic signals from contrast microbubbles,” Ultrasound Med Biol, vol. 25, no. 2, pp. 275-83, Feb, 1999. [40] Y. Sun, D. E. Kruse, P. A. Dayton et al., “High-frequency dynamics of ultrasound contrast agents,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 52, no. 11, pp. 1981-91, Nov, 2005. [41] W. S. Chen, A. A. Brayman, T. J. Matula et al., “The pulse length-dependence of inertial cavitation dose and hemolysis,” Ultrasound Med Biol, vol. 29, no. 5, pp. 739-48, May, 2003. [42] M. J. Gruber, K. B. Bader, and C. K. Holland, “Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound,” Journal of the Acoustical Society of America, vol. 135, no. 2, pp. 646-653, Feb, 2014. [43] Y. S. Tung, F. Vlachos, J. J. Choi et al., “In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice,” Physics in Medicine and Biology, vol. 55, no. 20, pp. 6141-6155, Oct 21, 2010. [44] N. I. Vykhodtseva, K. Hynynen, and C. Damianou, “Histologic Effects of High-Intensity Pulsed Ultrasound Exposure with Subharmonic Emission in Rabbit Brain in-Vivo,” Ultrasound in Medicine and Biology, vol. 21, no. 7, pp. 969-979, 1995. [45] M. A. O'Reilly, and K. Hynynen, “A PVDF Receiver for Ultrasound Monitoring of Transcranial Focused Ultrasound Therapy,” Ieee Transactions on Biomedical 44 Engineering, vol. 57, no. 9, pp. 2286-2294, Sep, 2010. [46] T. Sun, G. Samiotaki, S. Wang et al., “Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening,” Phys Med Biol, vol. 60, no. 23, pp. 9079-94, Dec 7, 2015. [47] C. D. Arvanitis, and N. McDannold, “Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies,” Med Phys, vol. 40, no. 11, pp. 112901, Nov, 2013. [48] C. Crake, S. Victor Mde, J. Owen et al., “Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization,” Phys Med Biol, vol. 60, no. 2, pp. 785-806, Jan 21, 2015. [49] J. J. Choi, K. Selert, Z. Gao et al., “Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies,” J Cereb Blood Flow Metab, vol. 31, no. 2, pp. 725-37, Feb, 2011. [50] C. Crake, S. T. Brinker, C. M. Coviello et al., “A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device,” Phys Med Biol, vol. 63, no. 6, pp. 065008, Mar 15, 2018. [51] L. Deng, M. A. O'Reilly, R. M. Jones et al., “A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping,” Phys Med Biol, vol. 61, no. 24, pp. 8476-8501, Dec 21, 2016. [52] M. A. O'Reilly, R. M. Jones, and K. Hynynen, “Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array,” IEEE Trans Biomed Eng, vol. 61, no. 4, pp. 1285-94, Apr, 2014. [53] R. M. Jones, L. Deng, K. Leung et al., “Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening,” Theranostics, vol. 8, no. 11, pp. 2909-2926, 2018. [54] H. J. Vos, D. E. Goertz, A. F. van der Steen et al., “Parametric array technique for microbubble excitation,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 58, no. 5, pp. 924-34, May, 2011. [55] H. J. Vos, D. E. Goertz, and N. de Jong, “Self-demodulation of high-frequency ultrasound,” J Acoust Soc Am, vol. 127, no. 3, pp. 1208-17, Mar, 2010. [56] V. Daeichin, T. Faez, G. Renaud et al., “Effect of self-demodulation on the subharmonic response of contrast agent microbubbles,” Phys Med Biol, vol. 57, no. 12, pp. 3675-91, Jun 21, 2012. [57] C. K. Yeh, S. Y. Su, C. C. Shen et al., “Dual high-frequency difference excitation 45 for contrast detection,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, no. 10, pp. 2164-76, Oct, 2008. [58] C. Y. Wu, J. Tsao, and Y. H. Chou, “An ultrasonic microbubble semi-intermodulated imaging technique,” Ultrasound Med Biol, vol. 31, no. 9, pp. 1199-210, Sep, 2005. [59] C. H. Cheng, C. C. Shen, and C. K. Yeh, “Dual-frequency chirp imaging for contrast detection,” Phys Med Biol, vol. 56, no. 9, pp. 2767-78, May 7, 2011. [60] M. H. Pedersen, T. X. Misaridis, and J. A. Jensen, “Clinical evaluation of chirp-coded excitation in medical ultrasound,” Ultrasound Med Biol, vol. 29, no. 6, pp. 895-905, Jun, 2003. [61] R. S. C. Cobbold, Foundations of biomedical ultrasound, New York: Oxford University Press, 2007. [62] C. K. Yeh, S. Y. Su, and C. C. Shen, “Microbubble destruction by dual-high-frequency ultrasound excitation,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, no. 5, pp. 1113-8, May, 2009. [63] V. L. Newhouse, and P. M. Shankar, “Bubble-Size Measurements Using the Nonlinear Mixing of 2 Frequencies,” Journal of the Acoustical Society of America, vol. 75, no. 5, pp. 1473-1477, 1984. [64] C. H. Fan, H. L. Liu, C. Y. Huang et al., “Detection of intracerebral hemorrhage and transient blood-supply shortage in focused-ultrasound-induced blood-brain barrier disruption by ultrasound imaging,” Ultrasound Med Biol, vol. 38, no. 8, pp. 1372-82, Aug, 2012. [65] C. H. Fan, T. W. Wang, Y. K. Hsieh et al., “Enhancing Boron Uptake in Brain Glioma by a Boron-Polymer/Microbubble Complex with Focused Ultrasound,” ACS Appl Mater Interfaces, vol. 11, no. 12, pp. 11144-11156, Mar 27, 2019. [66] N. Mcdannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound in Medicine and Biology, vol. 34, no. 6, pp. 930-937, Jun, 2008. [67] E. Sassaroli, and K. Hynynen, “Resonance frequency of microbubbles in small blood vessels: a numerical study,” Phys Med Biol, vol. 50, no. 22, pp. 5293-305, Nov 21, 2005. [68] S. M. van der Meer, M. Versluis, D. Lohse et al., The resonance frequency of SonoVue™ as observed by high-speed optical imaging, 2004. [69] S. J. Norton, and I. J. Won, “Time exposure acoustics,” Ieee Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1337-1343, May, 2000. [70] T. Sun, Y. Z. Zhang, C. Power et al., “Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model,” 46 Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 48, pp. E10281-E10290, Nov 28, 2017. [71] C. H. Fan, C. Y. Ting, Y. C. Chang et al., “Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery,” Acta Biomaterialia, vol. 15, pp. 89-101, Mar 15, 2015. |