帳號:guest(3.15.29.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張祐綱
作者(外文):Chang, You-Gang
論文名稱(中文):應用於液晶電視之縮小化十位元源極驅動器
論文名稱(外文):A 10-Bit Compact Source Driver for LCD-TV Application
指導教授(中文):盧志文
指導教授(外文):Lu, Chih-Wen
口試委員(中文):鄭桂忠
陳伯奇
口試委員(外文):Tang, Kea-Tiong
Chen, Po-Ki
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011567
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:數位類比轉換器高線性度輸入對內插輸出緩衝器源極驅動器
外文關鍵詞:DAChigh linearity input pairinterpolation output buffersource driver
相關次數:
  • 推薦推薦:0
  • 點閱點閱:80
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
科技進步讓液晶顯示器已經在生活中越來越普及,消費者對產品的品質要求也越來越高,因此液晶顯示器產品的灰階不斷的提升來滿足消費者的需求,但隨之伴隨而來的便是成本問題,而為了解決液晶顯示器的驅動電路成本,此篇論文提出使用高線性度機制和在佈局面積上具有高度效益技術兩種解決方法。
論文中將會分兩部分介紹提出的方法,先介紹在佈局面積上具有高度效益技術,此技術是提出新的數位類比轉換器架構,有效的降低數位類比轉換器電晶體的使用,此外也將電路中不是二的冪次的數位類比轉換器合併,從中進一步化簡數位類比轉換器電路,減少電晶體的使用,佈局繞線上使用多晶矽以及氧化摻雜層來降低佈局面積,綜合以上方法達到佈局面積上具有高度效益的成果;再來介紹高線性度機制,在線性度方面提出兩種不同架構的輸入對,讓輸出緩衝器的輸入對轉導趨近於一個常數,因此當不同輸入電壓輸入時所看到的轉導會是相同的,不會讓輸入對權重失衡,使輸出緩器對於輸入電壓壓差的容忍度增加,因此使用高位元內插輸出緩衝器也能有較好的特性,並降低數位類比轉換器的位元數。
此十位元源極驅動晶片使用0.18μm的高壓製程設計電路,並操作在18V工作電壓下,使用五級的輸出負載,五顆串聯1kΩ電阻,五顆並聯60pF電容,成功顯示正負極性伽瑪曲線各1024個電壓,證實此篇論文透過使用高線性度機制和在佈局面積上具有高度效益技術,兩種方法有效降低源級驅動器面積。
With new technological advances, liquid-crystal display (LCD) has gained universal and consumers expect higher quality product. Nowadays, industry constantly increases the gray scale of LCD to satisfy consumer’s requirements, those results to higher product cost. This thesis proposes high linearity mechanism and high efficiency of layout area technique to achieve low-cost and high performance prototypes.
This thesis presents two proposed methods in sequence. First, the thesis introduces high efficiency of layout area technique. In this method, the proposed architecture of digital-to-analog converter could effectively reduce the number of transistors. Moreover, the proposed architecture combines two digital-to-analog converters, which number is not the power of two, into one digital-to-analog converter. In layout floor plan, poly and oxide diffusion layers were mainly used for routing, that could minimize the layout area. To sum up, high efficiency of layout area has been achieved by proposed architecture and routing skills. Second, the thesis introduces high linearity mechanism. In this method, two types of input pair have been proposed. The two types of proposed input pair have advantages on making transconductance approximately constant. As a result, the transconductance is almost constant with different input voltages. Last but not least, this method increases the tolerance of buffer input voltages. Thus, buffer could be designed with more bits to interpolate the input voltages and reduce the bits of digital-to-analog converter.
These 10-bit source driver chips are fabricated in a 0.18μm high voltage process and operate at 18V supply voltage. These chips are measured under output loading which is five 1 kΩ series resistances and five 60 pF shunt capacitances. The experimental results demonstrate that, the chip could display each polarity 1024 voltage correctly. In conclusion, this thesis proves the proposed high linearity mechanism and high efficiency of layout area technique could achieve the low-cost and high performance requirements of 10-bit source driver.
中文摘要---------------------------------------- i
Abstract--------------------------------------- ii
目錄------------------------------------------- iii
圖目錄----------------------------------------- vi
表目錄----------------------------------------- ix
第一章 緒論----------------------------------- 1
1.1 研究背景-------------------------------- 1
1.2 研究動機-------------------------------- 1
第二章 液晶顯示器系統簡介----------------------- 3
2.1 液晶簡介-------------------------------- 3
2.2 液晶顯示器分類-------------------------- 4
2.2.1 TN面板--------------------------------- 5
2.2.2 STN面板-------------------------------- 6
2.2.3 VA面板--------------------------------- 7
2.2.4 IPS面板-------------------------------- 8
2.2.5 PLS面板-------------------------------- 9
2.3 液晶顯示器反轉法------------------------ 10
2.4 液晶顯示器伽瑪校正---------------------- 11
第三章 薄膜電晶體液晶顯示器介紹----------------- 13
3.1 薄膜電晶體液晶顯示器驅動原理------------- 13
3.1.1 液晶顯示器控制模組簡介------------------- 14
3.1.2 液晶顯示器面板模組簡介------------------- 15
3.2 薄膜電晶體液晶顯示器閘極驅動器介紹-------- 15
3.3 薄膜電晶體液晶顯示器源極驅動器介紹-------- 16
3.3.1 數位類比轉換器-------------------------- 17
3.3.2 輸出緩衝器------------------------------ 18
第四章 電路實現與設計-------------------------- 20
4.1 液晶顯示器之源極驅動器的數位類比轉換器---- 20
4.1.1 改良的雙電壓選擇數位類比轉換器------------ 22
4.1.2 改良的單電壓選擇數位類比轉換器------------ 24
4.1.3 使用高壓電晶體做位元線整合--------------- 25
4.1.4 化簡改良的雙電壓選擇數位類比轉換器-------- 26
4.1.5 數位類比轉換器實現電路及佈局------------- 30
4.2 液晶顯示器之源極驅動器的輸出緩衝器-------- 34
4.2.1 運用源極退化輸入對之技巧----------------- 35
4.2.2 運作在深三極管區輸入對之技巧------------- 36
4.2.3 內插輸出緩衝器實現電路及佈局------------- 37
第五章 電路模擬結果與分析---------------------- 39
5.1 數位類比轉換器模擬結果------------------- 39
5.2 輸出緩衝器模擬結果----------------------- 39
5.2.1 運用源極退化輸入對之模擬結果-------------- 40
5.2.2 運作在深三極管區輸入對之模擬結果---------- 42
5.3 源極驅動器模擬結果----------------------- 43
5.3.1 輸出電壓誤差和偏移模擬結果--------------- 45
5.3.2 輸出電壓暫態模擬結果--------------------- 51
第六章 量測結果分析---------------------------- 53
6.1 輸出電壓量測結果------------------------ 53
6.2 輸出電壓偏移量測結果--------------------- 54
6.3 輸出電壓暫態量測結果--------------------- 60
6.4 量測結果分析與文獻比較------------------- 61
第七章 結論與未來展望-------------------------- 65
7.1 結論----------------------------------- 65
7.2 未來展望-------------------------------- 65
參考文獻---------------------------------------- 67


[1] C.-W. Lu, C.-M. Hsiao, P.-Y. Yin, “A 10-b two-stage DAC with an area-efficient multiple-output voltage selector and a linearity-enhanced DAC-embedded op-amp for LCD column driver ICs,” IEEE Journal of Solid-State Circuits, Volume 48 Issue 6 pp.1475 –1486, 2013.
[2] C. Park, K.-D. Kim, S.-W. Lee, G.-S. Park, S.-T. Ryu, and G.-H. Cho, “A 10b linear interpolation DAC using body-transconductance control for AMLCD column driver,” IEEE Asian Solid-State Circuits Conf., Nov. 2010.
[3] C.-W. Lu, P.-Y. Yin, and Y.-T. Lin, “A Column Driver Architecture With Double Time-Division Multiplexing RDACs for TFT-LCD Applications,” IEEE J. Solid-State Circuits, vol. 49, no. 10, Oct. 2014.
[4] C.-W. Lu, P.-Y. Yin, C.-M. Hsiao, M.-C. Frank Chang, and Y.-S. Lin, “A 10-bit resistor-floating-resistor-string DAC (RFR-DAC) for high color-depth LCD driver ICs,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2454–2466, Oct. 2012.
[5] C.-W. Lu and L.-C. Huang, “A 10-bit LCD column driver with piecewise linear digital-to-analog converters,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 371–378, Feb. 2008.
[6] Y.-S. Son, J.-H. Kim, H.-H. Cho, J.-P. Hong, J.-H. Na, D.-S. Kim, D.-K. Han, J.-C. Hong, Y.-J. Jeon, G.-H. Cho, “A column driver with low-power area-efficient push-pull buffer amplifiers for active-matrix LCDs,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 142-143, 2007.
[7] W.-J. Huang, S. Nagayasu, S.-I. Liu, “A rail-to-rail class-B buffer with DC level-shifting current mirror and distributed miller compensation for LCD column drivers,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 58, no. 8, pp. 1761-1772, Aug. 2011.
[8] C.-H. Tsai, J.-H. Wang, “Cross-self-bias rail-to-rail column buffer for 640-channel 6-bit TFT-LCD,” IEEE J. Display Technol., vol. 7, no. 5, pp. 235-241, May. 2011.
[9] J.-K. Woo, D.-Y. Shin, D.-K. Jeong, S. Kim, “High-speed 10-bit LCD column driver with a split DAC and a class-AB output buffer,” IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1431-1438, Aug. 2009.
[10] P.-J. Liu and Y.-J. Emery Chen, “A 10-bit CMOS DAC With Current Interpolated Gamma Correction for LCD Source Drivers,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 22, Issue 6, pp.958-965, 2012.
[11] J. M. Carrillo, J. F. Duque-Carillo, G. Torelli and J. L. Ausin, “1-V Quasi Constant-gm Input/Output Rail-to-Rail CMOS Op-amp,” INTEGRATION, the VLSI Journal, vol. 36, no. 4, pp. 161-174, 2003.
[12] H.-M. Lee, Y.-J. Jeon, S.-W. Lee, G.-H. Cho, H.-R. Kim, Y.-K. Choi, et al., “A 10b column driver with variable-current-control interpolation for mobile active-matrix LCDs,” ISSCC Dig. Tech. Papers, pp. 266-267,267a, Feb. 2009.
[13] Y.-K. Choi, Z.-Y. Wu, K. Kim, Y. Lee, M. Cho, H. Kim, et al., “A Compact Low-Power CDAC Architecture for Mobile TFT-LCD Driver ICs,” ISSCC Dig. Tech. Papers, pp. 176-605, Feb. 2008.
[14] J.-S. Kang, J.-H. Kim, S.-Y. Kim, J.-Y. Song, O.-K. Kwon, Y.-J. Lee, et al., “A 10b Driver IC for a Spatial Optical Modulator for Full HDTV Applications,” ISSCC Dig. Tech. Papers, pp. 138-592, Feb. 2007.
[15] J.-H. Kim, B.-D. Choi, and O.-K. Kwon, “1-billion-color TFT LCD TV with full HD format,” IEEE T. Consumer Electronics, vol. 51, pp. 1042-1050, 2005.
[16] W. Wu, T. Wei, X. Fan, and F. Chen, “DAC Circuit with Multi-threshold Voltage for TFT-LCD Driver IC,” IEEE International Conference on Computer-Aided Design and Computer Graphics, pp. 304-308, Oct. 2007.
[17] M. J. Bell, “An LCD column driver using a switch capacitor DAC,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 2756-2765, 2005.
[18] Ron Hogervorst, John P.Tero, Ruud G. H. Eschauzier, and Johan H. Huijsing, “A Compact Power-efficient 3V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries,” IEEE journal of Solid-State Circuits, Vol. 29, No. 12, December 1994.
[19] Sherif M. Sharroush, Yasser S. Abdalla, Ahmed A. Dessouki, El-Sayed A. El-Badawy, “Subthreshold MOSFET transistor amplifier operation,” 4th International Design and Test Workshop (IDT), 2009.
[20] Behzad Razavi, “Design of Analog CMOS Integrated Circuit,” McGraw-Hill, Boston,2001.
[21] R. Jacob Baker, “CMOS: Circuit Design, Layout, and Simulation,” Wiley-IEEE Press, 2005.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *