帳號:guest(13.58.243.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林享慶
作者(外文):Lin, Hsiang-Ching
論文名稱(中文):超音波被動式成像導引超音波穿顱治療之應用
論文名稱(外文):Applications of Ultrasound Passive Imaging in Monitoring Ultrasound Transcranial Therapy
指導教授(中文):葉秩光
指導教授(外文):Yeh, Chih-Kuang
口試委員(中文):劉浩澧
李夢麟
范景翔
鄭耿璽
口試委員(外文):Liu, Hao-Li
Li, Meng-Lin
Fan, Ching-Hsiang
Jeng, Geng-Shi
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012535
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:47
中文關鍵詞:超音波血腦屏障微氣泡被動式成像雙頻啾聲訊號激發
外文關鍵詞:Ultrasoundblood–brain barriermicrobubblespassive cavitation imagingdual-frequency chirp excitation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:737
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在超音波開啟血腦屏障之中,監控微氣泡穴蝕效應的一大挑戰是偵測穴蝕效應產生的特徵上面的限制。被動式穴蝕效應成像是一已經被注意到,可以藉由穴蝕效應產生的聲學訊號,而即時成像得到穴蝕效應位置的方法。然而使用治療用超音波中常使用的長脈衝波型會造成軸向解析度很差的結果,為了解決在穴蝕效應中非線性響應在成像上的影響,本研究整合了編碼激發與雙頻啾聲訊號的激發方式,使用由兩種不同頻率所組成的雙頻啾聲訊號(波形一 = 1.35 MHz + 1.65 MHz; 波形二 = 1.3 MHz + 1.7 MHz; 波形三 = 1.25 MHz + 1.75 MHz),各個訊號上面有一低頻啾聲訊號封包(0.4 MHz; 0.5 MHz; 0.6 MHz)去激發微氣泡。這個雙頻啾聲訊號可以激發微氣泡產生穴蝕效應的同時,讓微氣泡產生封包中的啾聲訊號出來,這個產生的訊號可以被動式接收,並且經過脈衝壓縮成像之後,可以保持足夠的影像強度又不會在軸向解析度上面有所損失,可以更加精準的得到產生穴蝕效應的位置。體外實驗結果展現了與一般常見的長脈衝波形相比,在相同脈衝長度下,雙頻啾聲訊號影像的軸向解析度可以得到4.1倍的提升,訊雜比也得到42.2%的提升。除此之外,在沒有進行開顱手術的大鼠(N=3)的腦中,使用從0到0.9 MPa聲壓(間隔0.3 MPa)下使用雙頻啾聲訊號激發微氣泡得到的被動式影像,也展現出定位血腦屏障開啟的能力。我們成功的證實了使用雙頻啾聲訊號的方法可以監控微氣泡產生穴蝕效應導致的血腦屏障開啟,此方法也可以作為一評估超音波穴蝕效應藥物遞送的工具。並且此方法也有方便與現行超音波系統整合以及即時的優點。
One of the main challenges in monitoring cavitating microbubbles (MBs) during the treatment of the blood–brain barrier (BBB) opening is the limitation of detecting cavitation-mediated features transcranially. Passive cavitation imaging (PCI) has been noticed that it had the ability of real-time showing the position of cavitation by capturing the acoustic signal of cavitation. However, the utilize of long burst waveform degraded axial resolution of PCI image. In order to avoid the interference of cavitation nonlinear, the present study integrate coded excitation with dual-frequency chirp (DFC) excitation method. The DFC waveform excites MBs with a pulse consisted of two different frequencies (waveform1 = 1.35 MHz + 1.65 MHz; waveform2 = 1.3 MHz + 1.7 MHz; waveform3 = 1.25 MHz + 1.75 MHz) with a lower frequency chirp envelope (0.4 MHz; 0.5 MHz; 0.6 MHz) on it. The DFC waveform excited MBs cavitating and generating chirp envelope component in emitted signal. The signal was passively received and compressed that beamformed image would keep sufficient intensity without axial resolution loss and present more precision position of cavitation. Comparing with conventional long-burst waveforms, the axial resolution and signal-to-noise ratio of DFC excitation image can be enhanced 4.1-fold and 42.2% as shown in in vitro experiments, respectively. Furthermore, the PCI images of exciting MBs with different acoustic pressure from 0 to 0.9 MPa (spacing of each level is 0.3 MPa) in rat brain without craniotomy (N = 3 for each group) still showed the ability of locating BBB opening by DFC. We successfully validated the utilizing the DFC technique can monitor MBs cavitation caused BBB opening affords an alternative tool for evaluating cavitation- related drug delivery to the brain. It also has the advantage of high handy integration with current ultrasound systems and real-time.
中文摘要 ........................................................................................................................... iii Abstract ............................................................................................................................. iv 致謝…………….......................................................................................................................... vi List of Symbols ............................................................................................................... vii List of Figures ............................................................................................................... viii List of Tables ..................................................................................................................... x Chapter 1 Introduction 1.1 Concept ................................................................................................................................ 1 1.2 Ultrasound image with contrast agent microbubble ............................................................ 2 1.3 Ultrasound noninvasively blood brain barrier opening with microbubbles cavitation …... 3 1.3.1 Blood-brain barrier………….....…………………………………………….……..3 1.3.2 Cavitation of microbubbles….....…………………………………………….……..3 1.3.3 Temporary opening of the BBB……………………………………………...……..4 1.3.4 Transcranial ultrasound............................................................................................ 6 1.4 Monitoring of BBB opening.................................................................................................7 1.4.1 MRI guided................................................................................................................7 1.4.2 Passive cavitation detection and passive cavitation image…………………………7 1.5 Self-demodulation (intermodulation) ……………………………………………...………9 1.6 Aim of the study……………………………………………………………….…………..10 Chapter 2 Cavitation Monitoring with Passive Cavitation Imaging by Dual-Frequency Chirp Coded Excitation in the Brain 2.1 Introduction ………………………………………………………………...…….....……11 2.2 Materials and Methods……………………………………………………...……...…..…14 2.2.1 Composition of DFC waveform……………………………..……...……......……14 2.2.2 Preparation and composition of MBs………………………..……......……...……17 2.2.3 DFC excitation PCI phantom images………………………..……...……...……19 2.2.4 In vivo DFC excitation PCI images………………………..………...……...……23 2.2.4.1 Preparation of animal………………………..………...……............……23 2.2.4.2 Performance of DFC excitation PCI in animal BBB opening......………….23 2.2.4.3 Determination of BBB opening……………..………...……............……24
ii
2.2.4.4 Data processing and image Beamforming…..………...……............……24 2.2.4.5 Statistical analyses…………………………………………...…......……25 2.3 RESULTS………………………………………………………………...…...…...……27 2.3.1 Interference between difference-component and sub-harmonics...…...…...….…27 2.3.2 Performance of DFC excitation PCI phantom images…………...…...…...…….…28 2.3.3 Image resolution comparison……………………………………...….....…...……30 2.3.4 SNR and CTR comparisons of DFC……………………………………….....……30 2.3.5 Performance of in vivo image……………………………………...…...…....……30 Chapter 3 Discussion…………………………………………………………………………………….35 Chapter 4 Conclusions and Future Work………………………………………………………...……….39 References……………………………………………………………………………………40
[1] F. Sammartino, F. C. Yeh, and V. Krishna, “Longitudinal analysis of structural changes following unilateral focused ultrasound thalamotomy,” Neuroimage Clin, vol. 22, pp. 101754, 2019. [2] D. Jeanmonod, B. Werner, A. Morel et al., “Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain,” Neurosurg Focus, vol. 32, no. 1, pp. E1, Jan, 2012. [3] N. McDannold, G. T. Clement, P. Black et al., “Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients,” Neurosurgery, vol. 66, no. 2, pp. 323-32; discussion 332, Feb, 2010. [4] S. Monteith, J. Sheehan, R. Medel et al., “Potential intracranial applications of magnetic resonance-guided focused ultrasound surgery,” J Neurosurg, vol. 118, no. 2, pp. 215-21, Feb, 2013. [5] K. Eguchi, T. Shindo, K. Ito et al., “Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia - Crucial roles of endothelial nitric oxide synthase,” Brain Stimul, vol. 11, no. 5, pp. 959-973, Sep - Oct, 2018. [6] E. J. Lee, A. Fomenko, and A. M. Lozano, “Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening,” J Korean Neurosurg Soc, vol. 62, no. 1, pp. 10-26, Jan, 2019. [7] K. Hynynen, N. McDannold, N. Vykhodtseva et al., “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology, vol. 220, no. 3, pp. 640-6, Sep, 2001. [8] N. McDannold, N. Vykhodtseva, S. Raymond et al., “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits,” Ultrasound Med Biol, vol. 31, no. 11, pp. 1527-37, Nov, 2005. [9] L. H. Treat, N. McDannold, Y. Zhang et al., “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma,” Ultrasound Med Biol, vol. 38, no. 10, pp. 1716-25, Oct, 2012. [10] B. Baseri, J. J. Choi, T. Deffieux et al., “Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles,” Phys Med Biol, vol. 57, no. 7, pp. N65-81, Apr 7, 2012.
41
[11] K. F. Timbie, B. P. Mead, and R. J. Price, “Drug and gene delivery across the blood-brain barrier with focused ultrasound,” J Control Release, vol. 219, pp. 61-75, Dec 10, 2015. [12] F. Marquet, Y. S. Tung, T. Teichert et al., “Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo,” PLoS One, vol. 6, no. 7, pp. e22598, 2011. [13] A. Carpentier, M. Canney, A. Vignot et al., “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci Transl Med, vol. 8, no. 343, pp. 343re2, Jun 15, 2016. [14] N. McDannold, C. D. Arvanitis, N. Vykhodtseva et al., “Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques,” Cancer Res, vol. 72, no. 14, pp. 3652-63, Jul 15, 2012. [15] J. Park, Y. Zhang, N. Vykhodtseva et al., “The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound,” J Control Release, vol. 162, no. 1, pp. 134-42, Aug 20, 2012. [16] F. Vlachos, Y. S. Tung, and E. E. Konofagou, “Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynamic contrast-enhanced MRI,” Phys Med Biol, vol. 55, no. 18, pp. 5451-66, Sep 21, 2010. [17] F. S. Foster, P. N. Burns, D. H. Simpson et al., “Ultrasound for the visualization and quantification of tumor microcirculation,” Cancer and Metastasis Reviews, vol. 19, no. 1-2, pp. 131-138, Jun, 2000. [18] R. Gramiak, and P. M. Shah, “Echocardiography of the aortic root,” Invest Radiol, vol. 3, no. 5, pp. 356-66, Sep-Oct, 1968. [19] S. T. Kang, and C. K. Yeh, “Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design,” Chang Gung Med J, vol. 35, no. 2, pp. 125-39, Mar-Apr, 2012. [20] Q. Ma, Y. Ma, X. Gong et al., “Improvement of tissue harmonic imaging using the pulse-inversion technique,” Ultrasound Med Biol, vol. 31, no. 7, pp. 889-94, Jul, 2005. [21] C. C. Shen, S. Y. Su, C. H. Cheng et al., “Phantom investigation of phase-inversion-based dual-frequency excitation imaging for improved contrast display,” Ultrasonics, vol. 52, no. 1, pp. 25-32, Jan, 2012. [22] W. A. Banks, “From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery,” Nat Rev Drug Discov, vol. 15, no. 4, pp. 275-92, Apr, 2016. [23] N. J. Abbott, A. A. Patabendige, D. E. Dolman et al., “Structure and function of
42
the blood-brain barrier,” Neurobiol Dis, vol. 37, no. 1, pp. 13-25, Jan, 2010. [24] N. deJong, P. Frinking, F. tenCate et al., “Characteristics of contrast agents and 2D imaging,” 1996 Ieee Ultrasonics Symposium, Proceedings, Vols 1 and 2, pp. 1449-1458, 1996. [25] K. Beccaria, M. Canney, L. Goldwirt et al., “Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits Laboratory investigation,” Journal of Neurosurgery, vol. 119, no. 4, pp. 887-898, Oct, 2013. [26] K. Hynynen, N. McDannold, N. Vykhodtseva et al., “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology, vol. 220, no. 3, pp. 640-646, Sep, 2001. [27] F. Vignon, W. T. Shi, J. E. Powers et al., “Microbubble Cavitation Imaging,” Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 60, no. 4, pp. 661-670, Apr, 2013. [28] M. Reinhard, A. Hetzel, S. Kruger et al., “Blood-brain barrier disruption by low-frequency ultrasound,” Stroke, vol. 37, no. 6, pp. 1546-1548, Jun, 2006. [29] N. McDannold, N. Vykhodtseva, and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound in Medicine and Biology, vol. 34, no. 5, pp. 834-840, May, 2008. [30] J. J. Choi, K. Selert, F. Vlachos et al., “Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 40, pp. 16539-16544, Oct 4, 2011. [31] Y. Negishi, M. Yamane, N. Kurihara et al., “Enhancement of Blood-Brain Barrier Permeability and Delivery of Antisense Oligonucleotides or Plasmid DNA to the Brain by the Combination of Bubble Liposomes and High-Intensity Focused Ultrasound,” Pharmaceutics, vol. 7, no. 3, pp. 344-362, Sep, 2015. [32] M. Kinoshita, N. McDannold, F. A. Jolesz et al., “Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound,” Biochemical and Biophysical Research Communications, vol. 340, no. 4, pp. 1085-1090, Feb 24, 2006. [33] G. Samiotaki, and E. E. Konofagou, “Dependence of the Reversibility of Focused-Ultrasound-Induced Blood-Brain Barrier Opening on Pressure and Pulse Length In Vivo,” Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 60, no. 11, pp. 2257-2265, Nov, 2013. [34] K. Hynynen, N. McDannold, N. Vykhodtseva et al., “Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery,” Journal of Neurosurgery, vol. 105, no. 3,
43
pp. 445-454, Sep, 2006. [35] M. Kinoshita, N. McDannold, F. A. Jolesz et al., “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 31, pp. 11719-11723, Aug 1, 2006. [36] N. McDannold, G. T. Clement, P. Black et al., “Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery of Brain Tumors: Initial Findings in 3 Patients,” Neurosurgery, vol. 66, no. 2, pp. 323-332, Feb, 2010. [37] N. Lipsman, Y. Meng, A. J. Bethune et al., “Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound,” Nature Communications, vol. 9, Jul 25, 2018. [38] N. McDannold, N. Vykhodtseva, and K. Hynynen, “Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity,” Phys Med Biol, vol. 51, no. 4, pp. 793-807, Feb 21, 2006. [39] W. T. Shi, F. Forsberg, J. S. Raichlen et al., “Pressure dependence of subharmonic signals from contrast microbubbles,” Ultrasound Med Biol, vol. 25, no. 2, pp. 275-83, Feb, 1999. [40] Y. Sun, D. E. Kruse, P. A. Dayton et al., “High-frequency dynamics of ultrasound contrast agents,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 52, no. 11, pp. 1981-91, Nov, 2005. [41] W. S. Chen, A. A. Brayman, T. J. Matula et al., “The pulse length-dependence of inertial cavitation dose and hemolysis,” Ultrasound Med Biol, vol. 29, no. 5, pp. 739-48, May, 2003. [42] M. J. Gruber, K. B. Bader, and C. K. Holland, “Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound,” Journal of the Acoustical Society of America, vol. 135, no. 2, pp. 646-653, Feb, 2014. [43] Y. S. Tung, F. Vlachos, J. J. Choi et al., “In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice,” Physics in Medicine and Biology, vol. 55, no. 20, pp. 6141-6155, Oct 21, 2010. [44] N. I. Vykhodtseva, K. Hynynen, and C. Damianou, “Histologic Effects of High-Intensity Pulsed Ultrasound Exposure with Subharmonic Emission in Rabbit Brain in-Vivo,” Ultrasound in Medicine and Biology, vol. 21, no. 7, pp. 969-979, 1995. [45] M. A. O'Reilly, and K. Hynynen, “A PVDF Receiver for Ultrasound Monitoring of Transcranial Focused Ultrasound Therapy,” Ieee Transactions on Biomedical
44
Engineering, vol. 57, no. 9, pp. 2286-2294, Sep, 2010. [46] T. Sun, G. Samiotaki, S. Wang et al., “Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening,” Phys Med Biol, vol. 60, no. 23, pp. 9079-94, Dec 7, 2015. [47] C. D. Arvanitis, and N. McDannold, “Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies,” Med Phys, vol. 40, no. 11, pp. 112901, Nov, 2013. [48] C. Crake, S. Victor Mde, J. Owen et al., “Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization,” Phys Med Biol, vol. 60, no. 2, pp. 785-806, Jan 21, 2015. [49] J. J. Choi, K. Selert, Z. Gao et al., “Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies,” J Cereb Blood Flow Metab, vol. 31, no. 2, pp. 725-37, Feb, 2011. [50] C. Crake, S. T. Brinker, C. M. Coviello et al., “A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device,” Phys Med Biol, vol. 63, no. 6, pp. 065008, Mar 15, 2018. [51] L. Deng, M. A. O'Reilly, R. M. Jones et al., “A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping,” Phys Med Biol, vol. 61, no. 24, pp. 8476-8501, Dec 21, 2016. [52] M. A. O'Reilly, R. M. Jones, and K. Hynynen, “Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array,” IEEE Trans Biomed Eng, vol. 61, no. 4, pp. 1285-94, Apr, 2014. [53] R. M. Jones, L. Deng, K. Leung et al., “Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening,” Theranostics, vol. 8, no. 11, pp. 2909-2926, 2018. [54] H. J. Vos, D. E. Goertz, A. F. van der Steen et al., “Parametric array technique for microbubble excitation,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 58, no. 5, pp. 924-34, May, 2011. [55] H. J. Vos, D. E. Goertz, and N. de Jong, “Self-demodulation of high-frequency ultrasound,” J Acoust Soc Am, vol. 127, no. 3, pp. 1208-17, Mar, 2010. [56] V. Daeichin, T. Faez, G. Renaud et al., “Effect of self-demodulation on the subharmonic response of contrast agent microbubbles,” Phys Med Biol, vol. 57, no. 12, pp. 3675-91, Jun 21, 2012. [57] C. K. Yeh, S. Y. Su, C. C. Shen et al., “Dual high-frequency difference excitation
45
for contrast detection,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, no. 10, pp. 2164-76, Oct, 2008. [58] C. Y. Wu, J. Tsao, and Y. H. Chou, “An ultrasonic microbubble semi-intermodulated imaging technique,” Ultrasound Med Biol, vol. 31, no. 9, pp. 1199-210, Sep, 2005. [59] C. H. Cheng, C. C. Shen, and C. K. Yeh, “Dual-frequency chirp imaging for contrast detection,” Phys Med Biol, vol. 56, no. 9, pp. 2767-78, May 7, 2011. [60] M. H. Pedersen, T. X. Misaridis, and J. A. Jensen, “Clinical evaluation of chirp-coded excitation in medical ultrasound,” Ultrasound Med Biol, vol. 29, no. 6, pp. 895-905, Jun, 2003. [61] R. S. C. Cobbold, Foundations of biomedical ultrasound, New York: Oxford University Press, 2007. [62] C. K. Yeh, S. Y. Su, and C. C. Shen, “Microbubble destruction by dual-high-frequency ultrasound excitation,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, no. 5, pp. 1113-8, May, 2009. [63] V. L. Newhouse, and P. M. Shankar, “Bubble-Size Measurements Using the Nonlinear Mixing of 2 Frequencies,” Journal of the Acoustical Society of America, vol. 75, no. 5, pp. 1473-1477, 1984. [64] C. H. Fan, H. L. Liu, C. Y. Huang et al., “Detection of intracerebral hemorrhage and transient blood-supply shortage in focused-ultrasound-induced blood-brain barrier disruption by ultrasound imaging,” Ultrasound Med Biol, vol. 38, no. 8, pp. 1372-82, Aug, 2012. [65] C. H. Fan, T. W. Wang, Y. K. Hsieh et al., “Enhancing Boron Uptake in Brain Glioma by a Boron-Polymer/Microbubble Complex with Focused Ultrasound,” ACS Appl Mater Interfaces, vol. 11, no. 12, pp. 11144-11156, Mar 27, 2019. [66] N. Mcdannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound in Medicine and Biology, vol. 34, no. 6, pp. 930-937, Jun, 2008. [67] E. Sassaroli, and K. Hynynen, “Resonance frequency of microbubbles in small blood vessels: a numerical study,” Phys Med Biol, vol. 50, no. 22, pp. 5293-305, Nov 21, 2005. [68] S. M. van der Meer, M. Versluis, D. Lohse et al., The resonance frequency of SonoVue™ as observed by high-speed optical imaging, 2004. [69] S. J. Norton, and I. J. Won, “Time exposure acoustics,” Ieee Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1337-1343, May, 2000. [70] T. Sun, Y. Z. Zhang, C. Power et al., “Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model,”
46
Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 48, pp. E10281-E10290, Nov 28, 2017. [71] C. H. Fan, C. Y. Ting, Y. C. Chang et al., “Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery,” Acta Biomaterialia, vol. 15, pp. 89-101, Mar 15, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *