帳號:guest(3.133.135.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):威迪亞
作者(外文):Widhya Budiawan
論文名稱(中文):有機和鈣鈦礦太陽能電池應用中施體材料、電洞傳輸材料和添加劑的小分子分子工程
論文名稱(外文):Molecular Engineering of Small Molecule for Donor Material, Hole Transporting Material, and Additives in Organic and Perovskite Solar Cell Application
指導教授(中文):朱治偉
王本誠
指導教授(外文):Chu, Chih-Wei
Wang, Pen-Cheng
口試委員(中文):陳方中
賴朝松
林皓武
口試委員(外文):Chen, Fang-Chung
Lai, Chao-Sung
Lin, Hao-Wu
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011861
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:152
中文關鍵詞:太陽能電池有機鈣鈦礦體材料添加劑電洞傳輸材料
外文關鍵詞:solar cellorganicperovskitedonor materialhole transporting materialadditive
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
全球環境和資源對未來能源需求和安全的高度關注將不斷增加,這取決於可獲取、可持續和可擴展的能源技術的發展。在過去的幾十年裡,學術界和工業界作一直致力於與聚合物相關的最先進的小分子有機物的研究,因為它們具有許多優點,例如高純度和結晶度、明確的分子結構、不存在端基污染物 、高流動性和批次間重現性。
最成功的二維(2D)電子供體單元, benzo[1,2-b:4,5-b´]dithiophenes (BDTs), 已成為聚合物太陽能電池和小分子有機太陽能電池的熱門結構單元材料,由於高共面性 ,π-π堆積,高遷移率和增強的溶解度。BDT衍生物給供電子基團的橫向柔性側鏈操縱即TB-BDT6T被ethynylthenyl取代, TS-BDT6T被thenylthio取代, 和TT-BDT6T被alkyl thienothiophenes取代。實驗結果表明,在不改變封端受體(氰基乙酸酯)部分的情況下橫向摻入柔性側鏈使基於 BDT 的小分子能夠成功地改善光電特性。與 TB-BDT6T 相比,TS-BDT6T 和 TT-BDT6T 在固態下表現出良好的堆積。此外,TS-BDT6T 和 TT-BDT6T 表現出優異的電荷傳輸特性和有序的分離網絡分佈,從而提高了功率轉換效率。
不對稱苯並[2,1-b:-3,4-b':5,6-b″]三噻吩(不對稱BTT)中擴展的芳香核提供了完全的平面性,從而有利於分子間的π-堆疊和電荷傳輸。不對稱 BTT 單元用作中心核心,其上附加了各種供體基團,咔唑 (BTT-CB)、噻吩並噻吩 (BTTFT)、三苯胺 (BTT-TPA) 和二噻吩 (BTT-TT)。與其他三種空穴傳輸材料相比,BTT-TT具有良好的結晶度和優異的空穴遷移率,並且在覆蓋鈣鈦礦活性層時形成了光滑均勻的表面。BTT-TT作為空穴傳輸材料的最高功率轉換效率為18.58%,儲存700小時以上穩定性良好。
金屬鹵化物鈣鈦礦薄膜的晶界和表面缺陷作為非輻射複合中心,降低鈣鈦礦太陽能電池的性能和/或穩定性。核扭曲四氯苝二亞胺 (ClPDI) 衍生物(n 型小分子)含有各種末端基團(正丁基 (ClPDI-C4) 、二甲基氨基丙基 (ClPDI-OmeA) 和氨基丙基 (ClPDI-DPA)被導入碘化鉛前驅溶液作為添加劑,以控制結晶速率和調節甲基三碘化鉛 (MAPbI3) 鈣鈦礦薄膜的薄膜形態)。這些添加劑與鈣鈦礦之間的強相互作用鈍化了缺陷,減緩了鈣鈦礦晶體的生長,並增加了晶粒尺寸。因此,在鈣鈦礦薄膜形成中使用 ClPDI 添加劑可以有效提高鈣鈦礦太陽能電池的效率和穩定性。
Global environmental and resource highly concern about the future energy demand and security will become continuously increasing depends upon the development of accessible, sustainable and scalable energy technologies. Remarkable research efforts from both academia and industry over the past decades have been dedicated in state-of-art small molecule organic with respect to polymer due to numerous advantages such as high purity and crystallinity, well-defined molecular structures, absence of end group contaminants, high mobility, and batch-to-batch reproducibility.
The most successful two-dimensional (2D)-electron donor unit, benzo[1,2-b:4,5-b´]dithiophenes (BDTs), has emerged as an fascinating building block for PSCs as well as SMOSCs owing to high-coplanarity, π-π stacking, high-mobility and enhanced solubility. Lateral flexible side chains manipulation of the electron-donating groups of BDT derivatives, that B-BDT6T substituted with ethynylthenyl, TS-BDT6T substituted with thenylthio and TT-BDT6T substituted with alkyl thienothiopehenes. The experimental results indicate that the lateral incorporation of flexible side chains without altering the end capped acceptor (cyanoacetate) moieties enable BDT-based small molecules to successfully amend the opto-electronic properties. TS-BDT6T and TT-BDT6T demonstrated good packing, in contrast to TB-BDT6T, in the solid state. Moreover, TS-BDT6T and TT-BDT6T exhibited superior charge transport properties and well-ordered separation networks distributions and, thus enhanced PCE.
The extended aromatic core in the asymmetric benzo[2,1-b:-3,4-b′:5,6-b″]trithiophene (asymmetric BTT) provided full planarity, thereby favoring intermolecular π-stacking and charge transport. The asymmetric BTT unit was used as the central core to which were appended various donor groups, carbazole (BTT-CB), thieno thiophene (BTTFT), triphenylamine (BTT-TPA), and bithiophene (BTT-TT). Good crystallinity and superior hole mobility was exhibited by BTT-TT, compared with those of the other three HTMs, and formed smooth and uniform surfaces when covering the perovskite active layer. The highest power conversion efficiency incorporating BTT-TT as the HTM was 18.58% with good stability after storage for more than 700 h.
Defects at the grain boundaries and surfaces of metal-halide perovskite films function as non-radiative recombination centers that decrease the performance and/or stability of perovskite solar cells (PSCs). Core-twisted tetrachloroperylene diimide (ClPDI) derivatives (n-type small molecules) presenting various terminal groups (n-butyl (ClPDI-C4), dimethylaminopropyl (ClPDI-OmeA), and aminopropyl (ClPDI-DPA)) were introduced into the lead iodide precursor solution as additives to control the crystallization rate and modulate the film morphology of methylammonium lead triiodide (MAPbI3) perovskite films. The strong interactions between these additives and perovskite passivated defects, slowed perovskite crystal growth, and increased the grain size. Thus, the use of ClPDI additives in perovskite film formation can effectively enhance both efficiency and stability of perovskite solar cells.
Abstract--------------------------------------------------------------------iii
摘要-------------------------------------------------------------------------v
Acknowledgment---------------------------------------------------------vii
Table of Content ----------------------------------------------------------viii
List of Figure---------------------------------------------------------------xi
List of Tables--------------------------------------------------------------xvii
CHAPTER 1: Introduction---------------------------------------------------1
1.1. Solar cell----------------------------------------------------------------1
1.2. Organic solar cells -----------------------------------------------------2
1.2.1. Basic principle of OSC -----------------------------------------------3
1.2.2. OSC device structure-------------------------------------------------5
1.2.2.1.Single polymer layer device----------------------------------------6
1.2.2.2.Bilayer polymer/acceptor structure--------------------------------6
1.2.2.3.BHJ organic solar cell structure-------------------------------------8
1.2.3.Small molecules solar cells-------------------------------------------9
1.3.Perovskite Material for Solar Cells Application-----------------------11
1.4.Solar Cells Device Characteristics-------------------------------------16
1.4.1.Short circuit current density-----------------------------------------17
1.4.2.Open circuit voltage (VOC) -----------------------------------------17
1.4.3. Fill Factor -----------------------------------------------------------17
1.4.4.Maximum power point----------------------------------------------17
1.4.5.Power conversion efficiency (PCE) ----------------------------------18
1.5.Thesis Organization---------------------------------------------------18

CHAPTER 2: Experimental Section ---------------------------------------20
2.1.Preparation of benzodithiophene-based small molecule solar cells-20
2.2.Preparation of MAPbI3 using single step method--------------------22
2.3.Preparation of ClPDI additive based perovskite solar cells-----------25
2.4.Characterization techniques------------------------------------------28

CHAPTER 3: Lateral Side Chains Engineering on Benzodithiophene-Based Small Molecules for Bulk Heterojunction Solar Cells --------------------30
3.1.Overview --------------------------------------------------------------31
3.2.Result and discussion-------------------------------------------------35
3.2.1.Optical properties---------------------------------------------------35
3.2.2.Electrochemical properties------------------------------------------37
3.2.3.Molecular order and packing ---------------------------------------39
3.2.4.Device Performance-------------------------------------------------40
3.2.5.Morphology and charge transport----------------------------------46
3.3.Summary--------------------------------------------------------------50

CHAPTER 4: Asymmetric Benzotrithiophene-Based Small Molecules for Hole Transporting Materials of Perovskite Solar Cells--------------------51
4.1.Overview--------------------------------------------------------------52
4.2.Result and discussion -------------------------------------------------56
4.2.1.Hole Transporting Material properties -----------------------------56
4.2.2.Photovoltaic performance------------------------------------------62
4.2.3.Transport properties------------------------------------------------71
4.3.Summary--------------------------------------------------------------78

CHAPTER 5: Core-Twisted Tetrachloroperylenediimides as Additives in Perovskite Solar Cells-----------------------------------------------------79
5.1.Overview--------------------------------------------------------------80
5.2.Result and Discussion-------------------------------------------------84
5.2.1.Crystallinity and Morphology of Perovskite Films------------------84
5.2.2.Photovoltaic performance------------------------------------------90
5.2.3.Photoluminescence and molecular interaction---------------------94
5.2.4.Stability of perovskite solar cells devices----------------------------99
5.3.Summary ------------------------------------------------------------102

CHAPTER 6: Conclusion and Future Perspective------------------------104
6.1.Conclusion-----------------------------------------------------------104
6.2.Future Perspective---------------------------------------------------106
References---------------------------------------------------------------108
Appendix A : Synthesis of Small Molecules -----------------------------120
Synthesis of the BDT-based small molecules TB-BDT6T, TS-BDT6T, and TT-BDT6T
Synthesis of Asymmetric Benzotrithiophene-Based BTT-CB, BTT-FT, BTT-TPA, and BTT-TT
Syntheses of the Core-Twisted Tetrachloroperylenediimide Derivatives ClPDI-C4, ClPDI- C3DMeA, and ClPDI-DPA
Appendix B : List of Publication------------------------------------------150
1. Wang, W., Tadé, M. O. & Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci. 92, 33–63 (2018).
2. Li, G., Budiawan, W., Wang, P.-C. & Wei Chu, C. Conjugated Polymer-Based Solar Cells. Encyclopedia of Modern Optics 5, (Elsevier Ltd., 2018).
3. Kwak, J. Il, Nam, S. H., Kim, L. & An, Y. J. Potential environmental risk of solar cells: Current knowledge and future challenges. J. Hazard. Mater. 392, 122297 (2020).
4. Gao, Y. et al. Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. 9, 1–42 (2017).
5. Ganesamoorthy, R., Sathiyan, G. & Sakthivel, P. Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol. Energy Mater. Sol. Cells 161, 102–148 (2017).
6. Chen, K. et al. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Nanoscale 8, 5146–52 (2016).
7. Kuzmich, A., Padula, D., Ma, H. & Troisi, A. Trends in the electronic and geometric structure of non-fullerene based acceptors for organic solar cells. Energy Environ. Sci. 10, 395-401 (2017).
8. Zhou, Y. et al. All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chem. Mater. 28, 5037–5042 (2016).
9. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 352, aad4424–aad4424 (2016).
10. Mazzio, K. A. & Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2014).
11. National Renewable Energy Laboratory. Best Research Cell Efficiency. (2020).
12. Heremans, P., Cheyns, D. & Rand, B. P. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc. Chem. Res. 42, 1740–1747 (2009).
13. Xue, J. Perspectives on organic photovoltaics. Polym. Rev. 50, 411–419 (2010).
14. Tamai, Y., Ohkita, H., Benten, H. & Ito, S. Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency. J. Phys. Chem. Lett. 6, 3417–3428 (2015).
15. Weinberger, B. R., Akhtar, M. & Gau, S. C. Polyacetylene photovoltaic devices. Synth. Met. 4, 187–197 (1982).
16. Glenis, S., Tourillon, G. & Garnier, F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene. Thin Solid Films 139, 221–231 (1986).
17. Menke, S. M. & Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7, 499–512 (2014).
18. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).
19. Maqsood, I. et al. Monte Carlo Simulation of Forster Resonance Energy Transfer in 3D Nanoscale Organic Bulk Heterojunction Morphologies. (2013).
20. Cnops, K. et al. Supporting information 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).
21. Hiramoto, M., Fujiwara, H. & Yokoyama, M. P-I-N Like Behavior in Three-Layered Organic Solar Cells Having a Co-Deposited Interlayer of Pigments. J. Appl. Phys. 72, 3781–3787 (1992).
22. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science. 270, 1789–1791 (1995).
23. Cui, C.; Guo, X.; Min, J.; Guo, B.; Cheng, X.; Zhang, M.; Brabec, C. J.; Li, Y. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments. Adv. Mater. 27, 7469–7475 (2015).
24. Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; Hu, Z.; Huang, F.; Cao, Y.; Liang, Z.; Zhang, M.; Russell, T. P.; Chen, Y. Small-Molecule Solar Cells with Efficiency over 9%. Nat. Photonics 9, 35–41 (2014).
25. Liu, Y.; Chen, C.-C.; Hong, Z.; Gao, J.; Yang, Y.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci. Rep. 3, 3356−3363 (2013).
26. Wang, Z.; Xu, X.; Li, Z.; Feng, K.; Li, K.; Li, Y.; Peng, Q. Solution-processed organic solar cells with 9.8% efficiency based on a new small molecule containing a 2D fluorinated benzodithiophene central unit. Adv. Electron. Mater. 2, 1600061 (2016).
27. Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014).
28. Yu, T.; Xu, X.; Li, Y.; Li, Z.; Peng, Q. Side-Chain Influence of Wide-Bandgap Copolymers Based on Naphtho[1,2‑b:5,6‑b]bispyrazine and Benzo[1,2‑b:4,5‑b′]dithiophene for Efficient Photovoltaic Applications. ACS Appl. Mater. Interfaces 9, 18142−18150 (2017).
29. Wolf, J.; Babics, M.; Wang, K.; Saleem, Q.; Liang, R.-Z.; Hansen, M. R.; Beaujuge, P. M. Benzo[1,2-b:4,5-b′]dithiophene–Pyrido[3,4-b]pyrazine Small-Molecule Donors for Bulk Heterojunction Solar Cells. Chem. Mater. 28, 2058−2066 (2016).
30. Qin, J. et al. 15.3% Efficiency All-Small-Molecule Organic Solar Cells Enabled By Symmetric Phenyl Substitution. Sci. China Mater. 63, 1142–1150 (2020).
31. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).
32. Yin, W. J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).
33. Brenner, T. M. et al. Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015).
34. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 1–6 (2014).
35. Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).
36. Bakr, Z. H. et al. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017).
37. Zhao, X. & Wang, M. Organic hole-transporting materials for efficient perovskite solar cells. Mater. Today Energy 7, 208–220 (2018).
38. Liu, X. et al. Diketopyrrolopyrrole or benzodithiophene-arylamine small-molecule hole transporting materials for stable perovskite solar cells. RSC Adv. 6, 87454–87460 (2016).
39. Zhang, F. et al. A Novel Dopant-Free Triphenylamine Based Molecular "Butterfly" Hole-Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 6, 1–7 (2016).
40. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science (80-. ). 338, 643– 647 (2012).
41. Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
42. Molina-Ontoria, A. et al. Benzotrithiophene-based hole-transporting materials for 18.2 % perovskite solar cells. Angew. Chemie - Int. Ed. 55, 6270–6274 (2016).
43. Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7393–7457 (2016).
44. Ni, W.; Wan, X. J.; Li, M. M.; Wang, Y. C.; Chen, Y. S. A-D-A small molecules for solution-processed organic photovoltaic cells. Chem. Commun 51, 4936−4950 (2015).
45. Lin, Y. Z.; Li, Y. F.; Zhan, X. W. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41, 4245 (2012).
46. Chen, Y.; Wan, X. . L. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46, 2645–2655 (2013).
47. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).
48. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).
49. H. Bin, Y. Yang, Z.-G. Zhang, L. Ye, M. Ghasemi, S. Chen, Y. Zhang, C. Zhang, C. Sun, L. Xue, C. Yang, H. Ade, and Y. L. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. J. Am. Chem. Soc. 139, 5085–5094 (2017).
50. Bartelt, J. A.; Lam, D.; Burke, T. M.; Sweetnam, S. M.; Mc Gehee, M. D. Charge-Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90%. Adv. Energy Mater. 5, 1500577 (2015).
51. Wurfel, U.; Neher, D.; Spies, A.; Albrecht, S. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015).
52. Liu, T. ; Pan, X.; Meng, X.; Liu, Y.; Wei, D.; Ma, W. Huo, L.; Sun, X.; Lee, T. H.; Huang, M.; Choi, H.; Kim, J. Y.; Choy, W. C. H.; Sun, Y. Alkyl Side-Chain Engineering in Wide-Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Adv. Mater. 29, 1604251 (2017).
53. Wang, L.; Liu, H.; Huai, Z. . Y. S. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2‐(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. ACS Appl. Mater. Interfaces 9, 18142−18150 (2017).
54. Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; Hu, Z.; Huang, F.; Cao, Y.; Liang, Z.; Zhang, M.; Russell, T. P.; Chen, Y. Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells. J. Mater. Chem. A 3, 4765–4776 (2015).
55. Patra, D.; Huang, T.-Y.; Chiang, C.-C.; Maturana, R. O. V.; Pao, C.-W.; Ho, K.-C.; Wei, K.-H.; Chu, C.-W. 2-Alkyl-2-thienyl–Substituted Benzo[1,2-b:4,5-b´]dithiophene-Based Donor Molecules for Solution-Processed Organic Solar Cells. ACS Appl. Mater. Interfaces 19, 9494–9500 (2013).
56. Qiu, B.; Yuan, J.; Xiao, X.; He, D.; Qiu, L.; Zou, Y.; Zhang, Z.; Li, Y. Effect of fluorine substitution on photovoltaic properties of alkoxyphenyl substituted benzo[1,2-b:4,5-b′]dithiophene-based small molecules. ACS Appl. Mater. Interfaces. 7, 25237−25246 (2015).
57. Farahat, M. E.; Patra, D.; Lee, C.-H.; Chu, C.-W. Synergistic effects of morphological control and complementary absorption in efficient all-small-molecule ternary-blend solar cells. ACS Appl. Mater. Interfaces 40, 22542–22550 (2015).
58. Zhu, E.; Ge, G.; Shu, J.; Yi, M.; Bian, L.; Hai, J.; Yu, J.; Liu, Y.; Zhou, J.;Tang, W. Direct access to 4,8-functionalized benzo[1,2-b:4,5-b′]dithiophenes with deep low-lying HOMO levels and high mobilities. J. Mater. Chem. A. 2, 13580–13586 (2014).
59. Kang, T. E.; Kim, T.; Wang, C.; Yoo, S.; Kim, B. J. Poly(benzodithiophene) homopolymer for high-performance polymer solar cells with open-circuit voltage of near 1 V: a superior candidate to substitute for poly(3-hexylthiophene) as wide bandgap polymer. Chem. Mater. 27, 2653–2658 (2015).
60. Farahat, M. E. et al. Efficient molecular solar cells processed from green solvent mixtures. J. Mater. Chem. A 5, 571–582 (2017).
61. Chen, Y. et al. Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Org. Electron. 15, 405–413 (2014).
62. Du, Z. et al. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Phys. Chem. Chem. Phys. 17, 17391–17398 (2015).
63. Wen, S. et al. A triple bond side-chained 2D-conjugated benzodithiophene based photovoltaic polymer. RSC Adv. 4, 58426–58431 (2014).
64. Sista, P. et al. Synthesis and electronic properties of semiconducting polymers containing benzodithiophene with alkyl phenylethynyl substituents. Macromolecules 43, 8063–8070 (2010).
65. Bathula, C. et al. New TIPS-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymers for application in polymer solar cells. J. Mater. Chem. 22, 22224 (2012).
66. Hundt, N. et al. Polymers containing rigid benzodithiophene repeating unit with extended electron derealization. Org. Lett. 11, 4422–4425 (2009).
67. Yuan, J.; Zou, Y.; Cui, R.; Chao, Y. -H.; Wang, Z.; Ma, M.; He, Y.; Li, Y.; Rindgen, A.; Cui, R.; Ma, W.; Xiao, D.; Bo, Z.; Xu, X.; Li, L.; Hsu, C.-S. Incorporation of fluorine onto different positions of phenyl substituted benzo[1,2-b:4,5-b′]dithiophene unit: influence on photovoltaic properties. Macromolecules 48, 4347−4356 (2015).
68. Cui, C.; Wong, W. -Y.; Li, Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ. Sci. 7, 2276–2284 (2014).
69. Cheng, Y.-J.; Luo, J.; Huang, S.; Zhou, X.; Shi, Z.; Kim, T. D.; Bale, D. H.; Takahashi, S.; Yick, A.; Polishak, B. M.; Jang, S.-H.; Dalton, L. R.; Reid, P. J.; Steier, W. H.; Jen, A. K.-Y. Donor−acceptor thiolated polyenic chromophores exhibiting large optical nonlinearity and excellent photostability. Chem. Mater. 20, 5047–5054 (2008).
70. Li, Y.; Chang, C.-Y.; Chen, Y.; Song, Y.; Li, C.-Z.; Yip, H. -L.;. Jen, A. K.-Y.; Li, C. The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. J. Mater. Chem. C 1, 7526–7533 (2013).
71. Kan, B.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Yang, X.; Zhang, M.; Zhang, H.; Russell, T. P.; Chen, Y. Small Molecules Based on Alkyl/Alkylthio-Thieno[3,2-b]Thiophene-Substituted Benzo[1,2-b:4,5- b’]Dithiophene for Solution-Processed Solar Cells with High Performance. Chem. Mater. 27, 8414–8423 (2015).
72. Yao, H.; Zhang, H.; Ye, L.; Zhai, W.; Zhang, S.; Hou, J. Dialkylthio substitution: An effective method to modulate the molecular energy levels of 2D-BDT photovoltaic polymers. ACS Appl. Mater. Interfaces 8, 3575–3583 (2016).
73. Ye, L.; Zhang, S.; Zhao, W.; Yao, H.; Hou, J. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem. Mater. 28, 3603-3605. (2015).
74. Patra, D.; Chiang, C. -C.; Chen, W. -A.; Wei, K.-H.; Wu, M. -C.; Chu, C.-W. Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells. J. Mater. Chem A. 1, 7767–7774 (2013).
75. Patra, D.; Lee, J.; Lee, J.; Sredojevic, D. N.; White, A. J. P.; Bazzi, H. S.; Brothers, E. N.; Heeney, M.; Fang, L.; Yoon M.-H.; Al-Hashimi, M. Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). J. Mater. Chem. C. 5, 2247–2258 (2017).
76. Kim, J.-H,; Kim, H. S.; Park, J. B.; Kang, I. -N.; Hwang, D.-H. Thieno[3,2-b]thiophene-substituted benzodithiophene in donor–acceptor type semiconducting copolymers: A feasible approach to improve performances of organic photovoltaic cells. J. Polym. Sci., Part A Polym. Chem. 52, 3608–3616 (2014).
77. Liu, Y., Yang, Y., Chen, C.-C., Chen, Q., Dou, L., Hong, Z., Li, G. and Yang, Y. Solution-Processed Small Molecules Using Different Electron Linkers for High-Performance Solar Cells. Adv. Mater. 25, 4657–4662 (2013).
78. Zhou,J.; Wan, X.; Liu, Y.; Zuo, Y.; Li, Z.; He, G.; Long, G.; Ni, W.; Li, C.; Su, X.; Chen, Y. Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. J. Am. Chem. Soc. 134, 16345−16351 (2012).
79. Graham, K.R.; Mei, J.; Stalder, R.; Shim, W.S.; Cheun, H.; Steffy, F.; So, F.; Kippelen, B.;Reynolds, J. R. Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells. ACS Appl. Mater. Interfaces 3, 1210–1215 (2011).
80. Walker, B. et al. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv. Funct. Mater. 19, 3063–3069 (2009).
81. Yang, X., Wang, H., Cai, B., Yu, Z. & Sun, L. Progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 27, 650–672 (2018).
82. Cai, F. et al. Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 45, 28–36 (2018).
83. Jiang, K. et al. Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss. J. Mater. Chem. A 7, 21662–21667 (2019).
84. Ma, S. et al. Optical–Electrical–Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 10, 3902–3911 (2018).
85. Redondo-Obispo, C. et al. Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Mater. Des. 191, 1–10 (2020).
86. Yu, J. C. et al. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Sci. Rep. 8, 3–11 (2018).
87. Chen, Y. C., Li, Y. H., Chung, C. L., Hsu, H. L. & Chen, C. P. Triphenylamine dibenzofulvene–derived dopant-free hole transporting layer induces micrometer-sized perovskite grains for highly efficient near 20% for p-i-n perovskite solar cells. Prog. Photovoltaics Res. Appl. 28, 49–59 (2020).
88. Maddala, S. et al. Forming a Metal-Free Oxidatively Coupled Agent, Bicarbazole, as a Defect Passivation for HTM and an Interfacial Layer in a p-i-n Perovskite Solar Cell Exhibits Nearly 20% Efficiency. Chem. Mater. 32, 127–138 (2020).
89. Li, S. et al. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 v. Nanoscale 12, 3686–3691 (2020).
90. Connell, A. et al. Low cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells. J. Mater. Chem. C 7, 5235–5243 (2019).
91. Ameen, S. et al. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. ChemSusChem 9, 10–27 (2016).
92.Kazim, S. et al. A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy Environ. Sci. 8, 1816–1823 (2015).
93. Rakstys, K. et al. Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 137, 16172–16178 (2015).
94. Sun, X. et al. Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. Chem. Sci. 9, 2698–2704 (2018).
95. Benhattab, S. et al. Simply designed carbazole-based hole transporting materials for efficient perovskite solar cells. Org. Electron. physics, Mater. Appl. 56, 27–30 (2018).
96. Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R. & Sakthivel, P. Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett. 57, 243–252 (2016).
97. Ding, X. et al. Highly efficient phenothiazine 5,5-dioxide-based hole transport materials for planar perovskite solar cells with a PCE exceeding 20%. J. Mater. Chem. A 7, 9510–9516 (2019).
98. Grisorio, R. et al. Molecular tailoring of phenothiazine-based hole-transporting materials for high-performing perovskite solar cells. ACS Energy Lett. 2, 1029–1034 (2017).
99. Zhang, F. et al. Impact of Peripheral Groups on Phenothiazine-based Hole- Transporting Materials for Perovskite Solar Cells. ACS Energy Lett. (2018). doi:10.1021/acsenergylett.8b00395
100. Salunke, J. et al. Phenothiazine-Based Hole-Transporting Materials toward Eco-friendly Perovskite Solar Cells. ACS Appl. Energy Mater. 2, 3021–3027 (2019).
101. Chen, C. et al. Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy 23, 40–49 (2016).
102. Sandoval-Torrientes, R. et al. Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells. J. Mater. Chem. A 6, 5944–5951 (2018).
103. Lai, K. W., Chang, C. C. & Chu, C. W. Benzodithiophene-based small molecules with various termini as hole transporting materials in efficient planar perovskite solar cells. Org. Electron. 89, 106010 (2021).
104. García-Benito, I. et al. Isomerism effect on the photovoltaic properties of benzotrithiophene-based hole-transporting materials. J. Mater. Chem. A 5, 8317–8324 (2017).
105. Schroeder, B. C. et al. Benzotrithiophene Co-polymers with high charge carrier mobilities in field-effect transistors. Chem. Mater. 23, 4025–4031 (2011).
106. Wang, Q. et al. Rationalizing the Molecular Design of Hole-Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells. Adv. Energy Mater. 9, 1–9 (2019).
107. Guo, X., Wang, S., Enkelmann, V., Baumgarten, M. & Müllen, K. Making benzotrithiophene a stronger electron donor. Org. Lett. 13, 6062–6065 (2011).
108. Nielsen, C. B. et al. Benzotrithiophene - A planar, electron-rich building block for organic semiconductors. Org. Lett. 13, 2414–2417 (2011).
109. Saliba, M. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016).
110. Patra, D. et al. Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells. J. Mater. Chem. A 1, 7767 (2013).
111. Li, Z. et al. Solution processable rhodanine-based small molecule organic photovoltaic cells with a power conversion efficiency of 6.1%. Adv. Energy Mater. 2, 74–77 (2012).
112. Wan, L., Li, X., Song, C., He, Y. & Zhang, W. Solar Energy Materials and Solar Cells Benzobis (thiadiazole)-based small molecules as efficient electron transporting materials in perovskite solar cells. Sol. Energy Mater. Sol. Cells 191, 437–443 (2019).
113. Li, X. et al. A comparative study of o,p-dimethoxyphenyl-based hole transport materials by altering π-linker units for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 5, 10480–10485 (2017).
114. Chi, W.-J., Li, Q.-S. & Li, Z.-S. Exploring the electrochemical properties of hole transport materials with spiro-cores for efficient perovskite solar cells from first-principles. Nanoscale 8, 6146–6154 (2016).
115. Zhang, F. et al. Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dye. Pigment. 136, 273–277 (2017).
116. Zhang, J. et al. The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency. Adv. Energy Mater. 8, 1–12 (2018).
117. Azmi, R. et al. High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells. Nano Energy 44, 191–198 (2018).
118. Hanmandlu, C. et al. Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes : A Combined Experimental and Theoretical Approach. ACS Appl. Mater. Interfaces 10, 17973–17984 (2018).
119. Xu, X. et al. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources 360, 157–165 (2017).
120. Niu, T. et al. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation. Adv. Mater. 30, 1–11 (2018).
121. Han, T. H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).
122. DeQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science (80-. ). 348, 683–686 (2015).
123. Yun, J. S. et al. Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells. Adv. Funct. Mater. 28, 1–8 (2018).
124. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).
125. Wu, T. et al. Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor-π-Acceptor Molecules. Adv. Energy Mater. 9, 1–8 (2019).
126. Zhang, M. et al. High-Performance Fused Ring Electron Acceptor-Perovskite Hybrid. J. Am. Chem. Soc. 140, 14938–14944 (2018).
127. Liu, S. et al. A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials 10, 1–28 (2020).
128. Zhang, F. & Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 10, 1–26 (2020).
129. Park, C., Ko, H., Sin, D. H., Song, K. C. & Cho, K. Organometal Halide Perovskite Solar Cells with Improved Thermal Stability via Grain Boundary Passivation Using a Molecular Additive. Adv. Funct. Mater. 27, 1–8 (2017).
130. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science (80-. ). 351, 151–155 (2016).
131. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).
132. Doolin, A. J. et al. Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells. Green Chem. 23, 2471–2486 (2021).
133. Seo, Y. H., Kim, E. C., Cho, S. P., Kim, S. S. & Na, S. I. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 9, 598–604 (2017).
134. Dualeh, A., Gao, P., Seok, S. Il, Nazeeruddin, M. K. & Grätzel, M. Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014).
135. Cui, P. et al. Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells. RSC Adv. 5, 75622–75629 (2015).
136. Paek, S. et al. From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. Chem. Mater. 29, 3490–3498 (2017).
137. Tavakoli, M. M. et al. Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells. Adv. Energy Mater. 9, 1–10 (2019).
138. Liu, J. et al. Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. ACS Appl. Mater. Interfaces 7, 24008–24015 (2015).
139. Xiao, Z. et al. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater. 26, 6503–6509 (2014).
140. Mahapatra, A. et al. A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. A 8, 27–54 (2020).
141. Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).
142. Lee, J. W. et al. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).
143. Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 1–9 (2016).
144. Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, 1–12 (2017).
145. Zhang, C.-C. et al. Passivated perovskite crystallization and stability in organic–inorganic halide solar cells by doping a donor polymer. J. Mater. Chem. A 5, 2572–2579 (2017).
146. Zheng, F. & Kai Zhu. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 1902579, 1–26 (2019).
147. Noel, N. K. et al. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 8, 9815–9821 (2014).
148. Xie, L. et al. Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Lett. 4, 2192–2200 (2019).
149. Su, L. et al. Performance enhancement of perovskite solar cells using trimesic acid additive in the two-step solution method. J. Power Sources 426, 11–15 (2019).
150. Guan, L., Jiao, N. & Guo, Y. Trap-State Passivation by Nonvolatile Small Molecules with Carboxylic Acid Groups for Efficient Planar Perovskite Solar Cells. J. Phys. Chem. C 123, 14223–14228 (2019).
151. Lin, Y. et al. π-Conjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells. Adv. Mater. 29, 1–6 (2017).
152. Meng, F. et al. A perylene diimide based polymer: A dual function interfacial material for efficient perovskite solar cells. Mater. Chem. Front. 1, 1079–1086 (2017).
153.Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 1–19 (2018).
154. Qin, M. et al. Fused-Ring Electron Acceptor ITIC-Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Adv. Energy Mater. 8, 1–9 (2018).
155. Yang, J. et al. High-Performance Perovskite Solar Cells with Excellent Humidity and Thermo-Stability via Fluorinated Perylenediimide. Adv. Energy Mater. 9, 1–9 (2019).
156. Singh, A. et al. Core-Twisted Tetrachloroperylenediimides: Low-Cost and Efficient Non-Fullerene Organic Electron-Transporting Materials for Inverted Planar Perovskite Solar Cells. ChemSusChem 13, 3686–3695 (2020).
157. Fan, P. et al. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 1–9 (2016).
158. Liu, F. et al. Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? Adv. Energy Mater. 6, 1–9 (2016).
159. Tumen-ulzii, G., Qin, C., Klotz, D. & Leyden, M. R. Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells. 32, 1905035 (2020).
160. Boopathi, K. M. et al. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 4, 1591–1597 (2016).
161. Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalt. Trans. 1–12 (2001). doi:10.1039/b007070j
162. Solanki, A. et al. Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. Adv. Mater. 32, 1–11 (2020).
163. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 1–7 (2014).
164. Choi, M. J. et al. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors. Nano Energy 71, 104639 (2020).
165. Chen, H. et al. Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High-Performance Methylammonium Lead Iodide Perovskite Solar Cells. Adv. Mater. 1905661, 1–9 (2019).
166. Guo, Y., Lei, H., Xiong, L., Li, B. & Fang, G. An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells. J. Mater. Chem. A 6, 2157–2165 (2018).
167. Zheng, T. et al. Engineering of Electron Extraction and Defect Passivation via Anion-Doped Conductive Fullerene Derivatives as Interlayers for Efficient Invert Perovskite Solar Cells. ACS Appl. Mater. Interfaces 12, 24747–24755 (2020).
168. Xie, J. et al. Modulating MAPbI3 perovskite solar cells by amide molecules: Crystallographic regulation and surface passivation. J. Energy Chem. 56, 179–185 (2021).
169. Wu, W. Q. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, 1–10 (2019).
170. Jiang, Q. et al. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 29, 1–7 (2017).
171. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 1–9 (2017).
172. Chen, J. & Park, N. G. Causes and Solutions of Recombination in Perovskite Solar Cells. Adv. Mater. 31, 1–56 (2019).
173. Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 1–9 (2016).
(此全文20270727後開放外部瀏覽)
Full-text
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *