|
1. Wang, W., Tadé, M. O. & Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci. 92, 33–63 (2018). 2. Li, G., Budiawan, W., Wang, P.-C. & Wei Chu, C. Conjugated Polymer-Based Solar Cells. Encyclopedia of Modern Optics 5, (Elsevier Ltd., 2018). 3. Kwak, J. Il, Nam, S. H., Kim, L. & An, Y. J. Potential environmental risk of solar cells: Current knowledge and future challenges. J. Hazard. Mater. 392, 122297 (2020). 4. Gao, Y. et al. Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. 9, 1–42 (2017). 5. Ganesamoorthy, R., Sathiyan, G. & Sakthivel, P. Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol. Energy Mater. Sol. Cells 161, 102–148 (2017). 6. Chen, K. et al. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Nanoscale 8, 5146–52 (2016). 7. Kuzmich, A., Padula, D., Ma, H. & Troisi, A. Trends in the electronic and geometric structure of non-fullerene based acceptors for organic solar cells. Energy Environ. Sci. 10, 395-401 (2017). 8. Zhou, Y. et al. All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chem. Mater. 28, 5037–5042 (2016). 9. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 352, aad4424–aad4424 (2016). 10. Mazzio, K. A. & Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2014). 11. National Renewable Energy Laboratory. Best Research Cell Efficiency. (2020). 12. Heremans, P., Cheyns, D. & Rand, B. P. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc. Chem. Res. 42, 1740–1747 (2009). 13. Xue, J. Perspectives on organic photovoltaics. Polym. Rev. 50, 411–419 (2010). 14. Tamai, Y., Ohkita, H., Benten, H. & Ito, S. Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency. J. Phys. Chem. Lett. 6, 3417–3428 (2015). 15. Weinberger, B. R., Akhtar, M. & Gau, S. C. Polyacetylene photovoltaic devices. Synth. Met. 4, 187–197 (1982). 16. Glenis, S., Tourillon, G. & Garnier, F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene. Thin Solid Films 139, 221–231 (1986). 17. Menke, S. M. & Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7, 499–512 (2014). 18. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986). 19. Maqsood, I. et al. Monte Carlo Simulation of Forster Resonance Energy Transfer in 3D Nanoscale Organic Bulk Heterojunction Morphologies. (2013). 20. Cnops, K. et al. Supporting information 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014). 21. Hiramoto, M., Fujiwara, H. & Yokoyama, M. P-I-N Like Behavior in Three-Layered Organic Solar Cells Having a Co-Deposited Interlayer of Pigments. J. Appl. Phys. 72, 3781–3787 (1992). 22. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science. 270, 1789–1791 (1995). 23. Cui, C.; Guo, X.; Min, J.; Guo, B.; Cheng, X.; Zhang, M.; Brabec, C. J.; Li, Y. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments. Adv. Mater. 27, 7469–7475 (2015). 24. Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; Hu, Z.; Huang, F.; Cao, Y.; Liang, Z.; Zhang, M.; Russell, T. P.; Chen, Y. Small-Molecule Solar Cells with Efficiency over 9%. Nat. Photonics 9, 35–41 (2014). 25. Liu, Y.; Chen, C.-C.; Hong, Z.; Gao, J.; Yang, Y.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci. Rep. 3, 3356−3363 (2013). 26. Wang, Z.; Xu, X.; Li, Z.; Feng, K.; Li, K.; Li, Y.; Peng, Q. Solution-processed organic solar cells with 9.8% efficiency based on a new small molecule containing a 2D fluorinated benzodithiophene central unit. Adv. Electron. Mater. 2, 1600061 (2016). 27. Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014). 28. Yu, T.; Xu, X.; Li, Y.; Li, Z.; Peng, Q. Side-Chain Influence of Wide-Bandgap Copolymers Based on Naphtho[1,2‑b:5,6‑b]bispyrazine and Benzo[1,2‑b:4,5‑b′]dithiophene for Efficient Photovoltaic Applications. ACS Appl. Mater. Interfaces 9, 18142−18150 (2017). 29. Wolf, J.; Babics, M.; Wang, K.; Saleem, Q.; Liang, R.-Z.; Hansen, M. R.; Beaujuge, P. M. Benzo[1,2-b:4,5-b′]dithiophene–Pyrido[3,4-b]pyrazine Small-Molecule Donors for Bulk Heterojunction Solar Cells. Chem. Mater. 28, 2058−2066 (2016). 30. Qin, J. et al. 15.3% Efficiency All-Small-Molecule Organic Solar Cells Enabled By Symmetric Phenyl Substitution. Sci. China Mater. 63, 1142–1150 (2020). 31. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). 32. Yin, W. J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014). 33. Brenner, T. M. et al. Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015). 34. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 1–6 (2014). 35. Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013). 36. Bakr, Z. H. et al. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017). 37. Zhao, X. & Wang, M. Organic hole-transporting materials for efficient perovskite solar cells. Mater. Today Energy 7, 208–220 (2018). 38. Liu, X. et al. Diketopyrrolopyrrole or benzodithiophene-arylamine small-molecule hole transporting materials for stable perovskite solar cells. RSC Adv. 6, 87454–87460 (2016). 39. Zhang, F. et al. A Novel Dopant-Free Triphenylamine Based Molecular "Butterfly" Hole-Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 6, 1–7 (2016). 40. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science (80-. ). 338, 643– 647 (2012). 41. Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). 42. Molina-Ontoria, A. et al. Benzotrithiophene-based hole-transporting materials for 18.2 % perovskite solar cells. Angew. Chemie - Int. Ed. 55, 6270–6274 (2016). 43. Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7393–7457 (2016). 44. Ni, W.; Wan, X. J.; Li, M. M.; Wang, Y. C.; Chen, Y. S. A-D-A small molecules for solution-processed organic photovoltaic cells. Chem. Commun 51, 4936−4950 (2015). 45. Lin, Y. Z.; Li, Y. F.; Zhan, X. W. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41, 4245 (2012). 46. Chen, Y.; Wan, X. . L. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46, 2645–2655 (2013). 47. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015). 48. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 139, 7148–7151 (2017). 49. H. Bin, Y. Yang, Z.-G. Zhang, L. Ye, M. Ghasemi, S. Chen, Y. Zhang, C. Zhang, C. Sun, L. Xue, C. Yang, H. Ade, and Y. L. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. J. Am. Chem. Soc. 139, 5085–5094 (2017). 50. Bartelt, J. A.; Lam, D.; Burke, T. M.; Sweetnam, S. M.; Mc Gehee, M. D. Charge-Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90%. Adv. Energy Mater. 5, 1500577 (2015). 51. Wurfel, U.; Neher, D.; Spies, A.; Albrecht, S. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015). 52. Liu, T. ; Pan, X.; Meng, X.; Liu, Y.; Wei, D.; Ma, W. Huo, L.; Sun, X.; Lee, T. H.; Huang, M.; Choi, H.; Kim, J. Y.; Choy, W. C. H.; Sun, Y. Alkyl Side-Chain Engineering in Wide-Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Adv. Mater. 29, 1604251 (2017). 53. Wang, L.; Liu, H.; Huai, Z. . Y. S. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2‐(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. ACS Appl. Mater. Interfaces 9, 18142−18150 (2017). 54. Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; Hu, Z.; Huang, F.; Cao, Y.; Liang, Z.; Zhang, M.; Russell, T. P.; Chen, Y. Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells. J. Mater. Chem. A 3, 4765–4776 (2015). 55. Patra, D.; Huang, T.-Y.; Chiang, C.-C.; Maturana, R. O. V.; Pao, C.-W.; Ho, K.-C.; Wei, K.-H.; Chu, C.-W. 2-Alkyl-2-thienyl–Substituted Benzo[1,2-b:4,5-b´]dithiophene-Based Donor Molecules for Solution-Processed Organic Solar Cells. ACS Appl. Mater. Interfaces 19, 9494–9500 (2013). 56. Qiu, B.; Yuan, J.; Xiao, X.; He, D.; Qiu, L.; Zou, Y.; Zhang, Z.; Li, Y. Effect of fluorine substitution on photovoltaic properties of alkoxyphenyl substituted benzo[1,2-b:4,5-b′]dithiophene-based small molecules. ACS Appl. Mater. Interfaces. 7, 25237−25246 (2015). 57. Farahat, M. E.; Patra, D.; Lee, C.-H.; Chu, C.-W. Synergistic effects of morphological control and complementary absorption in efficient all-small-molecule ternary-blend solar cells. ACS Appl. Mater. Interfaces 40, 22542–22550 (2015). 58. Zhu, E.; Ge, G.; Shu, J.; Yi, M.; Bian, L.; Hai, J.; Yu, J.; Liu, Y.; Zhou, J.;Tang, W. Direct access to 4,8-functionalized benzo[1,2-b:4,5-b′]dithiophenes with deep low-lying HOMO levels and high mobilities. J. Mater. Chem. A. 2, 13580–13586 (2014). 59. Kang, T. E.; Kim, T.; Wang, C.; Yoo, S.; Kim, B. J. Poly(benzodithiophene) homopolymer for high-performance polymer solar cells with open-circuit voltage of near 1 V: a superior candidate to substitute for poly(3-hexylthiophene) as wide bandgap polymer. Chem. Mater. 27, 2653–2658 (2015). 60. Farahat, M. E. et al. Efficient molecular solar cells processed from green solvent mixtures. J. Mater. Chem. A 5, 571–582 (2017). 61. Chen, Y. et al. Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Org. Electron. 15, 405–413 (2014). 62. Du, Z. et al. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Phys. Chem. Chem. Phys. 17, 17391–17398 (2015). 63. Wen, S. et al. A triple bond side-chained 2D-conjugated benzodithiophene based photovoltaic polymer. RSC Adv. 4, 58426–58431 (2014). 64. Sista, P. et al. Synthesis and electronic properties of semiconducting polymers containing benzodithiophene with alkyl phenylethynyl substituents. Macromolecules 43, 8063–8070 (2010). 65. Bathula, C. et al. New TIPS-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymers for application in polymer solar cells. J. Mater. Chem. 22, 22224 (2012). 66. Hundt, N. et al. Polymers containing rigid benzodithiophene repeating unit with extended electron derealization. Org. Lett. 11, 4422–4425 (2009). 67. Yuan, J.; Zou, Y.; Cui, R.; Chao, Y. -H.; Wang, Z.; Ma, M.; He, Y.; Li, Y.; Rindgen, A.; Cui, R.; Ma, W.; Xiao, D.; Bo, Z.; Xu, X.; Li, L.; Hsu, C.-S. Incorporation of fluorine onto different positions of phenyl substituted benzo[1,2-b:4,5-b′]dithiophene unit: influence on photovoltaic properties. Macromolecules 48, 4347−4356 (2015). 68. Cui, C.; Wong, W. -Y.; Li, Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ. Sci. 7, 2276–2284 (2014). 69. Cheng, Y.-J.; Luo, J.; Huang, S.; Zhou, X.; Shi, Z.; Kim, T. D.; Bale, D. H.; Takahashi, S.; Yick, A.; Polishak, B. M.; Jang, S.-H.; Dalton, L. R.; Reid, P. J.; Steier, W. H.; Jen, A. K.-Y. Donor−acceptor thiolated polyenic chromophores exhibiting large optical nonlinearity and excellent photostability. Chem. Mater. 20, 5047–5054 (2008). 70. Li, Y.; Chang, C.-Y.; Chen, Y.; Song, Y.; Li, C.-Z.; Yip, H. -L.;. Jen, A. K.-Y.; Li, C. The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. J. Mater. Chem. C 1, 7526–7533 (2013). 71. Kan, B.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Yang, X.; Zhang, M.; Zhang, H.; Russell, T. P.; Chen, Y. Small Molecules Based on Alkyl/Alkylthio-Thieno[3,2-b]Thiophene-Substituted Benzo[1,2-b:4,5- b’]Dithiophene for Solution-Processed Solar Cells with High Performance. Chem. Mater. 27, 8414–8423 (2015). 72. Yao, H.; Zhang, H.; Ye, L.; Zhai, W.; Zhang, S.; Hou, J. Dialkylthio substitution: An effective method to modulate the molecular energy levels of 2D-BDT photovoltaic polymers. ACS Appl. Mater. Interfaces 8, 3575–3583 (2016). 73. Ye, L.; Zhang, S.; Zhao, W.; Yao, H.; Hou, J. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem. Mater. 28, 3603-3605. (2015). 74. Patra, D.; Chiang, C. -C.; Chen, W. -A.; Wei, K.-H.; Wu, M. -C.; Chu, C.-W. Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells. J. Mater. Chem A. 1, 7767–7774 (2013). 75. Patra, D.; Lee, J.; Lee, J.; Sredojevic, D. N.; White, A. J. P.; Bazzi, H. S.; Brothers, E. N.; Heeney, M.; Fang, L.; Yoon M.-H.; Al-Hashimi, M. Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). J. Mater. Chem. C. 5, 2247–2258 (2017). 76. Kim, J.-H,; Kim, H. S.; Park, J. B.; Kang, I. -N.; Hwang, D.-H. Thieno[3,2-b]thiophene-substituted benzodithiophene in donor–acceptor type semiconducting copolymers: A feasible approach to improve performances of organic photovoltaic cells. J. Polym. Sci., Part A Polym. Chem. 52, 3608–3616 (2014). 77. Liu, Y., Yang, Y., Chen, C.-C., Chen, Q., Dou, L., Hong, Z., Li, G. and Yang, Y. Solution-Processed Small Molecules Using Different Electron Linkers for High-Performance Solar Cells. Adv. Mater. 25, 4657–4662 (2013). 78. Zhou,J.; Wan, X.; Liu, Y.; Zuo, Y.; Li, Z.; He, G.; Long, G.; Ni, W.; Li, C.; Su, X.; Chen, Y. Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. J. Am. Chem. Soc. 134, 16345−16351 (2012). 79. Graham, K.R.; Mei, J.; Stalder, R.; Shim, W.S.; Cheun, H.; Steffy, F.; So, F.; Kippelen, B.;Reynolds, J. R. Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells. ACS Appl. Mater. Interfaces 3, 1210–1215 (2011). 80. Walker, B. et al. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv. Funct. Mater. 19, 3063–3069 (2009). 81. Yang, X., Wang, H., Cai, B., Yu, Z. & Sun, L. Progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 27, 650–672 (2018). 82. Cai, F. et al. Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 45, 28–36 (2018). 83. Jiang, K. et al. Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss. J. Mater. Chem. A 7, 21662–21667 (2019). 84. Ma, S. et al. Optical–Electrical–Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 10, 3902–3911 (2018). 85. Redondo-Obispo, C. et al. Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Mater. Des. 191, 1–10 (2020). 86. Yu, J. C. et al. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Sci. Rep. 8, 3–11 (2018). 87. Chen, Y. C., Li, Y. H., Chung, C. L., Hsu, H. L. & Chen, C. P. Triphenylamine dibenzofulvene–derived dopant-free hole transporting layer induces micrometer-sized perovskite grains for highly efficient near 20% for p-i-n perovskite solar cells. Prog. Photovoltaics Res. Appl. 28, 49–59 (2020). 88. Maddala, S. et al. Forming a Metal-Free Oxidatively Coupled Agent, Bicarbazole, as a Defect Passivation for HTM and an Interfacial Layer in a p-i-n Perovskite Solar Cell Exhibits Nearly 20% Efficiency. Chem. Mater. 32, 127–138 (2020). 89. Li, S. et al. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 v. Nanoscale 12, 3686–3691 (2020). 90. Connell, A. et al. Low cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells. J. Mater. Chem. C 7, 5235–5243 (2019). 91. Ameen, S. et al. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. ChemSusChem 9, 10–27 (2016). 92.Kazim, S. et al. A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy Environ. Sci. 8, 1816–1823 (2015). 93. Rakstys, K. et al. Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 137, 16172–16178 (2015). 94. Sun, X. et al. Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. Chem. Sci. 9, 2698–2704 (2018). 95. Benhattab, S. et al. Simply designed carbazole-based hole transporting materials for efficient perovskite solar cells. Org. Electron. physics, Mater. Appl. 56, 27–30 (2018). 96. Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R. & Sakthivel, P. Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett. 57, 243–252 (2016). 97. Ding, X. et al. Highly efficient phenothiazine 5,5-dioxide-based hole transport materials for planar perovskite solar cells with a PCE exceeding 20%. J. Mater. Chem. A 7, 9510–9516 (2019). 98. Grisorio, R. et al. Molecular tailoring of phenothiazine-based hole-transporting materials for high-performing perovskite solar cells. ACS Energy Lett. 2, 1029–1034 (2017). 99. Zhang, F. et al. Impact of Peripheral Groups on Phenothiazine-based Hole- Transporting Materials for Perovskite Solar Cells. ACS Energy Lett. (2018). doi:10.1021/acsenergylett.8b00395 100. Salunke, J. et al. Phenothiazine-Based Hole-Transporting Materials toward Eco-friendly Perovskite Solar Cells. ACS Appl. Energy Mater. 2, 3021–3027 (2019). 101. Chen, C. et al. Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy 23, 40–49 (2016). 102. Sandoval-Torrientes, R. et al. Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells. J. Mater. Chem. A 6, 5944–5951 (2018). 103. Lai, K. W., Chang, C. C. & Chu, C. W. Benzodithiophene-based small molecules with various termini as hole transporting materials in efficient planar perovskite solar cells. Org. Electron. 89, 106010 (2021). 104. García-Benito, I. et al. Isomerism effect on the photovoltaic properties of benzotrithiophene-based hole-transporting materials. J. Mater. Chem. A 5, 8317–8324 (2017). 105. Schroeder, B. C. et al. Benzotrithiophene Co-polymers with high charge carrier mobilities in field-effect transistors. Chem. Mater. 23, 4025–4031 (2011). 106. Wang, Q. et al. Rationalizing the Molecular Design of Hole-Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells. Adv. Energy Mater. 9, 1–9 (2019). 107. Guo, X., Wang, S., Enkelmann, V., Baumgarten, M. & Müllen, K. Making benzotrithiophene a stronger electron donor. Org. Lett. 13, 6062–6065 (2011). 108. Nielsen, C. B. et al. Benzotrithiophene - A planar, electron-rich building block for organic semiconductors. Org. Lett. 13, 2414–2417 (2011). 109. Saliba, M. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016). 110. Patra, D. et al. Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells. J. Mater. Chem. A 1, 7767 (2013). 111. Li, Z. et al. Solution processable rhodanine-based small molecule organic photovoltaic cells with a power conversion efficiency of 6.1%. Adv. Energy Mater. 2, 74–77 (2012). 112. Wan, L., Li, X., Song, C., He, Y. & Zhang, W. Solar Energy Materials and Solar Cells Benzobis (thiadiazole)-based small molecules as efficient electron transporting materials in perovskite solar cells. Sol. Energy Mater. Sol. Cells 191, 437–443 (2019). 113. Li, X. et al. A comparative study of o,p-dimethoxyphenyl-based hole transport materials by altering π-linker units for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 5, 10480–10485 (2017). 114. Chi, W.-J., Li, Q.-S. & Li, Z.-S. Exploring the electrochemical properties of hole transport materials with spiro-cores for efficient perovskite solar cells from first-principles. Nanoscale 8, 6146–6154 (2016). 115. Zhang, F. et al. Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dye. Pigment. 136, 273–277 (2017). 116. Zhang, J. et al. The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency. Adv. Energy Mater. 8, 1–12 (2018). 117. Azmi, R. et al. High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells. Nano Energy 44, 191–198 (2018). 118. Hanmandlu, C. et al. Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes : A Combined Experimental and Theoretical Approach. ACS Appl. Mater. Interfaces 10, 17973–17984 (2018). 119. Xu, X. et al. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources 360, 157–165 (2017). 120. Niu, T. et al. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation. Adv. Mater. 30, 1–11 (2018). 121. Han, T. H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019). 122. DeQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science (80-. ). 348, 683–686 (2015). 123. Yun, J. S. et al. Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells. Adv. Funct. Mater. 28, 1–8 (2018). 124. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). 125. Wu, T. et al. Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor-π-Acceptor Molecules. Adv. Energy Mater. 9, 1–8 (2019). 126. Zhang, M. et al. High-Performance Fused Ring Electron Acceptor-Perovskite Hybrid. J. Am. Chem. Soc. 140, 14938–14944 (2018). 127. Liu, S. et al. A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials 10, 1–28 (2020). 128. Zhang, F. & Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 10, 1–26 (2020). 129. Park, C., Ko, H., Sin, D. H., Song, K. C. & Cho, K. Organometal Halide Perovskite Solar Cells with Improved Thermal Stability via Grain Boundary Passivation Using a Molecular Additive. Adv. Funct. Mater. 27, 1–8 (2017). 130. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science (80-. ). 351, 151–155 (2016). 131. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). 132. Doolin, A. J. et al. Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells. Green Chem. 23, 2471–2486 (2021). 133. Seo, Y. H., Kim, E. C., Cho, S. P., Kim, S. S. & Na, S. I. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 9, 598–604 (2017). 134. Dualeh, A., Gao, P., Seok, S. Il, Nazeeruddin, M. K. & Grätzel, M. Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014). 135. Cui, P. et al. Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells. RSC Adv. 5, 75622–75629 (2015). 136. Paek, S. et al. From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. Chem. Mater. 29, 3490–3498 (2017). 137. Tavakoli, M. M. et al. Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells. Adv. Energy Mater. 9, 1–10 (2019). 138. Liu, J. et al. Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. ACS Appl. Mater. Interfaces 7, 24008–24015 (2015). 139. Xiao, Z. et al. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater. 26, 6503–6509 (2014). 140. Mahapatra, A. et al. A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. A 8, 27–54 (2020). 141. Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). 142. Lee, J. W. et al. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. J. Am. Chem. Soc. 140, 6317–6324 (2018). 143. Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 1–9 (2016). 144. Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, 1–12 (2017). 145. Zhang, C.-C. et al. Passivated perovskite crystallization and stability in organic–inorganic halide solar cells by doping a donor polymer. J. Mater. Chem. A 5, 2572–2579 (2017). 146. Zheng, F. & Kai Zhu. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 1902579, 1–26 (2019). 147. Noel, N. K. et al. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 8, 9815–9821 (2014). 148. Xie, L. et al. Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Lett. 4, 2192–2200 (2019). 149. Su, L. et al. Performance enhancement of perovskite solar cells using trimesic acid additive in the two-step solution method. J. Power Sources 426, 11–15 (2019). 150. Guan, L., Jiao, N. & Guo, Y. Trap-State Passivation by Nonvolatile Small Molecules with Carboxylic Acid Groups for Efficient Planar Perovskite Solar Cells. J. Phys. Chem. C 123, 14223–14228 (2019). 151. Lin, Y. et al. π-Conjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells. Adv. Mater. 29, 1–6 (2017). 152. Meng, F. et al. A perylene diimide based polymer: A dual function interfacial material for efficient perovskite solar cells. Mater. Chem. Front. 1, 1079–1086 (2017). 153.Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 1–19 (2018). 154. Qin, M. et al. Fused-Ring Electron Acceptor ITIC-Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Adv. Energy Mater. 8, 1–9 (2018). 155. Yang, J. et al. High-Performance Perovskite Solar Cells with Excellent Humidity and Thermo-Stability via Fluorinated Perylenediimide. Adv. Energy Mater. 9, 1–9 (2019). 156. Singh, A. et al. Core-Twisted Tetrachloroperylenediimides: Low-Cost and Efficient Non-Fullerene Organic Electron-Transporting Materials for Inverted Planar Perovskite Solar Cells. ChemSusChem 13, 3686–3695 (2020). 157. Fan, P. et al. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 1–9 (2016). 158. Liu, F. et al. Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? Adv. Energy Mater. 6, 1–9 (2016). 159. Tumen-ulzii, G., Qin, C., Klotz, D. & Leyden, M. R. Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells. 32, 1905035 (2020). 160. Boopathi, K. M. et al. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 4, 1591–1597 (2016). 161. Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalt. Trans. 1–12 (2001). doi:10.1039/b007070j 162. Solanki, A. et al. Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. Adv. Mater. 32, 1–11 (2020). 163. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 1–7 (2014). 164. Choi, M. J. et al. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors. Nano Energy 71, 104639 (2020). 165. Chen, H. et al. Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High-Performance Methylammonium Lead Iodide Perovskite Solar Cells. Adv. Mater. 1905661, 1–9 (2019). 166. Guo, Y., Lei, H., Xiong, L., Li, B. & Fang, G. An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells. J. Mater. Chem. A 6, 2157–2165 (2018). 167. Zheng, T. et al. Engineering of Electron Extraction and Defect Passivation via Anion-Doped Conductive Fullerene Derivatives as Interlayers for Efficient Invert Perovskite Solar Cells. ACS Appl. Mater. Interfaces 12, 24747–24755 (2020). 168. Xie, J. et al. Modulating MAPbI3 perovskite solar cells by amide molecules: Crystallographic regulation and surface passivation. J. Energy Chem. 56, 179–185 (2021). 169. Wu, W. Q. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, 1–10 (2019). 170. Jiang, Q. et al. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 29, 1–7 (2017). 171. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 1–9 (2017). 172. Chen, J. & Park, N. G. Causes and Solutions of Recombination in Perovskite Solar Cells. Adv. Mater. 31, 1–56 (2019). 173. Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 1–9 (2016). |