帳號:guest(3.22.71.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方玟茜
作者(外文):Fang, Wen-Chien
論文名稱(中文):電化學製備奈米白金於甲醇氧化反應之研究
論文名稱(外文):Electrochemical synthesis Pt nanocatalysts for methanol electro-oxidation
指導教授(中文):蔡春鴻
陳福榮
指導教授(外文):Tsai, Chuen-Horng
Chen, Fu-Rong
口試委員(中文):謝建國
薛康琳
口試委員(外文):HSIEH, CHIEN-KUO
HSUEH, KAN-LIN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011510
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:81
中文關鍵詞:電化學白金甲醇氧化反應
外文關鍵詞:ElectrochemicalPtmethanol electro-oxidation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:118
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究於奈米碳管電沉積特殊形貌白金觸媒並應用於甲醇燃料電池陽極,先以熱化學氣相沉積奈米碳管於碳紙上,再以電鍍合成白金於奈米碳管上,探討不同型貌白金之觸媒特性。藉由奈米碳管增加表面積使白金分布更佳及尋求活性最佳的白金結構,降低甲醇燃料電池觸媒之價格,使甲醇燃料電池的價格降低,進而使其更能有商用化發展。
奈米碳管藉由化學沉積法直接成長於碳紙上以增加電極表面積,經由親水處理後,再以不同電位電沉積白金,亦製備商用觸媒以作為對照組。分析方面,使用掃描式電子顯微鏡(SEM), 穿透式電子顯微鏡(TEM), X光繞射儀 (XRD), 及感應耦合電漿質譜分析儀 (ICP-MS) 做表面特性結構分析。白金電子結構使用高解析電子能譜儀分析(HRXPS)。 從SEM及TEM結果顯示,隨著電位越負,金屬還原後形貌從球狀逐漸變成鈍角、樹枝狀、片狀結構。而從高解析穿透式電子顯微鏡及X光繞射儀等表面分析亦可得到樹枝狀結構白金原子排列最整齊,因此透過CHI1140B電化學分析儀進行循環伏安法測試甲醇氧化反應結果,奈米樹枝結構之白金確實具較高的催化甲醇氧化表面活性,高於商用觸媒 3.67倍。而奈米片狀結構之白金觸媒因其具有最高的表面積與體積比(S/V ratio),因此可以較少量的白金給予較高的表面積,因此其具最高的質量活性,高於商用白金2.95倍。
In this study, we herein suggest synthesizing four different morphologies of Pt onto Carbon nanotubes (CNTs) / Carbon paper (CP) by the electrodeposition method as an electrocatalyst with the higher activity for methanol oxidation to increase the performance of DMFCs. Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Inductively coupled plasma mass spectrometry (ICP-MS) were employed to study the morphological and structural features of Pt/ CNTs /CP. The electronic structures of Pt were examined by X-ray photoelectron spectroscopy (XPS). All electrochemical measurements were carried out with a CHI1140B Potentiostat and examined by Cyclic Voltammetry method (CV). The electrocatalytic activity of prepared electrodes was determined by the mass activity (MA) and surface activity (SA) for the methanol oxidation reaction. For nano dendrite-like of Pt, the catalyst specific activity (SA) for the methanol oxidation reaction is 3.67 times better than that of a commercial Pt-black catalyst, and for nanosheet-like of Pt, the mass activity (MA) value is 2.95 times higher than that for Pt-black.
Abstract i
摘要 ii
致謝 iii
Table of Content v
List of Tables viii
List of Figures ix
Chapter 1. Introduction 1
Chapter 2. Literature Reviews 4
2.1 Fuel Cells 4
2.2 Fundamentals of Direct Methanol Fuel Cell 8
2.2.1 The working principle of DMFC 8
2.2.2 Composition of DMFC 9
2.3 Platinum (Pt) 12
2.3.1 The properties of Pt 13
2.3.2 Various morphologies of Pt 14
2.3.4 Methanol oxidation mechanism of Pt 23
2.4 Supporting materials for catalyst 25
2.4.1 Conductive polymers 25
2.4.2 Carbon nanomaterials 26
2.4.3 Synthesis of Pt/ CNTs by electrochemical deposition method 31
2.5 Preparation methods of catalyst 32
2.5.1 Impregnation method 32
2.5.2 Colloidal method 33
2.5.3 Microemulsion method 33
2.5.4 Electrochemical deposition method 34
Chapter 3. Experiment details 36
3.1 Experiment Process 36
3.2 Chemicals and Instruments 38
3.2.1 Chemicals 38
3.2.2 Gas 38
3.2.3 Experiment Instruments 38
3.2.4 Analysis Instruments 39
3.2.5 Three-electrode electrochemical system 40
3.3 Synthesis of CNTs by thermal chemical vapor deposition 41
3.4 Hydrophilic treatment of CNTs and deposition of Platinum 42
3.5 Deposition of Platinum 42
3.6 Electrochemical analysis 42
3.7 Characterization and instruments 43
Chapter 4. Result and discussions 49
4.1 Carbon nanotubes (CNTs) 49
4.1.1 The CNTs prepared at different temperature 49
4.1.2 The CNTs prepared at 850 ºC 54
4.1.3 The hydrophilic treatment of the CNTs 55
4.2 Pt deposited on CNTs 56
4.2.1 Morphology Characterization 56
4.2.2 XRD results 60
4.2.3 XPS results 62
4.2.4 Electrochemical test 65
Chapter 5. Conclusions 68
References 69
[1] M. M. Bruno, F. A. Viva, M. A. Petruccelli, and H. R. Corti, "Platinum supported on mesoporous carbon as cathode catalyst for direct methanol fuel cells", Journal of Power Sources, vol. 278, pp. 458-463, 2015.
[2] A. M. Zainoodin, S. K. Kamarudin, and W. R. W. Daud, "Electrode in direct methanol fuel cells", International Journal of Hydrogen Energy, vol. 35, pp. 4606-4621, 2010.
[3] Z. X. Liang and T. S. Zhao, "New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane", Journal of Physical Chemistry C, vol. 111, pp. 8128-8134, 2007.
[4] J. F. Chang, L. G. Feng, C. P. Liu, W. Xing, and X. L. Hu, "Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells", Energy & Environmental Science, vol. 7, pp. 1628-1632, 2014.
[5] S. K. Kamarudin, F. Achmad, and W. R. W. Daud, "Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices", International Journal of Hydrogen Energy, vol. 34, pp. 6902-6916, 2009.
[6] W. R. Grove, "On voltaic series and the combination of gases by platinum", Phil. Alag. and Jour. of Science, vol. 14, pp. 127-130, 1839.
[7] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications", Fuel Cells, vol. 1, pp. 5-39, 2001.
[8] A. Hamnett, "Mechanism and electrocatalysis in the direct methanol fuel cell", Catalysis Today, vol. 38, pp. 445-457, 1997.
[9] Y. M. Yang and Y. C. Liang, "A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension", Journal of Power Sources, vol. 165, pp. 185-195, 2007.
[10] T. Shimoaka, C. Wakai, T. Sakabe, S. Yamazaki, and T. Hasegawa, "Hydration structure of strongly bound water on the sulfonic acid group in a Nafion membrane studied by infrared spectroscopy and quantum chemical calculation", Physical Chemistry Chemical Physics, vol. 17, pp. 8843-8849, 2015.
[11] J. Y. Cao, M. W. Guo, J. Y. Wu, J. Xu, W. C. Wang, and Z. D. Chen, "Carbon-supported Ag@Pt core-shell nanoparticles with enhanced electrochemical activity for methanol oxidation and oxygen reduction reaction", Journal of Power Sources, vol. 277, pp. 155-160, 2015.
[12] G. L. Zhang, C. D. Huang, R. J. Qin, Z. C. Shao, D. An, W. Zhang, and Y. X. Wang, "Uniform Pd-Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation", Journal of Materials Chemistry A, vol. 3, pp. 5204-5211, 2015.
[13] Y. S. Wang, S. Y. Yang, S. M. Li, H. W. Tien, S. T. Hsiao, W. H. Liao, C. H. Liu, K. H. Chang, C. C. M. Ma, and C. C. Hu, "Three-dimensionally porous graphene-carbon nanotube composite-supported PtRu catalysts with an ultrahigh electrocatalytic activity for methanol oxidation", Electrochimica Acta, vol. 87, pp. 261-269, 2013.
[14] B. M. Luo, S. Xu, X. B. Yan, and Q. J. Xue, "PtNi Alloy Nanoparticles Supported on Polyelectrolyte Functionalized Graphene as Effective Electrocatalysts for Methanol Oxidation", Journal of the Electrochemical Society, vol. 160, pp. F262-F268, 2013.
[15] Y. J. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, and C. X. Cai, "Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation", Physical Chemistry Chemical Physics, vol. 13, pp. 4083-4094, 2011.
[16] J. Mergel, H. Janssen, M. Muller, J. Wilhelm, and D. Stolten, "Development of Direct Methanol Fuel Cell Systems for Material Handling Applications", Journal of Fuel Cell Science and Technology, vol. 9, 2012.
[17] J. Y. Cao, T. Yuan, Q. H. Huang, Z. Q. Zou, B. J. Xia, H. Yang, and S. L. Feng, "Development of Micro Direct Methanol Fuel Cell Systems and Their Possible Applications", Proton Exchange Membrane Fuel Cells 8, Pts 1 and 2, vol. 16, pp. 1495-1506, 2008.
[18] A. S. Arico, S. Srinivasan, and V. Antonucci, "DMFCs: From Fundamental Aspects to Technology Development", Fuel Cells, vol. 1, pp. 133-161, 2001.
[19] M. Zhang, J. J. Lv, F. F. Li, N. Bao, A. J. Wang, J. J. Feng, and D. L. Zhou, "Urea assisted electrochemical synthesis of flower-like platinum arrays with high electrocatalytic activity", Electrochimica Acta, vol. 123, pp. 227-232, 2014.
[20] T. L. Hsieh, H. W. Chen, C. W. Kung, C. C. Wang, R. Vittal, and K. C. Ho, "A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode", Journal of Materials Chemistry, vol. 22, pp. 5550-5559, 2012.
[21] H. M. Zhang, W. Q. Zhou, Y. K. Du, P. Yang, and C. Y. Wang, "One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation", Electrochemistry Communications, vol. 12, pp. 882-885, 2010.
[22] C. Wang, H. Daimon, Y. Lee, J. Kim, and S. Sun, "Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction", Journal of the American Chemical Society, vol. 129, pp. 6974-+, 2007.
[23] B. H. Wu, N. F. Zheng, and G. Fu, "Small molecules control the formation of Pt nanocrystals: a key role of carbon monoxide in the synthesis of Pt nanocubes", Chemical Communications, vol. 47, pp. 1039-1041, 2011.
[24] Q. A. Wang, B. Y. Geng, and B. Tao, "A facile room temperature chemical route to Pt nanocube/carbon nanotube heterostructures with enhanced electrocatalysis", Journal of Power Sources, vol. 196, pp. 191-195, 2011.
[25] E. P. Lee, Z. M. Peng, D. M. Cate, H. Yang, C. T. Campbell, and Y. N. Xia, "Growing Pt nanowires as a densely packed array on metal gauze", Journal of the American Chemical Society, vol. 129, pp. 10634-+, 2007.
[26] J. Y. Chen, T. Herricks, M. Geissler, and Y. N. Xia, "Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process", Journal of the American Chemical Society, vol. 126, pp. 10854-10855, 2004.
[27] Y. Sakamoto, A. Fukuoka, T. Higuchi, N. Shimomura, S. Inagaki, and M. Ichikawa, "Synthesis of platinum nanowires in organic-inorganic mesoporous silica templates by photoreduction: Formation mechanism and isolation", Journal of Physical Chemistry B, vol. 108, pp. 853-858, 2004.
[28] Y. Song, R. M. Garcia, R. M. Dorin, H. R. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller, and J. A. Shelnutt, "Synthesis of platinum nanowire networks using a soft template", Nano Letters, vol. 7, pp. 3650-3655, 2007.
[29] J. K. Kawasaki and C. B. Arnold, "Synthesis of Platinum Dendrites and Nanowires Via Directed Electrochemical Nanowire Assembly", Nano Letters, vol. 11, pp. 781-785, 2011.
[30] B. Y. Xia, H. B. Wu, Y. Yan, X. W. Lou, and X. Wang, "Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity", Journal of the American Chemical Society, vol. 135, pp. 9480-9485, 2013.
[31] Y. X. Lu, S. F. Du, and R. Steinberger-Wilckens, "Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells", Applied Catalysis B-Environmental, vol. 164, pp. 389-395, 2015.
[32] Y. J. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. F. Xu, Y. B. Jiang, C. J. Brinker, F. van Swol, and J. A. Shelnutt, "Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures", Journal of the American Chemical Society, vol. 126, pp. 635-645, 2004.
[33] C. Kim, J. G. Oh, Y. T. Kim, H. Kim, and H. Lee, "Platinum dendrites with controlled sizes for oxygen reduction reaction", Electrochemistry Communications, vol. 12, pp. 1596-1599, 2010.
[34] S. B. Han, Y. J. Song, J. M. Lee, J. Y. Kim, and K. W. Park, "Platinum nanocube catalysts for methanol and ethanol electrooxidation", Electrochemistry Communications, vol. 10, pp. 1044-1047, 2008.
[35] G. X. Zhang, S. H. Sun, M. Cai, Y. Zhang, R. Y. Li, and X. L. Sun, "Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction", Scientific Reports, vol. 3, 2013.
[36] T. Wu, H. M. Zhou, B. Y. Xia, P. Xiao, Y. Yan, M. S. Xie, and X. Wang, "Facile Synthesis of 3D Platinum Dendrites with a Clean Surface as Highly Stable Electrocatalysts", Chemcatchem, vol. 6, pp. 1538-1542, 2014.
[37] P. Ferrin, A. U. Nilekar, J. Greeley, M. Mavrikakis, and J. Rossmeisl, "Reactivity descriptors for direct methanol fuel cell anode catalysts", Surface Science, vol. 602, pp. 3424-3431, 2008.
[38] M. P. Hogarth and T. R. Ralph, "Catalysis for Low Temperature Fuel Cells PART III: CHALLENGES FOR THE DIRECT METHANOL FUEL CELL", Platinum Metals Review, vol. 46, pp. 146-164, 2002.
[39] Z. W. Chen, L. B. Xu, W. Z. Li, M. Waje, and Y. S. Yan, "Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells", Nanotechnology, vol. 17, pp. 5254-5259, 2006.
[40] L. Niu, Q. H. Li, F. H. Wei, X. Chen, and H. Wang, "Electrochemical impedance and morphological characterization of platinum-modified polyaniline film electrodes and their electrocatalytic activity for methanol oxidation", Journal of Electroanalytical Chemistry, vol. 544, pp. 121-128, 2003.
[41] Z. A. Hu, L. J. Ren, X. J. Feng, Y. P. Wang, Y. Y. Yang, J. Shi, L. P. Mo, and Z. Q. Lei, "Platinum-modified polyaniline/polysulfone composite film electrodes and their electrocatalytic activity for methanol oxidation", Electrochemistry Communications, vol. 9, pp. 97-102, 2007.
[42] G. Wu, L. Li, J. H. Li, and B. Q. Xu, "Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films", Journal of Power Sources, vol. 155, pp. 118-127, 2006.
[43] E. Antolini and E. R. Gonzalez, "Polymer supports for low-temperature fuel cell catalysts", Applied Catalysis a-General, vol. 365, pp. 1-19, 2009.
[44] S. M. Unni, V. K. Pillai, and S. Kurungot, "3-Dimensionally self-assembled single crystalline platinum nanostructures on few-layer graphene as an efficient oxygen reduction electrocatalyst", Rsc Advances, vol. 3, pp. 6913-6921, 2013.
[45] Y. Chen, G. J. Zhang, J. A. Ma, Y. M. Zhou, Y. W. Tang, and T. H. Lu, "Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles", International Journal of Hydrogen Energy, vol. 35, pp. 10109-10117, 2010.
[46] Y. C. Si and E. T. Samulski, "Exfoliated Graphene Separated by Platinum Nanoparticles", Chemistry of Materials, vol. 20, pp. 6792-6797, 2008.
[47] Y. Y. Shao, J. H. Sui, G. P. Yin, and Y. Z. Gao, "Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell", Applied Catalysis B-Environmental, vol. 79, pp. 89-99, 2008.
[48] C. W. Zhang, L. B. Xu, N. N. Shan, T. T. Sun, J. F. Chen, and Y. S. Yan, "Enhanced Electrocatalytic Activity and Durability of Pt Particles Supported on Ordered Mesoporous Carbon Spheres", Acs Catalysis, vol. 4, pp. 1926-1930, 2014.
[49] S. Ghosh and C. R. Raj, "Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures: An Efficient Electrocatalyst for Fuel Cell Application", Journal of Physical Chemistry C, vol. 114, pp. 10843-10849, 2010.
[50] V. Selvaraj and M. Alagar, "Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation", Electrochemistry Communications, vol. 9, pp. 1145-1153, 2007.
[51] M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda, and A. Ohta, "Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells", Journal of the Electrochemical Society, vol. 143, pp. 2245-2252, 1996.
[52] T. Fujigaya, S. Hirata, M. R. Berber, and N. Nakashima, "Improved Durability of Electrocatalyst Based on Coating of Carbon Black with Polybenzimidazole and their Application in Polymer Electrolyte Fuel Cells", Acs Applied Materials & Interfaces, vol. 8, pp. 14494-14502, 2016.
[53] P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Y. F. Huang, and Q. G. Li, "High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells", Solar Energy, vol. 83, pp. 845-849, 2009.
[54] M. Carmo, A. R. Dos Santos, J. G. R. Poco, and M. Linardi, "Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications", Journal of Power Sources, vol. 173, pp. 860-866, 2007.
[55] D. W. Wang, Y. Liu, J. S. Huang, and T. Y. You, "In situ synthesis of Pt/carbon nanofiber nanocomposites with enhanced electrocatalytic activity toward methanol oxidation", Journal of Colloid and Interface Science, vol. 367, pp. 199-203, 2012.
[56] Y. L. Hsin, K. C. Hwang, and C. T. Yeh, "Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells", Journal of the American Chemical Society, vol. 129, pp. 9999-10010, 2007.
[57] S. F. Fu, G. H. Yang, Y. Z. Zhou, H. B. Pan, C. M. Wai, D. Du, and Y. H. Lin, "Ultrasonic enhanced synthesis of multi-walled carbon nanotube supported Pt-Co bimetallic nanoparticles as catalysts for the oxygen reduction reaction", Rsc Advances, vol. 5, pp. 32685-32689, 2015.
[58] C. F. Zhou, X. S. Du, H. W. Liu, S. P. Ringer, and Z. W. Liu, "Enhancement of the catalytic performance of a CNT supported Pt nanorod cluster catalyst by controlling their microstructure", Rsc Advances, vol. 5, pp. 80176-80183, 2015.
[59] M. Williams, L. Khotseng, Q. Naidoo, L. Petrik, A. Nechaev, and V. Linkov, "Applicability of analytical protocols for the characterisation of carbon-supported platinum group metal fuel cell electrocatalysts", South African Journal of Science, vol. 105, pp. 285-289, 2009.
[60] L. C. Feng, N. Xie, and J. Zhong, "Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications", Materials, vol. 7, pp. 3919-3945, 2014.
[61] L. Lacerda, S. Raffa, M. Prato, A. Bianco, and K. Kostarelos, "Cell-penetrating CNTs for delivery of therapeutics", Nano Today, vol. 2, pp. 38-43, 2007.
[62] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and Y. S. Yan, "Proton exchange membrane fuel cells with carbon nanotube based electrodes", Nano Letters, vol. 4, pp. 345-348, 2004.
[63] K. Saminathan, V. Kamavaram, V. Veedu, and A. M. Kannan, "Preparation and evaluation of electrodeposited platinum nanoparticles on in situ carbon nanotubes grown carbon paper for proton exchange membrane fuel cells", International Journal of Hydrogen Energy, vol. 34, pp. 3838-3844, 2009.
[64] C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra, and M. Pasquali, "Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation", Journal of Power Sources, vol. 183, pp. 84-91, 2008.
[65] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, and D. P. Wilkinson, "A review of anode catalysis in the direct methanol fuel cell", Journal of Power Sources, vol. 155, pp. 95-110, 2006.
[66] Z. H. Zhou, S. L. Wang, W. J. Zhou, L. H. Jiang, G. X. Wang, G. Q. Sun, B. Zhou, and Q. Xin, "Preparation of highly active Pt/C cathode electrocatalysts for DMFCs by an improved aqueous impregnation method", Physical Chemistry Chemical Physics, vol. 5, pp. 5485-5488, 2003.
[67] H. Tang, J. H. Chen, S. Z. Yao, L. H. Nie, Y. F. Kuang, Z. P. Huang, D. Z. Wang, and Z. F. Ren, "Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation", Materials Chemistry and Physics, vol. 92, pp. 548-553, 2005.
[68] S. Woo, J. Lee, S. K. Park, H. Kim, T. D. Chung, and Y. Z. Piao, "Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation", Current Applied Physics, vol. 15, pp. 219-225, 2015.
[69] J. N. Tiwari, F. M. Pan, and K. L. Lin, "Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics", New Journal of Chemistry, vol. 33, pp. 1482-1485, 2009.
[70] J. Liu, C. Zhong, X. T. Du, Y. T. Wu, P. Z. Xu, J. B. Liu, and W. B. Hu, "Pulsed electrodeposition of Pt particles on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation", Electrochimica Acta, vol. 100, pp. 164-170, 2013.
[71] Z. D. Wei, S. G. Chen, Y. Liu, C. X. Sun, Z. G. Shao, and P. K. Shen, "Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC", Journal of Physical Chemistry C, vol. 111, pp. 15456-15463, 2007.
[72] H. M. Zhang, F. X. Jiang, R. Zhou, Y. K. Du, P. Yang, C. Y. Wang, and J. K. Xu, "Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles", International Journal of Hydrogen Energy, vol. 36, pp. 15052-15059, 2011.
[73] X. Wang, Y. Sun, J. Hu, Y. J. Li, and E. S. Yeung, "Electrochemical fabrication of Hydrangea macrophylla flower-like Pt hierarchical nanostructures and their properties for methanol electrooxidation", Rsc Advances, vol. 5, pp. 13538-13543, 2015.
[74] J. S. Ye, H. F. Cui, Y. Wen, W. D. Zhang, G. Q. Xu, and F. S. Sheu, "Electrodeposition of platinum nanoparticles on multi-walled carbon nanotubes for electrocatalytic oxidation of methanol", Microchimica Acta, vol. 152, pp. 267-275, 2006.
[75] W. Li, L. S. Zhang, Q. Wang, Y. Yu, Z. Chen, C. Y. Cao, and W. G. Song, "Low-cost synthesis of graphitic carbon nanofibers as excellent room temperature sensors for explosive gases", Journal of Materials Chemistry, vol. 22, pp. 15342-15347, 2012.
[76] A. L. Patterson, "The Scherrer formula for x-ray particle size determination", Physical Review, vol. 56, pp. 978-982, 1939.
[77] W. Z. Li, W. J. Zhou, H. Q. Li, Z. H. Zhou, B. Zhou, G. Q. Sun, and Q. Xin, "Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell", Electrochimica Acta, vol. 49, pp. 1045-1055, 2004.
[78] C. J. Tseng, S. T. Lo, S. C. Lo, and P. P. Chu, "Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications", Materials Chemistry and Physics, vol. 100, pp. 385-390, 2006.
[79] H. Jeon, J. Joo, Y. Kwon, S. Uhm, and J. Lee, "Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells", Journal of Power Sources, vol. 195, pp. 5929-5933, 2010.
[80] K. C. Park, I. Y. Jang, W. Wongwiriyapan, S. Morimoto, Y. J. Kim, Y. C. Jung, T. Toya, and M. Endo, "Carbon-supported Pt-Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor-support interaction", Journal of Materials Chemistry, vol. 20, pp. 5345-5354, 2010.
[81] D. Q. Yang, B. Hennequin, and E. Sacher, "XPS demonstration of pi-pi interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles", Chemistry of Materials, vol. 18, pp. 5033-5038, 2006.
[82] M. X. Wu, M. J. Han, M. W. Li, Y. X. Li, J. H. Zeng, and S. J. Liao, "Preparation and characterizations of platinum electrocatalysts supported on thermally treated CeO2-C composite support for polymer electrolyte membrane fuel cells", Electrochimica Acta, vol. 139, pp. 308-314, 2014.
[83] N. Furuya and S. Koide, "Hydrogen Adsorption on Platinum Single-Crystal Surfaces", Surface Science, vol. 220, pp. 18-28, 1989.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *