帳號:guest(18.119.160.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俊浩
作者(外文):Huang, Chun-Hao
論文名稱(中文):低電壓輸出電容切換式帶差參考電路之實現與設計
論文名稱(外文):The Design and Implement of Low Voltage Output Switched Capacitor Bandgap Reference
指導教授(中文):盧志文
指導教授(外文):Lu, Chih-Wen
口試委員(中文):陳科宏
陳伯奇
口試委員(外文):Chen, Ke-Horng
Chen, Poki
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011562
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:帶差參考電路電容切換式低電壓輸出
外文關鍵詞:bandgap referenceswitched capacitorlow voltage output
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:*****
  • 下載下載:35
  • 收藏收藏:0
在這篇論文中提出一個創新架構之低電壓輸出電容切換式帶差參考電路,此架構能夠提供低於雙極性接面型電晶體之基極-射極電壓的輸出及較低的溫度係數(Temperature coefficient)。
本篇架構使用運算放大器(OPA)、雙極性接面型電晶體(BJT)及切換式電容。運算放大器能夠避免雜散電容及供應電源鏈波對於輸出電壓的影響,同時利用電容的切換,使輸入偏差電壓抵銷(input offset voltage cancellation)。切換式電容能夠使輸出電壓值能夠降低至雙極性接面型電晶體之基極-射極電壓(VBE)以下。
在內文中會介紹此電路的實現方法及考量,最後附上本論文使用TSMC0.18μm 1P6M技術設計和晶片量測結果。本電路適用於1.5V~1.8V之供應電源,在-30℃~70℃的溫度範圍內之溫度係數(Temperature coefficient)為117.8 ppm/℃。在1kHz的正弦波擾動的情況下,電源電壓抑制比(Power supply rejection ratio)為-77.7dB。多組晶片量測得到的標準差為1.35mV,亦可表示為0.319%。
In this thesis, a novel architecture of low voltage output switched capacitor bandgap reference is proposed.This study can provide low temperature coefficient and low voltage output which can be lower than VBE. This study uses operational amplifier, BJT and switched capacitor. Operational amplifier can prevents the influence to output voltage from parasitic capacitor and power supply ripple. And it can also cancel input offset voltage by the switching of capacitor. This paper can provide the consideration of the circuit. In the end of this paper, TSMC 0.18μm 1P6M technology is discussed with design flow and measurement results. The measurement result shows that this circuit can be used from 1.6V~1.8V supply voltage. The temperature coefficient is 117.8 ppm/℃ from -30℃~70℃, and the PSRR is -77.7dB with 1kHz sin wave noise. The standard deviation is 1.35mV or 0.319% by the measurement from several chips.
致謝 i
中文摘要 ii
Abstract ⅲ
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 論文架構 3
第二章 帶差參考電路簡介 4
2.1 帶差參考電路的驅動原理 4
2.2 帶差參考電路的特性參數 7
第三章 電路設計與實現 9
3.1 低電壓輸出電容切換式帶差參考電路架構簡介 9
3.2 低電壓輸出電容切換式帶差參考電路介紹 12
3.2.1 低電壓輸出電容切換式帶差參考電路整體架構分析 12
3.2.2 與溫度無關之電流源架構 18
3.2.3 運算放大器 20
3.2.4 偏壓電路 22
3.2.5 數位控制電路 23
3.3 電路模擬結果 25
3.3.1 運算放大器 25
3.3.2 低電壓輸出電容切換式帶差參考電路 26
3.3.3 使用與溫度無關電流源之低電壓輸出電容切換式帶差參考電路 31
第四章 量測環境與結果 37
4.1 量測環境規劃 37
4.1.1 量測環境 37
4.1.2 量測規劃與架設 39
4.2 低電壓輸出電容切換式帶差參考電路量測結果 41
4.2.1 溫度係數 41
4.2.2 電源電壓抑制比 43
4.2.3 製程變異量的分佈及標準差 46
4.2.4 供應電壓依賴 48
4.2.5 量測結果與文獻比較 49
第五章 結論與未來展望 51
5.1 結論 51
5.2 未來展望 52
參考文獻 53
[1] B. Razavi, "Design of Analog CMOS Integrated Circuits, First ed." New York, 2001.
[2] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, " A CMOS Bandgap Reference Circuit with Sub-1-V Operation," Solid-State Circuits, IEEE Journal of, vol. 34, pp. 670-674, 1999.
[3] Hualei Zhang; Zhibin Xiao; Xi Tan; Hao Min " Low-power sub-1-V compact bandgap reference for passive RFID tags" in IET Int. Electronics Letters, vol. 51, pp. 815-816, 2015.
[4] Omar Abdelfattah; Ishiang Shih; Gordon Roberts; Yi-Chi Shih " A 0.6V-supply bandgap reference in 65 nm CMOS" in IEEE Int. New Circuits and Systems Conference (NEWCAS), 2015 IEEE 13th International , DOI: 10.1109/NEWCAS.2015.7182023, June 2015.
[5] William Biederman; Daniel Yeager; Elad Alon; Jan Rabaey " A CMOS switched-capacitor fractional bandgap reference" in IEEE Int. Custom Integrated Circuits Conference (CICC), 2012 IEEE, DOI: 10.1109/CICC.2012.6330568, Sept. 2012.
[6] Filippo Neri; Thomas Brauner; Eric De Mey; Christian Schippel, "Low-power, wide supply voltage bandgap reference circuit in 28nm CMOS" in IEEE Int. Applied Electrical Engineering and Computing Technologies (AEECT), 2015 IEEE Jordan Conference on, DOI: 10.1109/AEECT.2015.7360547, Nov. 2015 .
[7] Xinpeng Xing; Zhihua Wang; Dongmei Li, " A low voltage high precision CMOS bandgap reference" in IEEE Int. Norchip, 2007, DOI: 10.1109/NORCHP.2007.4481079, Nov. 2007.
[8] Xinpeng Xing; Zhihua Wang; Dongmei LiZhang Jun-an; Li Guang-jun; Yan Bo; Luo Pu; Yang Yu-jun; Zhang Rui-tao; Li Xi, " A bandgap reference in 65nm CMOS" in IEEE Int. Nanoelectronics Conference (INEC), 2016 IEEE International, DOI: 10.1109/INEC.2016.7589270, May 2016.
[9] Quanzhen Duan; Jeongjin Roh, " A 1.2-V 4.2- ppm/∘C High-Order Curvature-Compensated CMOS Bandgap Reference" in IEEE Int. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, pp. 662-672, March 2015.
[10] Behzad Razavi, " The Bandgap Reference [A Circuit for All Seasons]" IEEE Solid-State Circuits Magazine, vol. 8, pp. 9-12, Summer 2016.
[11] Edward K. F. Lee, "A low voltage CMOS bandgap reference without using an opamp" in IEEE Int. Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, DOI: 10.1109/ISCAS.2009.5118317, May 2009.
[12] Qing Ding; Pengpeng Yuan; Dongmei Li; Zhihua Wang, "A sub-1-V ultra-low power full CMOS bandgap reference woking in subthreshold region" in IEEE Int. Electron Devices and Solid-State Circuits (EDSSC), 2014 IEEE International Conference on, DOI: 10.1109/EDSSC.2014.7061222, June 2014.

[13] H.Klimach; A.L.T.Costa; M.F.C.Monteiro; S.Bampi, "Resistorless switched-capacitor bandgap voltage reference with low sensitivity to process variations" in IET Int. Electronics Letters, vol. 49, pp. 1148-1149, Nov. 2013.
[14] Hamilton Klimach; Arthur Liraneto Torres Costa; Moacir Fernandes Cortinhas Monteiro; Sergio Bampi, "A resistorless switched bandgap voltage reference with offset cancellation" in IEEE Int. Integrated Circuits and Systems Design (SBCCI), 2013 26th Symposium on, DOI: 10.1109/SBCCI.2013.6644882, Sept. 2013.
[15] Bingwei Jiang; Jun Feng, "Arbitrary conversion ratio switched-capacitor (SC) networks design for SC bandgap reference" in IEEE Int. Norchip, 2007Electron Devices and Solid-State Circuits (EDSSC), 2014 IEEE International Conference on, DOI: 10.1109/EDSSC.2014.7061224, June 2014.
[16] Yuji Osaki; Tetsuya Hirose; Nobutaka Kuroki; Masahiro Numa, "1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs" IEEE Journal of Solid-State Circuits, Volume: 48, Issue: 6, June 2013.
[17] Bingwei Jiang; Jun FengCharalambos M. Andreou; Savvas Koudounas; Julius Georgiou, "A Novel Wide-Temperature-Range, 3.9 ppm/∘C CMOS Bandgap Reference Circuit" IEEE Journal of Solid-State Circuits, Volume: 47, Issue: 2, Feb. 2012.
[18] Guang Ge; Cheng Zhang; Gian Hoogzaad; Kofi A. A. Makinwa, "A Single-Trim CMOS Bandgap Reference With a 3σ Inaccuracy of ±0.15% From −40∘C to 125∘C" IEEE Journal of Solid-State Circuits, Volume: 46, Issue: 11, Nov. 2011.
[19] Youngwoo Ji; Cheonhoo Jeon; Hyunwoo Son; Byungsub Kim; Hong-June Park; Jae-Yoon Sim, "5.8 A 9.3nW all-in-one bandgap voltage and current reference circuit" Solid-State Circuits Conference (ISSCC), 2017 IEEE International, DOI: 10.1109/ISSCC.2017.7870280, Feb. 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *