|
1. 王文軒, 「發明與創新(學生版)」. 2007. 10. 2. 朱士維, 「光學顯微鏡技術的新進展」. 3. 章校鋒, 「清晰的奈米世界-初探電子顯微鏡」. 2006. 4. Hawkes, P.W., Ernst Ruska. Physics Today, 1990. 43(7): p. 84. 5. Wells, O.C., Scanning Electron Microscopy. Journal of Vacuum Science & Technology, 1965. 2(5): p. 285-. 6. 汪建民, 材料分析. 2001: p. 121-150. 7. In-situ heating holder. Hummingbird Scientific. 8. Hideaki, M. and N. Shigeru, Specimen heating and positioning device for an electron microscope. 1975, Google Patents. 9. Jones, J.S. and P.R. Swann, Specimen heating holder for electron microscopes. 1991, Google Patents. 10. Aoyama, T., et al., Electron microscope specimen holder. 1994, Google Patents. 11. DENSsolutions' EMheaterchips. DENSsolutions. 12. Allard, L.F., et al., A new MEMS‐based system for ultra‐high‐resolution imaging at elevated temperatures. Microscopy research and technique, 2009. 72(3): p. 208-215. 13. K. Nakajima, M.M., H. Niimi, T. Suzuki, N. Kikuchi, N.Erdman, and C.Nielsen, Applications of dynamic microstructure observation and chemical analysis with SEM-EDS. 2013. 14. Tsugio, I. and K. Hiziya, A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy, 1958. 6(1): p. 4-8. 15. Li, C.-M., et al., In situ TEM observation of the nucleation and growth of silver oxide nanoparticles. Micron, 2005. 36(1): p. 9-15. 16. Chiou, Y.C., Preparation of Silicon Nanoribbons and Investigation on the Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy. 2006. 17. Zink, N., et al., In situ heating TEM study of onion-like WS2 and MoS2 nanostructures obtained via MOCVD. Chemistry of Materials, 2007. 20(1): p. 65-71. 18. 陳昶孝 and 李連忠, 2D Material Heterostructures : Synthesis and Applications. NANO COMMUNICATION, 2014. 21卷(NO3). 19. Meyer, M., et al., In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures. Microelectronic Engineering, 2002. 64(1): p. 375-382. 20. Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069. 21. 羅聖全, 電子顯微鏡試片製備技術總論. 工業材料雜誌, 2004. 206. 22. S. Das, GROWTH, FABRICATION AND CHARACTERIZ ATION OF Cu2ZnSn(SXSeX)4 PHOTOVOLTAIC ABSORBER AND THIN FILM HETEROJUNCTION SOLAR CELLS, South Carolina: unpublish, 2012. 23. S. Delbos, “Kesterite thin films for photovoltaics: a review,”EPJ Photovoltaics, p. 35004, 14 8 2012. 24. C. R. A. CATLOW, Z. X. GUO,M.MISKUFOVA,S.A.SHEVLIN,A. G. H. SMITH,A.A.SOKOL,A.WALSH,D.J.WILSON AND S. M. WOODLEY, “Advances in computational studies of energy materials,”Phil. Trans. R.Soc. A, pp. 3379-3456, 21 6 2010. 25. Parul Chawla, Son Singh and Shailesh Narain Sharma, “An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals,”Beilstein J. Nanotechnol. , pp. 1235-1244, 8 8 2014. 26. Chen S, Walsh A, Gong XG, Wei SH, “Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.,”Adv Mater. , pp. 1522-39, 20 5 2013. 27. 高千惠, “Cu2ZnSnSe4薄膜之快速硒化製程研究,”國立中山大學材料科學研究所碩士論文, 2012.
|