|
國. 原科中心, 清華大學水池式反應器(THOR), 國立清華大學 原科中心, 2017,取自:http://thor.web.nthu.edu.tw/files/132-1028-19,r4-1.php?Lang=zh-tw. 國. 原科中心, 清華大學水池式反應器(THOR), 原科中心, 國立清華大學, 2017,取 自:http://thor.web.nthu.edu.tw/files/11-1028-1583.php?Lang=zh-tw. D. M. Liu., “A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics,” Journal of Computational Physics 227.8, pp. 3921-3939, 2008. O. M. Faltinsen, “A numerical nonlinear method of sloshing in tanks with two-dimensional flow,” Journal of Ship Research 22.3, 1978. O. M. e. a. Faltinsen, “Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth,” Journal of Fluid Mechanics 407 , pp. 201-234, 2000. Faltinsen, Odd M., and Alexander N. Timokha, “An adaptive multimodal approach to nonlinear sloshing in a rectangular tank,” Journal of Fluid Mechanics 432, pp. 167-200, 2001. V. e. a. Singal, “CFD analysis of a kerosene fuel tank to reduce liquid sloshing,” Procedia Engineering 69, pp. 1365-1371, 2014. Kandasamy, T., S. Rakheja, and A. K. W. Ahmed, “An analysis of baffles designs for limiting fluid slosh in partly filled tank trucks,” Open Transportation Journal 4, pp. 23-32, 2010. Hou, Ling, Fangcheng Li, and Chunliang Wu, “A numerical study of liquid sloshing in a two-dimensional tank under external excitations,” Journal of Marine Science and Application 11.3, pp. 305-310, 2012. Singal, Vaibhav, et al., “CFD analysis of a kerosene fuel tank to reduce liquid sloshing.,” Procedia Engineering 69 , pp. 1365-1371, 2014. Craig, K. J., and T. C. Kingsley., “Design optimization of containers for sloshing and impact.,” Structural and Multidisciplinary Optimization 33.1, pp. 71-87, 2007. 國立清華大學原子科學技術發展中心, “國立清華大學水池式反應器運轉執照更新安全分析報告,” 2012. 王福军, 计算流体动力学分析: CFD 软件原理与应用, 清华大学出版社有限公司, 2004. J. Smagorinsky, “General Circulation Experiments with the Primitive Equations,” Monthly Weather Review. 91 (3), pp. 99-164, March 1963. J. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” Journal of Fluid Mechanics. 41 (2), pp. 453-480, 1970. C. Y. e. a. Wu, “Investigating the advantages and disadvantages of realistic approach and porous approach for closely packed pebbles in CFD simulation.,” Nuclear Engineering and design 240.5, pp. 1151-1159, 2010. H. a. C. N. S. Ayhan, “CFD modeling of thermal mixing in a T-junction geometry using LES model.,” Nuclear Engineering and Design 253, pp. 183-191, 2012. D. e. a. Gueyffier, “Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows.,” Journal of Computational physics 152.2, pp. 423-456, 1999. 行. 核能管制處, “「核能電廠耐震安全再評估精進作業」之地震危害度分析與設計地震檢討原能會安全評估報告,” 行政院原子能委員會 核能管制處 , 中華民國 103年8月. S. V. a. D. B. S. Patankar, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” International journal of heat and mass transfer 15.10, pp. 1787-1806, 1972.
|