帳號:guest(3.129.70.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):司維多
作者(外文):Najman Svetozar
論文名稱(中文):利⽤多尺度模擬探討先進且穩定的鈣鈦礦材料結構與形貌
論文名稱(外文):Structure and morphology of advanced stable perovskite material from multiscale molecular simulation
指導教授(中文):包淳偉
陳馨怡
指導教授(外文):Pao, Chun-Wei
Chen, Hsin-Yi
口試委員(中文):陳俊杉
關肇正
羅友杰
口試委員(外文):David, Chuin-Shan
Kaun, Chao-Cheng
Lo, Yu-Chieh
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011869
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:144
中文關鍵詞:二維鈣鈦礦無鉛無機鈣鈦礦第一原理計算蒙地卡羅法機器學習SNAP勢能函數
外文關鍵詞:2D perovskiteinorganic lead-free perovskitefirst principle calculationsMonte Carlo methodmachine learning SNAP potential
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Organic-inorganic lead-halide perovskite material has attracted significant attention from numerous research groups due to its favorable properties when deployed as an active layer within wide range of optoelectronic and photovoltaic devices. To this day, however, its main drawback, insufficient environmental stability has not yet been completely solved. In the present text the study of alternative variations of perovskite structure is presented, namely, all-inorganic antimony-based and 2D Ruddlessden-Popper types, which are stable against the elements. By employing large scale ab-initio density functional theory (DFT) calculations, we explored the influence of hydrogen bonding formation on shape of the 2D perovskite single crystal and studied the intertwined defect present in 2D perovskite material. In addition, we explored the influence of different adduct molecules on subsequent stability of the all-inorganic antimony-based perovskite films. Hence, we explained processing-structure-property (PSP) relationship by means of ab-initio DFT, which is a necessary prerequisite for improving the morphology of the film and, therefore, device efficiency. To tackle the spatial length scale limitations of conventional DFT calculations, we leveraged the power of machine learning and successfully trained an accurate and robust potential energy model of 2D perovskite using the SNAP scheme. This model enabled us to perform a series of large-scale hybrid molecular dynamics/Monte Carlo simulations to investigate the layer distribution of 2D perovskite of a variety of stoichiometries and spacers and verify the experimental findings. This demonstrated that machine learning can play an ever-increasing role in studying the microstructure of complex perovskite materials.
Abstract i
中文摘要 ii
Contents iii
Chapter 1 Introduction 1
1.1 Rationale 1
1.2 Structure and properties of organic-inorganic lead-halide perovskite 2
1.3 Structure and properties of organic-inorganic lead-halide 2D Ruddlesden-Popper perovskite 7
1.4 Structure and properties of lead-free inorganic Sb-based perovskite structure 11
1.5 Overview of the thesis 13
Chapter 2 Literature review 16
2.1 2D Ruddlesden-Popper perovskite characterization 16
2.2 2D perovskite morphology 18
2.3 Impact of morphology on device performance 22
Chapter 3 Computational methods 24
3.1 Density Functional Theory 24
3.1.1 Schrodinger equation 24
3.1.2 Thomas-Fermi model 25
3.1.3 The Hohenberg-Kohn theorems 26
3.1.4 Kohn-Sham theory 27
3.1.5 Concepts in DFT 29
3.1.5.1 The exchange-correlation energy 29
3.1.5.2 Self-consistency iterations for KS equations flowchart 31
3.1.5.3 Pseudopotentials 32
3.1.5.4 Electrons in periodic potential 33
3.1.5.5 Ab-initio molecular dynamics 34
3.2 Machine learning of interatomic potentials 35
3.2.1 Descriptors 37
3.2.2 Machine learning potentials implementations 38
3.2.2.1 Neural networks 38
3.2.2.2 Gaussian approximated potentials 39
3.2.3 SNAP potential 40
3.2.3.1 Mathematical formulation 40
3.2.3.2 SNAP potential training flowchart 43
3.3 Monte Carlo method 44
3.3.1 Metropolis algorithm 45
3.3.1.1 Hybrid Metropolis Monte Carlo approach 47
Chapter 4 Lewis base adduct molecule absorption on a Pb-free all Cs3Sb2I9 inorganic perovskite 49
4.1 Introduction 49
4.2 Methodology 50
4.3 Results and Discussion 53
4.4 Summary and outlook 59
Chapter 5 Surface structures and equilibrium shapes of layered 2D Ruddlesden-Popper perovskite crystals from density functional theory calculations 60
5.1 Introduction 60
5.2 Methodology 61
5.3 Results and discussion 64
5.4 Summary and outlook 78
Chapter 6 Structural and electronic properties of intertwined defect in Ruddlesden−Popper 2D perovskites study using density functional theory calculations 80
6.1 Introduction 80
6.2 Computational method 81
6.3 Results and Discussion 84
6.3.1 Formation energy of intertwined structure 84
6.3.2 Band gap 89
6.3.3 Band structure 92
6.3.4 Density of states 94
6.4 Conclusion 98
6.5 Summary and outlook 99
Chapter 7 Layer distribution study in 2D Ruddlesden-Popper perovskites using SNAP potential and Monte Carlo simulations 101
7.1 Introduction 101
7.2 Results and discussion 103
7.2.1 SNAP potential training 103
7.2.2 SNAP Potential validation 107
7.2.3 Layer distribution from Monte Carlo simulations 109
7.4 Summary and Outlook 119
Chapter 8 Summary 121
8.1 Conclusion 121
8.2 Future prospects 124
Bibliography 127
1. Tanenbaum, M., Valdes, L. B., Buehler, E. & Hannay, N. B. Silicon n‐p‐n Grown Junction Transistors. J Appl Phys 26, 686–692 (1955).
2. Nakamura, S. & Fasol, G. The Blue Laser Diode: GaN based Light Emitters and Lasers. in (1997).
3. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Phys 322, 132–148 (1905).
4. Maldonado, S. The Importance of New “Sand-to-Silicon” Processes for the Rapid Future Increase of Photovoltaics. ACS Energy Lett 5, 3628–3632 (2020).
5. Barbato, M. et al. CdTe solar cells: technology, operation and reliability. J Phys D Appl Phys 54, 333002 (2021).
6. Mufti, N. et al. Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy 207, 1146–1157 (2020).
7. Xu, X. et al. Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction. Adv Funct Mater 32, 2108797 (2022).
8. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J Am Chem Soc 131, 6050–6051 (2009).
9. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem Rev 119, 3036–3103 (2019).
10. Umebayashi, T., Asai, K., Kondo, T. & Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B 67, 155405 (2003).
11. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. J Phys Chem Lett 4, 2999–3005 (2013).
12. Brivio, F., Walker, A. B. & Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater 1, 42111 (2013).
13. Chang, Y. H., Park, C. H. & Matsuishi, K. First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). Journal of the Korean Physical Society 44, 889–893 (2004).
14. Goldschmidt, V. M. Krystallbau und chemische Zusammensetzung. Berichte der deutschen chemischen Gesellschaft (A and B Series) 60, 1263–1296 (1927).
15. Xiang, W., Liu, S. (Frank) & Tress, W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ Sci 14, 2090–2113 (2021).
16. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7, 982–988 (2014).
17. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallographica Section B 28, 3384–3392 (1972).
18. Yin, W.-J., Shi, T. & Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials 26, 4653–4658 (2014).
19. Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. J Phys Chem Lett 4, 4213–4216 (2013).
20. Qingfeng, D. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).
21. D., S. S. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341–344 (2013).
22. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials 26, 1584–1589 (2014).
23. W., de Q. D. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).
24. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).
25. Leguy, A. M. A. et al. Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chemistry of Materials 27, 3397–3407 (2015).
26. Zheng, C. & Rubel, O. Unraveling the Water Degradation Mechanism of CH3 NH3PbI3. The Journal of Physical Chemistry C 123, 19385–19394 (2019).
27. Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A Mater 3, 8139–8147 (2015).
28. Fu, Q. et al. Recent Progress on the Long-Term Stability of Perovskite Solar Cells. Advanced Science 5, 1700387 (2018).
29. Ma, Z.-Q., Shao, Y., Wong, P. K., Shi, X. & Pan, H. Structural and Electronic Properties of Two-Dimensional Organic–inorganic Halide Perovskites and their Stability against Moisture. The Journal of Physical Chemistry C 122, 5844–5853 (2018).
30. Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J Am Chem Soc 141, 1171–1190 (2019).
31. Ishihara, T., Takahashi, J. & Goto, T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun 69, 933–936 (1989).
32. Muljarov, E. A., Tikhodeev, S. G., Gippius, N. A. & Ishihara, T. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys Rev B 51, 14370–14378 (1995).
33. Hong, X., Ishihara, T. & Nurmikko, A. v. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys Rev B 45, 6961–6964 (1992).
34. Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat Commun 9, 2254 (2018).
35. Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. Journal of Physics: Condensed Matter 8, 1217–1227 (1996).
36. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J Am Chem Soc 137, 7843–7850 (2015).
37. Stoumpos, C. C. et al. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials 28, 2852–2867 (2016).
38. Stoumpos, C. C. et al. High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017).
39. Tsai, H. et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536, 312–317 (2016).
40. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat Mater 15, 247–251 (2016).
41. Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. J Phys Chem Lett 6, 1543–1547 (2015).
42. Zhang, J., Hodes, G., Jin, Z. & Liu, S. (Frank). All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects. Angewandte Chemie International Edition 58, 15596–15618 (2019).
43. Harikesh, P. C. et al. Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics. Chemistry of Materials 28, 7496–7504 (2016).
44. Saparov, B. et al. Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor. Chemistry of Materials 27, 5622–5632 (2015).
45. Jesper Jacobsson, T. et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ Sci 9, 1706–1724 (2016).
46. Chen, H.-A., Tang, P.-H., Chen, G.-J., Chang, C.-C. & Pao, C.-W. Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model. J Phys Chem Lett 12, 3591–3599 (2021).
47. Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat Commun 10, 1008 (2019).
48. Ma, D., Xu, Z., Wang, F. & Deng, X. Syntheses of two-dimensional propylammonium lead halide perovskite microstructures by a solution route. CrystEngComm 21, 1458–1465 (2019).
49. Shih, M.-C. et al. Atomically Resolved Quantum-Confined Electronic Structures at Organic–Inorganic Interfaces of Two-Dimensional Ruddlesden–Popper Halide Perovskites. Nano Lett 21, 8066–8072 (2021).
50. Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat Mater 17, 900–907 (2018).
51. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie 126, 11414–11417 (2014).
52. Thomas, L. H. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 23, 542–548 (1927).
53. Fermi, E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Zeitschrift für Physik 48, 73–79 (1928).
54. Teller, E. On the Stability of Molecules in the Thomas-Fermi Theory. Rev Mod Phys 34, 627–631 (1962).
55. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Physical Review 136, B864–B871 (1964).
56. Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 140, A1133–A1138 (1965).
57. Tadmor, E. B. & Miller, R. E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques. (Cambridge University Press, 2011). doi:DOI: 10.1017/CBO9781139003582.
58. Blöchl, P. E. Projector augmented-wave method. Phys Rev B 50, 17953–17979 (1994).
59. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann Phys 389, 457–484 (1927).
60. Car, R. & Parrinello, M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys Rev Lett 55, 2471–2474 (1985).
61. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4, 187–217 (1983).
62. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J Phys Chem 94, 8897–8909 (1990).
63. Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Physical Chemistry Chemical Physics 13, 17930–17955 (2011).
64. Mitchell, T. M. Machine Learning. (McGraw-Hill, 1997).
65. Behler, J. & Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys Rev Lett 98, 146401 (2007).
66. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Phys Rev Lett 104, 136403 (2010).
67. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys Rev B 87, 184115 (2013).
68. Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Phys Rev Lett 108, 58301 (2012).
69. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5, 115–133 (1943).
70. Behler, J. Perspective: Machine learning potentials for atomistic simulations. J Chem Phys 145, 170901 (2016).
71. Bartók, A. P. & Csányi, G. Gaussian approximation potentials: A brief tutorial introduction. Int J Quantum Chem 115, 1051–1057 (2015).
72. Carl Edward Rasmussen & Christopher K. I. Williams. Gaussian Processes for Machine Learning. (The MIT Press, 2005). doi:10.7551/mitpress/3206.001.0001.
73. Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. (Cambridge University Press, 2000). doi:DOI: 10.1017/CBO9780511801389.
74. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J Comput Phys 285, 316–330 (2015).
75. Varshalovich, D. A., Moskalev, A. N. & Khersonskii, V. K. Quantum Theory of Angular Momentum. (WORLD SCIENTIFIC, 1988). doi:doi:10.1142/0270.
76. Meremianin, A. v. Multipole expansions in four-dimensional hyperspherical harmonics. Journal of Physics A 39, 3099–3112 (2006).
77. Swiler, L. P., Eldred, M. S. & Adams, B. M. Dakota: Bridging Advanced Scalable Uncertainty Quantification Algorithms with Production Deployment. in Handbook of Uncertainty Quantification (eds. Ghanem, R., Higdon, D. & Owhadi, H.) 1651–1693 (Springer International Publishing, 2017). doi:10.1007/978-3-319-12385-1_52.
78. Caflisch, R. E. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7, 1–49 (1998).
79. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of State Calculations by Fast Computing Machines. J Chem Phys 21, 1087–1092 (1953).
80. Duane, S., Kennedy, A. D., Pendleton, B. J. & Roweth, D. Hybrid monte carlo. Physics letters B 195, 216–222 (1987).
81. Mehlig, B., Heermann, D. W. & Forrest, B. M. Hybrid Monte Carlo method for condensed-matter systems. Phys Rev B 45, 679–685 (1992).
82. Earl, D. J. & Deem, M. W. Monte Carlo Simulations BT - Molecular Modeling of Proteins. in (ed. Kukol, A.) 25–36 (Humana Press, 2008). doi:10.1007/978-1-59745-177-2_2.
83. Hu, H., Dong, B. & Zhang, W. Low-toxic metal halide perovskites: opportunities and future challenges. J Mater Chem A Mater 5, 11436–11449 (2017).
84. Li, L. et al. The Additive Coordination Effect on Hybrids Perovskite Crystallization and High-Performance Solar Cell. Advanced Materials 28, 9862–9868 (2016).
85. Singh, A. et al. Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs3Sb2I9. ACS Appl Mater Interfaces 10, 2566–2573 (2018).
86. Boopathi, K. M. et al. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. J Mater Chem A Mater 5, 20843–20850 (2017).
87. Han, T.-H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun 10, 520 (2019).
88. Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Acc Chem Res 49, 311–319 (2016).
89. Wharf, I., Gramstad, T., Makhija, R. & Onyszchuk, M. Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands. Can J Chem 54, 3430–3438 (1976).
90. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 1758–1775 (1999).
91. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169–11186 (1996).
92. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 77, 3865–3868 (1996).
93. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32, 1456–1465 (2011).
94. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132, 154104 (2010).
95. Jain, A. et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 11002 (2013).
96. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys Rev B 13, 5188–5192 (1976).
97. Chen, H.-A. & Pao, C.-W. Fast and Accurate Artificial Neural Network Potential Model for MAPbI3 Perovskite Materials. ACS Omega 4, 10950–10959 (2019).
98. Dang, Y. et al. Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustain Energy Fuels 2, 2237–2243 (2018).
99. Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chemistry of Materials 8, 791–800 (1996).
100. Wang, L., Zhou, F., Meng, Y. S. & Ceder, G. First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phys Rev B 76, 165435 (2007).
101. Jiang, F. et al. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling. Appl Surf Sci 436, 989–994 (2018).
102. Hutchinson, M. & Widom, M. VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron. Comput Phys Commun 183, 1422–1426 (2012).
103. Hacene, M. et al. Accelerating VASP electronic structure calculations using graphic processing units. J Comput Chem 33, 2581–2589 (2012).
104. Egger, D. A. & Kronik, L. Role of Dispersive Interactions in Determining Structural Properties of Organic–Inorganic Halide Perovskites: Insights from First-Principles Calculations. J Phys Chem Lett 5, 2728–2733 (2014).
105. Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44, 1272–1276 (2011).
106. Goerigk, L. Chapter 6 - A Comprehensive Overview of the DFT-D3 London-Dispersion Correction. in Non-Covalent Interactions in Quantum Chemistry and Physics (eds. Otero de la Roza, A. & DiLabio, G. A.) 195–219 (Elsevier, 2017). doi:https://doi.org/10.1016/B978-0-12-809835-6.00007-4.
107. Wang, Y. et al. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3. The Journal of Physical Chemistry C 119, 1136–1145 (2015).
108. Yang, Y., Gao, F., Gao, S. & Wei, S.-H. Origin of the stability of two-dimensional perovskites: a first-principles study. J Mater Chem A Mater 6, 14949–14955 (2018).
109. Raghavan, C. M. et al. Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Lett 18, 3221–3228 (2018).
110. Nakayama, M., Hotta, S., Nakamura, T. & Kasuga, T. Morphology and surface structure of cubic BaTiO3 using first-principles density functional theory. Journal of the Ceramic Society of Japan 121, 611–613 (2013).
111. Eglitis, R. I. & Popov, A. I. Systematic trends in (001) surface ab initio calculations of ABO3 perovskites. Journal of Saudi Chemical Society 22, 459–468 (2018).
112. Wang, Y.-X., Chen, H.-A., Pao, C.-W. & Chang, C.-C. Artificial Neural Network Model for Atomistic Simulations of Sb/MoS2 van der Waals Heterostructures. Multiscale Science and Engineering 1, 119–129 (2019).
113. MacKinnon, S. S., Malevanets, A. & Wodak, S. J. Intertwined Associations in Structures of Homooligomeric Proteins. Structure 21, 638–649 (2013).
114. Lawrance, J., Gutu, T., McClain, D., Wu, J. & Jiao, J. High Yield Growth of Various CdS Nano-Structures and Their Electron Field Emission Behavior. MRS Proceedings 963, 916–963 (2006).
115. Kamminga, M. E. et al. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids. Chemistry of Materials (2016) doi:10.1021/acs.chemmater.6b00809.
116. Najman, S., Chen, H.-A., Chen, H.-Y. T. & Pao, C.-W. Surface structures and equilibrium shapes of layered 2D Ruddlesden-Popper perovskite crystals from density functional theory calculations. Mater Today Commun 26, 101745 (2021).
117. Myae Soe, C. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc Natl Acad Sci U S A 116, 58–66 (2019).
118. Yang, L., He, H. Y. & Pan, B. C. Theoretical prediction of new carbon allotropes. J Chem Phys 138, 024502 (2013).
119. Rivero, P., Shelton, W. & Meunier, V. Surface properties of hydrogenated diamond in the presence of adsorbates: A hybrid functional DFT study. Carbon N Y 110, 469–479 (2016).
120. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118, 8207–8215 (2003).
121. Xiao, Z. et al. Photovoltaic Properties of Two-Dimensional (CH3NH3)2Pb(SCN)2I2 Perovskite: A Combined Experimental and Density Functional Theory Study. J Phys Chem Lett 7, 1213–1218 (2016).
122. Stoumpos, C. C. et al. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials 28, 2852–2867 (2016).
123. Liu, G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proceedings of the National Academy of Sciences 115, 8076–8081 (2018).
124. Steiner, S., Khmelevskyi, S., Marsmann, M. & Kresse, G. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered ${\mathrm{Fe}}_{1\ensuremath{-}x}{\mathrm{Co}}_{x}$ alloys. Phys Rev B 93, 224425 (2016).
125. Alay-e-Abbas, S. M., Nazir, S., Cottenier, S. & Shaukat, A. Evaluation of thermodynamics, formation energetics and electronic properties of vacancy defects in CaZrO3. Sci Rep 7, 8439 (2017).
126. Wang, D. et al. First-Principles Study of Novel Two-Dimensional (C4H9NH3)2PbX4 Perovskites for Solar Cell Absorbers. J Phys Chem Lett 8, 876–883 (2017).
127. Yang, J.-H., Shi, L., Wang, L.-W. & Wei, S.-H. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study. Sci Rep 6, 21712 (2016).
128. Liu, J., Leng, J., Wu, K., Zhang, J. & Jin, S. Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films. J Am Chem Soc 139, 1432–1435 (2017).
129. Yan, L. et al. Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth – artificial interfaces in complex unit cells. Chem Sci 2, 261–272 (2011).
130. Fraccarollo, A., Cantatore, V., Boschetto, G., Marchese, L. & Cossi, M. Ab initio modeling of 2D layered organohalide lead perovskites. Journal of Chemical Physics (2016) doi:10.1063/1.4947305.
131. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271, 108171 (2022).
132. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).
133. Even, J., Pedesseau, L., Dupertuis, M.-A., Jancu, J.-M. & Katan, C. Electronic model for self-assembled hybrid organic/perovskite semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling. Phys Rev B 86, 205301 (2012).
134. Yao, Q. et al. Controlling screw dislocation evolution towards highly homogeneous quasi-two-dimensional (BA)2(MA)n−1PbnI3n+1 single crystals for high-response photo-detectors. J Mater Chem C Mater 10, 3826–3837 (2022).
135. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. J Phys Chem Lett 4, 2999–3005 (2013).
136. LeSar, R. Introduction to Computational Materials Science: Fundamentals to Applications. (Cambridge University Press, 2013). doi:DOI: 10.1017/CBO9781139033398.
137. Haykin, S., Haykin, S. S. & HAYKIN, S. A. Neural Networks: A Comprehensive Foundation. (Prentice Hall, 1999).
138. Singh, A. et al. Modulating Performance and Stability of Inorganic Lead-Free Perovskite Solar Cells via Lewis-pair mediation. ACS Appl Mater Interfaces (2020) doi:10.1021/acsami.0c06971.
139. Chen, Z. et al. Remote Phononic Effects in Epitaxial Ruddlesden–Popper Halide Perovskites. J Phys Chem Lett 9, 6676–6682 (2018).
140. Wang, K., Wu, C., Yang, D., Jiang, Y. & Priya, S. Quasi-Two-Dimensional Halide Perovskite Single Crystal Photodetector. ACS Nano 12, (2018).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *