|
References 1 Nazeeruddin, M.K.: ‘In Retrospect Twenty-five years of low-cost solar cells’, Nature, 2016, 538, (7626), pp. 463-464 2 Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: ‘Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells’, J Am Chem Soc, 2009, 131, (17), pp. 6050-+ 3 Oregan, B., and Gratzel, M.: ‘A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films’, Nature, 1991, 353, (6346), pp. 737-740 4 Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Gratzel, M., and Park, N.G.: ‘Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%’, Sci Rep-Uk, 2012, 2 5 Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: ‘Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites’, Science, 2012, 338, (6107), pp. 643-647 6 Green, M.A., Ho-Baillie, A., and Snaith, H.J.: ‘The emergence of perovskite solar cells’, Nat Photonics, 2014, 8, (7), pp. 506-514 7 Song, Z.N., Watthage, S.C., Phillips, A.B., and Heben, M.J.: ‘Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications’, J Photon Energy, 2016, 6, (2) 8 Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.S., Chang, J.A., Lee, Y.H., Kim, H.J., Sarkar, A., Nazeeruddin, M.K., Gratzel, M., and Seok, S.I.: ‘Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors’, Nat Photonics, 2013, 7, (6), pp. 487-492 9 Choi, J.J., Yang, X.H., Norman, Z.M., Billinge, S.J.L., and Owen, J.S.: ‘Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells’, Nano Lett, 2014, 14, (1), pp. 127-133 10 Leijtens, T., Lauber, B., Eperon, G.E., Stranks, S.D., and Snaith, H.J.: ‘The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells’, J Phys Chem Lett, 2014, 5, (7), pp. 1096-1102 11 Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., and Snaith, H.J.: ‘Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells’, Adv Funct Mater, 2014, 24, (1), pp. 151-157 12 Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., and Cahen, D.: ‘Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor)’, Nano Lett, 2014, 14, (2), pp. 1000-1004 13 Jiang, Q., Chu, Z.N., Wang, P.Y., Yang, X.L., Liu, H., Wang, Y., Yin, Z.G., Wu, J.L., Zhang, X.W., and You, J.B.: ‘Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%’, Adv Mater, 2017, 29, (46) 14 Meng, L., You, J.B., Guo, T.F., and Yang, Y.: ‘Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells’, Accounts Chem Res, 2016, 49, (1), pp. 155-165 15 Liu, T.H., Chen, K., Hu, Q., Zhu, R., and Gong, Q.H.: ‘Inverted Perovskite Solar Cells: Progresses and Perspectives’, Adv Energy Mater, 2016, 6, (17) 16 Cao, J., Yu, H., Zhou, S., Qin, M.C., Lau, T.K., Lu, X.H., Zhao, N., and Wong, C.P.: ‘Low-temperature solution-processed NiOx films for air-stable perovskite solar cells’, J Mater Chem A, 2017, 5, (22), pp. 11071-11077 17 Ye, S.Y., Rao, H.X., Zhao, Z.R., Zhang, L.J., Bao, H.L., Sun, W.H., Li, Y.L., Gu, F.D., Wang, J.Q., Liu, Z.W., Bian, Z.Q., and Huang, C.H.: ‘A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I’, J Am Chem Soc, 2017, 139, (22), pp. 7504-7512 18 Tong, X., Lin, F., Wu, J., and Wang, Z.M.M.: ‘High Performance Perovskite Solar Cells’, Adv Sci, 2016, 3, (5) 19 Marinova, N., Valero, S., and Delgado, J.L.: ‘Organic and perovskite solar cells: Working principles, materials and interfaces’, J Colloid Interf Sci, 2017, 488, pp. 373-389 20 Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.W., Stranks, S.D., Snaith, H.J., and Nicholas, R.J.: ‘Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites’, Nat Phys, 2015, 11, (7), pp. 582-U594 21 Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., and Cahen, D.: ‘Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells’, Nat Commun, 2014, 5 22 Marchioro, A., Teuscher, J., Friedrich, D., Kunst, M., van de Krol, R., Moehl, T., Gratzel, M., and Moser, J.E.: ‘Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells’, Nat Photonics, 2014, 8, (3), pp. 250-255 23 Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W.S., Barea, E.M., Fabregat-Santiago, F., Mora-Sero, I., and Bisquert, J.: ‘General Working Principles of CH3NH3PbX3 Perovskite Solar Cells’, Nano Lett, 2014, 14, (2), pp. 888-893 24 Lin, C.F., Zhang, M., Liu, S.W., Chiu, T.L., and Lee, J.H.: ‘High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device’, Int J Mol Sci, 2011, 12, (1), pp. 476-505 25 Yan, K., Dong, B., Xiao, X.Y., Chen, S., Chen, B.X., Gao, X., Hu, H.W., Wen, W., Zhou, J.B., and Zou, D.C.: ‘Memristive property's effects on the I-V characteristics of perovskite solar cells’, Sci Rep-Uk, 2017, 7 26 Dubey;, A., Adhikari;, N., Mabrouk;, S., Wu;, F., Chen;, K., Yang;, S., and Qiao, Q.: ‘A strategic review on processing routes towards highly efficient perovskite solar cells’, J Mater Chem A, 2018 27 Kim, J.H., Chueh, C.C., Williams, S.T., and Jen, A.K.Y.: ‘Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells’, Nanoscale, 2015, 7, (41), pp. 17343-17349 28 Kim, Y.H., Cho, H., Heo, J.H., Kim, T.S., Myoung, N., Lee, C.L., Im, S.H., and Lee, T.W.: ‘Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes’, Adv Mater, 2015, 27, (7), pp. 1248-1254 29 Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: ‘Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber’, Science, 2013, 342, (6156), pp. 341-344 30 Xing, G.C., Mathews, N., Lim, S.S., Yantara, N., Liu, X.F., Sabba, D., Gratzel, M., Mhaisalkar, S., and Sum, T.C.: ‘Low-temperature solution-processed wavelength-tunable perovskites for lasing’, Nat Mater, 2014, 13, (5), pp. 476-480 31 You, J.B., Hong, Z.R., Yang, Y., Chen, Q., Cai, M., Song, T.B., Chen, C.C., Lu, S.R., Liu, Y.S., Zhou, H.P., and Yang, Y.: ‘Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility’, Acs Nano, 2014, 8, (2), pp. 1674-1680 32 Luo, J.S., Im, J.H., Mayer, M.T., Schreier, M., Nazeeruddin, M.K., Park, N.G., Tilley, S.D., Fan, H.J., and Gratzel, M.: ‘Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts’, Science, 2014, 345, (6204), pp. 1593-1596 33 Tan, Z.K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., and Friend, R.H.: ‘Bright light-emitting diodes based on organometal halide perovskite’, Nat Nanotechnol, 2014, 9, (9), pp. 687-692 34 Deschler, F., Price, M., Pathak, S., Klintberg, L.E., Jarausch, D.D., Higler, R., Huttner, S., Leijtens, T., Stranks, S.D., Snaith, H.J., Atature, M., Phillips, R.T., and Friend, R.H.: ‘High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors’, J Phys Chem Lett, 2014, 5, (8), pp. 1421-1426 35 Zhang, Q., Ha, S.T., Liu, X.F., Sum, T.C., and Xiong, Q.H.: ‘Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers’, Nano Lett, 2014, 14, (10), pp. 5995-6001 36 Lee, Y., Kwon, J., Hwang, E., Ra, C.H., Yoo, W.J., Ahn, J.H., Park, J.H., and Cho, J.H.: ‘High-Performance Perovskite-Graphene Hybrid Photodetector’, Adv Mater, 2015, 27, (1), pp. 41-46 37 Dou, L.T., Yang, Y., You, J.B., Hong, Z.R., Chang, W.H., Li, G., and Yang, Y.: ‘Solution-processed hybrid perovskite photodetectors with high detectivity’, Nat Commun, 2014, 5 38 Alwadai, N., Haque, M.A., Mitra, S., Flemban, T., Pak, Y., Wu, T., and Roqan, I.: ‘High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions’, Acs Appl Mater Inter, 2017, 9, (43), pp. 37832-37838 39 Kim, H.B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S., and Kim, J.Y.: ‘Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells’, Nanoscale, 2014, 6, (12), pp. 6679-6683 40 Im, J.H., Lee, C.R., Lee, J.W., Park, S.W., and Park, N.G.: ‘6.5% efficient perovskite quantum-dot-sensitized solar cell’, Nanoscale, 2011, 3, (10), pp. 4088-4093 41 Saliba, M., Matsui, T., Domanski, K., Seo, J.Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.P., Tress, W.R., Abate, A., Hagfeldt, A., and Gratzel, M.: ‘Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance’, Science, 2016, 354, (6309), pp. 206-209 42 Liu, J., Gao, C., He, X.L., Ye, Q.Y., Ouyang, L.Q., Zhuang, D.M., Liao, C., Mei, J., and Lau, W.M.: ‘Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell’, Acs Appl Mater Inter, 2015, 7, (43), pp. 24008-24015 43 Bi, D.Q., Tress, W., Dar, M.I., Gao, P., Luo, J.S., Renevier, C., Schenk, K., Abate, A., Giordano, F., Baena, J.P.C., Decoppet, J.D., Zakeeruddin, S.M., Nazeeruddin, M.K., Gratzel, M., and Hagfeldt, A.: ‘Efficient luminescent solar cells based on tailored mixed-cation perovskites’, Sci Adv, 2016, 2, (1) 44 Wu, T.Y., Wu, J.H., Tu, Y.G., He, X., Lan, Z., Huang, M.L., and Lin, J.M.: ‘Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%’, J Power Sources, 2017, 365, pp. 1-6 45 Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: ‘Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells’, Nat Mater, 2014, 13, (9), pp. 897-903 46 Lee, K.M., Lin, C.J., Liou, B.Y., Yu, S.M., Hsu, C.C., Suryanarayanan, V., and Wu, M.C.: ‘Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells’, Sol Energ Mat Sol C, 2017, 172, pp. 368-375 47 Hammarstrom, L.: ‘Overview: capturing the sun for energy production’, Ambio, 2012, 41 Suppl 2, pp. 103-107 48 Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: ‘Compositional engineering of perovskite materials for high-performance solar cells’, Nature, 2015, 517, (7535), pp. 476-+ 49 Rong, Y.G., Tang, Z.J., Zhao, Y.F., Zhong, X., Venkatesan, S., Graham, H., Patton, M., Jing, Y., Guloy, A.M., and Yao, Y.: ‘Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells’, Nanoscale, 2015, 7, (24), pp. 10595-10599 50 Wu, Y.Z., Islam, A., Yang, X.D., Qin, C.J., Liu, J., Zhang, K., Peng, W.Q., and Han, L.Y.: ‘Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition’, Energ Environ Sci, 2014, 7, (9), pp. 2934-2938 51 Zhang, W., Saliba, M., Moore, D.T., Pathak, S.K., Horantner, M.T., Stergiopoulos, T., Stranks, S.D., Eperon, G.E., Alexander-Webber, J.A., Abate, A., Sadhanala, A., Yao, S.H., Chen, Y.L., Friend, R.H., Estroff, L.A., Wiesner, U., and Snaith, H.J.: ‘Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells’, Nat Commun, 2015, 6 52 Moore, D.T., Sai, H., Tan, K.W., Smilgies, D.M., Zhang, W., Snaith, H.J., Wiesner, U., and Estroff, L.A.: ‘Crystallization Kinetics of Organic-Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth’, J Am Chem Soc, 2015, 137, (6), pp. 2350-2358 53 Moore, D.T., Sai, H., Tan, K.W., Estroff, L.A., and Wiesner, U.: ‘Impact of the organic halide salt on final perovskite composition for photovoltaic applications’, Apl Mater, 2014, 2, (8) 54 Munir, R., Sheikh, A.D., Abdelsamie, M., Hu, H.L., Yu, L., Zhao, K., Kim, T., El Tall, O., Li, R.P., Smilgies, D.M., and Amassian, A.: ‘Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases’, Adv Mater, 2017, 29, (2) 55 Oesinghaus, L., Schlipf, J., Giesbrecht, N., Song, L., Hu, Y., Bein, T., Docampo, P., and Muller-Buschbaum, P.: ‘Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films’, Adv Mater Interfaces, 2016, 3, (19) 56 Foley, B.J., Girard, J., Sorenson, B.A., Chen, A.Z., Niezgoda, J.S., Alpert, M.R., Harper, A.F., Smilgies, D.M., Clancy, P., Saidi, W.A., and Choi, J.J.: ‘Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives’, J Mater Chem A, 2017, 5, (1), pp. 113-123 57 Chen, Q., Zhou, H.P., Fang, Y.H., Stieg, A.Z., Song, T.B., Wang, H.H., Xu, X.B., Liu, Y.S., Lu, S.R., You, J.B., Sun, P.Y., Mckay, J., Goorsky, M.S., and Yang, Y.: ‘The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells’, Nat Commun, 2015, 6 58 Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: ‘High-performance photovoltaic perovskite layers fabricated through intramolecular exchange’, Science, 2015, 348, (6240), pp. 1234-1237 59 Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., and Gratzel, M.: ‘Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency’, Energ Environ Sci, 2016, 9, (6), pp. 1989-1997 60 Wang, F., Yu, H., Xu, H.H., and Zhao, N.: ‘HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells’, Adv Funct Mater, 2015, 25, (7), pp. 1120-1126 61 Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Gratzel, M.: ‘Sequential deposition as a route to high-performance perovskite-sensitized solar cells’, Nature, 2013, 499, (7458), pp. 316-+ 62 Liu, D.Y., and Kelly, T.L.: ‘Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques’, Nat Photonics, 2014, 8, (2), pp. 133-138 63 Chen, Q., Zhou, H.P., Hong, Z.R., Luo, S., Duan, H.S., Wang, H.H., Liu, Y.S., Li, G., and Yang, Y.: ‘Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process’, J Am Chem Soc, 2014, 136, (2), pp. 622-625 64 Xing, G.C., Mathews, N., Sun, S.Y., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S., and Sum, T.C.: ‘Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3’, Science, 2013, 342, (6156), pp. 344-347 65 Xiao, Z.G., Bi, C., Shao, Y.C., Dong, Q.F., Wang, Q., Yuan, Y.B., Wang, C.G., Gao, Y.L., and Huang, J.S.: ‘Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers’, Energ Environ Sci, 2014, 7, (8), pp. 2619-2623 66 Chiang, C.H., Nazeeruddin, M.K., Gratzel, M., and Wu, C.G.: ‘The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells’, Energ Environ Sci, 2017, 10, (3), pp. 808-817 67 Liu, M.Z., Johnston, M.B., and Snaith, H.J.: ‘Efficient planar heterojunction perovskite solar cells by vapour deposition’, Nature, 2013, 501, (7467), pp. 395-+ 68 Abbas, H.A., Kottokkaran, R., Ganapathy, B., Samiee, M., Zhang, L., Kitahara, A., Noack, M., and Dalal, V.L.: ‘High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer’, Apl Mater, 2015, 3, (1) 69 Osterwald, C.R., and McMahon, T.J.: ‘History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review’, Prog Photovoltaics, 2009, 17, (1), pp. 11-33 70 Wang, X., Deng, L.L., Wang, L.Y., Dai, S.M., Xing, Z., Zhan, X.X., Lu, X.Z., Xie, S.Y., Huang, R.B., and Zheng, L.S.: ‘Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature’, J Mater Chem A, 2017, 5, (4), pp. 1706-1712 71 Mei, A.Y., Li, X., Liu, L.F., Ku, Z.L., Liu, T.F., Rong, Y.G., Xu, M., Hu, M., Chen, J.Z., Yang, Y., Gratzel, M., and Han, H.W.: ‘A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability’, Science, 2014, 345, (6194), pp. 295-298 72 Tan, H.R., Jain, A., Voznyy, O., Lan, X.Z., de Arquer, F.P.G., Fan, J.Z., Quintero-Bermudez, R., Yuan, M.J., Zhang, B., Zhao, Y.C., Fan, F.J., Li, P.C., Quan, L.N., Zhao, Y.B., Lu, Z.H., Yang, Z.Y., Hoogland, S., and Sargent, E.H.: ‘Efficient and stable solution-processed planar perovskite solar cells via contact passivation’, Science, 2017, 355, (6326), pp. 722-726 73 Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., and Walsh, A.: ‘Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells’, Nano Lett, 2014, 14, (5), pp. 2584-2590 74 Niu, G.D., Guo, X.D., and Wang, L.D.: ‘Review of recent progress in chemical stability of perovskite solar cells’, J Mater Chem A, 2015, 3, (17), pp. 8970-8980 75 Tang, H., He, S.S., and Peng, C.W.: ‘A Short Progress Report on High-Efficiency Perovskite Solar Cells’, Nanoscale Res Lett, 2017, 12 76 Yang, J.L., Siempelkamp, B.D., Liu, D.Y., and Kelly, T.L.: ‘Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques’, Acs Nano, 2015, 9, (2), pp. 1955-1963 77 Poglitsch, A., and Weber, D.: ‘Dynamic Disorder in Methylammoniumtrihalogenoplumbates(Ii) Observed by Millimeter-Wave Spectroscopy’, J Chem Phys, 1987, 87, (11), pp. 6373-6378 78 Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: ‘Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells’, Energ Environ Sci, 2014, 7, (3), pp. 982-988 79 Tsai, H.H., Nie, W.Y., Blancon, J.C., Toumpos, C.C.S., Asadpour, R., Harutyunyan, B., Neukirch, A.J., Verduzco, R., Crochet, J.J., Tretiak, S., Pedesseau, L., Even, J., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., and Mohite, A.D.: ‘High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells’, Nature, 2016, 536, (7616), pp. 312-+ 80 Hu, Y.H., Schlipf, J., Wussler, M., Petrus, M.L., Jaegermann, W., Bein, T., Muller-Buschbaum, P., and Docampo, P.: ‘Hybrid Perovskite/Perovskite Heterojunction Solar Cells’, Acs Nano, 2016, 10, (6), pp. 5999-6007 81 Koh, T.M., Shanmugam, V., Schlipf, J., Oesinghaus, L., Muller-Buschbaum, P., Ramakrishnan, N., Swamy, V., Mathews, N., Boix, P.P., and Mhaisalkar, S.G.: ‘Nanostructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics’, Adv Mater, 2016, 28, (19), pp. 3653-3661 82 Grancini, G., Roldan-Carmona, C., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, S., Oswald, F., De Angelis, F., Graetzel, M., and Nazeeruddin, M.K.: ‘One-Year stable perovskite solar cells by 2D/3D interface engineering’, Nat Commun, 2017, 8 83 Yang, S., Wang, Y., Liu, P.R., Cheng, Y.B., Zhao, H.J., and Yang, H.G.: ‘Functionalization of perovskite thin films with moisture-tolerant molecules’, Nat Energy, 2016, 1 84 Wang, Q., Dong, Q.F., Li, T., Gruverman, A., and Huang, J.S.: ‘Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells’, Adv Mater, 2016, 28, (31), pp. 6734-+ 85 Bi, D.Q., Gao, P., Scopelliti, R., Oveisi, E., Luo, J.S., Gratzel, M., Hagfeldt, A., and Nazeeruddin, M.K.: ‘High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3’, Adv Mater, 2016, 28, (15), pp. 2910-2915 86 Bella, F., Griffini, G., Correa-Baena, J.P., Saracco, G., Gratzel, M., Hagfeldt, A., Turri, S., and Gerbaldi, C.: ‘Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers’, Science, 2016, 354, (6309), pp. 203-206 87 Domanski, K., Correa-Baena, J.P., Mine, N., Nazeeruddin, M.K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A., and Gratzel, M.: ‘Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells’, Acs Nano, 2016, 10, (6), pp. 6306-6314 88 Back, H., Kim, G., Kim, J., Kong, J., Kim, T.K., Kang, H., Kim, H., Lee, J., Lee, S., and Lee, K.: ‘Achieving long-term stable perovskite solar cells via ion neutralization’, Energ Environ Sci, 2016, 9, (4), pp. 1258-1263 89 Deng, Y.H., Dong, Q.F., Bi, C., Yuan, Y.B., and Huang, J.S.: ‘Air-Stable, Efficient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer’, Adv Energy Mater, 2016, 6, (11) 90 Rong, Y.G., Liu, L.F., Mei, A.Y., Li, X., and Han, H.W.: ‘Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells’, Adv Energy Mater, 2015, 5, (20) 91 Yang, S.D., Fu, W.F., Zhang, Z.Q., Chen, H.Z., and Li, C.Z.: ‘Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite’, J Mater Chem A, 2017, 5, (23), pp. 11462-11482 92 Babayigit, A., Thanh, D.D., Ethirajan, A., Manca, J., Muller, M., Boyen, H.G., and Conings, B.: ‘Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio’, Sci Rep-Uk, 2016, 6 93 Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., and Snaith, H.J.: ‘Lead-free organic-inorganic tin halide perovskites for photovoltaic applications’, Energ Environ Sci, 2014, 7, (9), pp. 3061-3068 94 Giustino, F., and Snaith, H.J.: ‘Toward Lead-Free Perovskite Solar Cells’, Acs Energy Lett, 2016, 1, (6), pp. 1233-1240 95 Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., and Kanatzidis, M.G.: ‘Lead-free solid-state organic-inorganic halide perovskite solar cells’, Nat Photonics, 2014, 8, (6), pp. 489-494 96 Hoshi, H., Shigeeda, N., and Dai, T.: ‘Improved oxidation stability of tin iodide cubic perovskite treated by 5-ammonium valeric acid iodide’, Mater Lett, 2016, 183, pp. 391-393 97 Koh, T.M., Krishnamoorthy, T., Yantara, N., Shi, C., Leong, W.L., Boix, P.P., Grimsdale, A.C., Mhaisalkar, S.G., and Mathews, N.: ‘Formamidinium tin-based perovskite with low E-g for photovoltaic applications’, J Mater Chem A, 2015, 3, (29), pp. 14996-15000 98 Lee, S.J., Shin, S.S., Kim, Y.C., Kim, D., Ahn, T.K., Noh, J.H., Seo, J., and Seok, S.I.: ‘Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex’, J Am Chem Soc, 2016, 138, (12), pp. 3974-3977 99 Lee, B., Stoumpos, C.C., Zhou, N.J., Hao, F., Malliakas, C., Yeh, C.Y., Marks, T.J., Kanatzidis, M.G., and Chang, R.P.H.: ‘Air-Stable Molecular Semiconducting lodosalts for Solar Cell Applications: Cs(2)Snl(6) as a Hole Conductor’, J Am Chem Soc, 2014, 136, (43), pp. 15379-15385 100 Zuo, F., Williams, S.T., Liang, P.W., Chueh, C.C., Liao, C.Y., and Jen, A.K.Y.: ‘Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells’, Adv Mater, 2014, 26, (37), pp. 6454-6460 101 Hao, F., Stoumpos, C.C., Liu, Z., Chang, R.P.H., and Kanatzidis, M.G.: ‘Controllable Perovskite Crystallization at a Gas-Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%’, J Am Chem Soc, 2014, 136, (46), pp. 16411-16419 102 Im, J., Stoumpos, C.C., Jin, H., Freeman, A.J., and Kanatzidis, M.G.: ‘Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3’, J Phys Chem Lett, 2015, 6, (17), pp. 3503-3509 103 Jain, A., Voznyy, O., and Sargent, E.H.: ‘High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications’, J Phys Chem C, 2017, 121, (13), pp. 7183-7187 104 Saparov, B., Hong, F., Sun, J.P., Duan, H.S., Meng, W.W., Cameron, S., Hill, I.G., Yan, Y.F., and Mitzi, D.B.: ‘Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor’, Chem Mater, 2015, 27, (16), pp. 5622-5632 105 Park, B.W., Philippe, B., Zhang, X.L., Rensmo, H., Boschloo, G., and Johansson, E.M.J.: ‘Bismuth Based Hybrid Perovskites A(3)Bi(2)I(9) (A: Methylammonium or Cesium) for Solar Cell Application’, Adv Mater, 2015, 27, (43), pp. 6806-+ 106 Dammak, H., Yangui, A., Triki, S., Abid, Y., and Feki, H.: ‘Structural characterization, vibrational, optical properties and DFT investigation of a new luminescent organic-inorganic material: (C6H14N)(3)Bi2I9’, J Lumin, 2015, 161, pp. 214-220 107 Ran, C.X., Wu, Z.X., Xi, J., Yuan, F., Dong, H., Lei, T., He, X., and Hou, X.: ‘Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V’, J Phys Chem Lett, 2017, 8, (2), pp. 394-400 108 Vigneshwaran, M., Ohta, T., Iikubo, S., Kapil, G., Ripolles, T.S., Ogomi, Y., Ma, T., Pandey, S.S., Shen, Q., Toyoda, T., Yoshino, K., Minemoto, T., and Hayase, S.: ‘Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route’, Chem Mater, 2016, 28, (18), pp. 6436-6440 109 Hebig, J.C., Kuhn, I., Flohre, J., and Kirchartz, T.: ‘Optoelectronic Properties of (CH3NH3)(3)Sb2I9 Thin Films for Photovoltaic Applications’, Acs Energy Lett, 2016, 1, (1), pp. 309-314 110 Lehner, A.J., Fabini, D.H., Evans, H.A., Hebert, C.A., Smock, S.R., Hu, J., Wang, H.B., Zwanziger, J.W., Chabinyc, M.L., and Seshadri, R.: ‘Crystal and Electronic Structures of Complex Bismuth Iodides A(3)Bi(2)I(9) (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics’, Chem Mater, 2015, 27, (20), pp. 7137-7148 111 Harikesh, P.C., Mulmudi, H.K., Ghosh, B., Goh, T.W., Teng, Y.T., Thirumal, K., Lockrey, M., Weber, K., Koh, T.M., Li, S.Z., Mhaisalkar, S., and Mathews, N.: ‘Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics’, Chem Mater, 2016, 28, (20), pp. 7496-7504 112 Zuo, C.T., and Ding, L.M.: ‘Lead-free Perovskite Materials (NH4)(3)Sb2IxBr9-x’, Angew Chem Int Edit, 2017, 56, (23), pp. 6528-6532 113 Jiang;, F., Yang;, D., Jiang;, Y., Liu;, T., Zhao;, X., Ming;, Y., Luo;, B., Qin;, F., Fan;, J., Han;, H., Zhang;, L., and Zhou, Y.: ‘Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells’, Journal of American Chemical Society, 2018, 140, pp. 9 114 Nie;, R., Mehta;, A., Park;, B.-w., Kwon;, H.-W., Im;, J., and Seok, S.I.: ‘Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells’, Journal of American Chemical Society, 2018, 140, (3), pp. 4 115 Wang, Q., Shao, Y.C., Dong, Q.F., Xiao, Z.G., Yuan, Y.B., and Huang, J.S.: ‘Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process’, Energ Environ Sci, 2014, 7, (7), pp. 2359-2365 116 Kumawat, N.K., Dey, A., Narasimhan, K.L., and Kabra, D.: ‘Near Infrared to Visible Electroluminescent Diodes Based on Organometallic Halide Perovskites: Structural and Optical Investigation’, Acs Photonics, 2015, 2, (3), pp. 349-354 117 Boopathi, K.M., Mohan, R., Huang, T.Y., Budiawan, W., Lin, M.Y., Lee, C.H., Ho, K.C., and Chu, C.W.: ‘Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives’, J Mater Chem A, 2016, 4, (5), pp. 1591-1597 118 Yang, D., Zhou, X., Yang, R.X., Yang, Z., Yu, W., Wang, X.L., Li, C., Liu, S.Z., and Chang, R.P.H.: ‘Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells’, Energ Environ Sci, 2016, 9, (10), pp. 3071-3078 119 Wurthner, F., Saha-Moller, C.R., Fimmel, B., Ogi, S., Leowanawat, P., and Schmidt, D.: ‘Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials’, Chem Rev, 2016, 116, (3), pp. 962-1052 120 He, Y.J., and Li, Y.F.: ‘Fullerene derivative acceptors for high performance polymer solar cells’, Phys Chem Chem Phys, 2011, 13, (6), pp. 1970-1983 121 Li, C.Z., Yip, H.L., and Jen, A.K.Y.: ‘Functional fullerenes for organic photovoltaics’, J Mater Chem, 2012, 22, (10), pp. 4161-4177 122 Sauve, G., and Fernando, R.: ‘Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics’, J Phys Chem Lett, 2015, 6, (18), pp. 3770-3780 123 Nielsen, C.B., Holliday, S., Chen, H.Y., Cryer, S.J., and McCulloch, I.: ‘Non-Fullerene Electron Acceptors for Use in Organic Solar Cells’, Accounts Chem Res, 2015, 48, (11), pp. 2803-2812 124 Li, S.X., Zhang, Z.Q., Shi, M.M., Li, C.Z., and Chen, H.Z.: ‘Molecular electron acceptors for efficient fullerene-free organic solar cells’, Phys Chem Chem Phys, 2017, 19, (5), pp. 3440-3458 125 Wang, W.W., Yuan, J.Y., Shi, G.Z., Zhu, X.X., Shi, S.H., Liu, Z.K., Han, L., Wang, H.Q., and Ma, W.L.: ‘Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor’, Acs Appl Mater Inter, 2015, 7, (7), pp. 3994-3999 126 Shao, S., Chen, Z., Fang, H.H., ten Brink, G.H., Bartesaghi, D., Adjokatse, S., Koster, L.J.A., Kooi, B.J., Facchetti, A., and Loi, M.A.: ‘N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability’, J Mater Chem A, 2016, 4, (7), pp. 2419-2426 127 Isakova, A., and Topham, P.D.: ‘Polymer Strategies in Perovskite Solar Cells’, J Polym Sci Pol Phys, 2017, 55, (7), pp. 549-568 128 Cheng, M., Li, Y.Y., Liu, P., Zhang, F.G., Hajian, A., Wang, H.X., Li, J.J., Wang, L.Q., Kloo, L., Yang, X.C., and Sun, L.C.: ‘A Perylenediimide Tetramer-Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell’, Sol Rrl, 2017, 1, (5) 129 Kim, S.S., Bae, S., and Jo, W.H.: ‘A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells’, Rsc Adv, 2016, 6, (24), pp. 19923-19927 130 Aharon, S., El Cohen, B., and Etgar, L.: ‘Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell’, J Phys Chem C, 2014, 118, (30), pp. 17160-17165 131 Ishihara, T.: ‘Optical-Properties of Pbi-Based Perovskite Structures’, J Lumin, 1994, 60-1, pp. 269-274 132 Zuo, C.T., Bolink, H.J., Han, H.W., Huang, J.S., Cahen, D., and Ding, L.M.: ‘Advances in Perovskite Solar Cells’, Adv Sci, 2016, 3, (7) 133 Cowan, S.R., Roy, A., and Heeger, A.J.: ‘Recombination in polymer-fullerene bulk heterojunction solar cells’, Phys Rev B, 2010, 82, (24) 134 Mihailetchi, V.D., Wildeman, J., and Blom, P.W.M.: ‘Space-charge limited photocurrent’, Phys Rev Lett, 2005, 94, (12) 135 Li, Y.W., Meng, L., Yang, Y., Xu, G.Y., Hong, Z.R., Chen, Q., You, J.B., Li, G., Yang, Y., and Li, Y.F.: ‘High-efficiency robust perovskite solar cells on ultrathin flexible substrates’, Nat Commun, 2016, 7 136 Marinova, N., Tress, W., Humphry-Baker, R., Dar, M.I., Bojinov, V., Zakeeruddin, S.M., Nazeeruddin, M.K., and Gratzel, M.: ‘Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation’, Acs Nano, 2015, 9, (4), pp. 4200-4209 137 Heumueller, T., Mateker, W.R., Distler, A., Fritze, U.F., Cheacharoen, R., Nguyen, W.H., Biele, M., Salvador, M., von Delius, M., Egelhaaf, H.J., McGehee, M.D., and Brabec, C.J.: ‘Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability’, Energ Environ Sci, 2016, 9, (1), pp. 247-256 138 Krinichnaya, E.P., Moravsky, A.P., Efimov, O., Sobczak, J.W., Winkler, K., Kutner, W., and Balch, A.L.: ‘Mechanistic studies of the electrochemical polymerization of C-60 in the presence of dioxygen or C60O’, J Mater Chem, 2005, 15, (14), pp. 1468-1476 139 Yang, Q.D., Ng, T.W., Lo, M.F., Wang, F.Y., Wong, N.B., and Lee, C.S.: ‘Effect of Water and Oxygen on the Electronic Structure of the Organic Photovoltaic’, J Phys Chem C, 2012, 116, (20), pp. 10982-10985 140 Anctil, A., Babbitt, C.W., Raffaelle, R.P., and Landi, B.J.: ‘Material and Energy Intensity of Fullerene Production’, Environ Sci Technol, 2011, 45, (6), pp. 2353-2359 141 Chen, L., Li, C., and Mullen, K.: ‘Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores’, J Mater Chem C, 2014, 2, (11), pp. 1938-1956 142 Weil, T., Vosch, T., Hofkens, J., Peneva, K., and Mullen, K.: ‘The Rylene Colorant Family-Tailored Nanoemitters for Photonics Research and Applications’, Angew Chem Int Edit, 2010, 49, (48), pp. 9068-9093 143 Fernandez-Lazaro, F., Zink-Lorre, N., and Sastre-Santos, A.: ‘Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs)’, J Mater Chem A, 2016, 4, (24), pp. 9336-9346 144 Liu, Z.T., Wu, Y., Zhang, Q., and Gao, X.: ‘Non-fullerene small molecule acceptors based on perylene diimides’, J Mater Chem A, 2016, 4, (45), pp. 17604-17622 145 Chen, W.Q., and Zhang, Q.C.: ‘Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs)’, J Mater Chem C, 2017, 5, (6), pp. 1275-1302 146 Guo, Q., Xu, Y.X., Xiao, B., Zhang, B., Zhou, E.J., Wang, F.Z., Bai, Y.M., Hayat, T., Alsaedi, A., and Tan, Z.A.: ‘Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells’, Acs Appl Mater Inter, 2017, 9, (12), pp. 10983-10991 147 Kaltenbrunner, M., Adam, G., Glowacki, E.D., Drack, M., Schwodiauer, R., Leonat, L., Apaydin, D.H., Groiss, H., Scharber, M.C., White, M.S., Sariciftci, N.S., and Bauer, S.: ‘Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air’, Nat Mater, 2015, 14, (10), pp. 1032-+ 148 Zhang, H., Xue, L.W., Han, J.B., Fu, Y.Q., Shen, Y., Zhang, Z.G., Li, Y.F., and Wang, M.K.: ‘New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport Layer’, J Mater Chem A, 2016, 4, (22), pp. 8724-8733 149 Zhan, X.W., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R., and Marder, S.R.: ‘Rylene and Related Diimides for Organic Electronics’, Adv Mater, 2011, 23, (2), pp. 268-284 150 Karuppuswamy, P., Hanmandlu, C., Boopathi, K.M., Perumal, P., Liu, C.C., Chen, Y.F., Chang, Y.C., Wang, P.C., Lai, C.S., and Chu, C.W.: ‘Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes’, Sol Energ Mat Sol C, 2017, 169, pp. 78-85 151 Karuppuswamy, P., Chen, H.C., Wang, P.C., Hsu, C.P., Wong, K.T., and Chu, C.W.: ‘The 3 D Structure of Twisted Benzo[ghi]perylene-Triimide Dimer as a Non-Fullerene Acceptor for Inverted Perovskite Solar Cells’, ChemSusChem, 2018, 11, (2), pp. 415-423 152 Skabara, P.J., Arlin, J.B., and Geerts, Y.H.: ‘Close Encounters of the 3D Kind Exploiting High Dimensionality in Molecular Semiconductors’, Adv Mater, 2013, 25, (13), pp. 1948-1954 153 Gajdos, F., Oberhofer, H., Dupuis, M., and Blumberger, J.: ‘On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)’, J Phys Chem Lett, 2013, 4, (6), pp. 1012-1017 154 Gelinas, S., Rao, A., Kumar, A., Smith, S.L., Chin, A.W., Clark, J., van der Poll, T.S., Bazan, G.C., and Friend, R.H.: ‘Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes’, Science, 2014, 343, (6170), pp. 512-516 155 Verhoeven, J.W.: ‘On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states’, J Photoch Photobio C, 2006, 7, (1), pp. 40-60 156 Bredas, J.L., Beljonne, D., Coropceanu, V., and Cornil, J.: ‘Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture’, Chem Rev, 2004, 104, (11), pp. 4971-5003 157 Marcus, R.A.: ‘Electron-Transfer Reactions in Chemistry - Theory and Experiment (Nobel Lecture)’, Angewandte Chemie-International Edition in English, 1993, 32, (8), pp. 1111-1121 158 Imahori, H., Yamada, H., Guldi, D.M., Endo, Y., Shimomura, A., Kundu, S., Yamada, K., Okada, T., Sakata, Y., and Fukuzumi, S.: ‘Comparison of reorganization energies for intra- and intermolecular electron transfer’, Angew Chem Int Edit, 2002, 41, (13), pp. 2344-2347 159 Savage, R.C., Orgiu, E., Mativetsky, J.M., Pisula, W., Schnitzler, T., Eversloh, C.L., Li, C., Mullen, K., and Samori, P.: ‘Charge transport in fibre-based perylene-diimide transistors: effect of the alkyl substitution and processing technique’, Nanoscale, 2012, 4, (7), pp. 2387-2393 160 Chen, B., Yang, M.J., Priya, S., and Zhu, K.: ‘Origin of J-V Hysteresis in Perovskite Solar Cells’, J Phys Chem Lett, 2016, 7, (5), pp. 905-917 161 Kim, H.S., Jang, I.H., Ahn, N., Choi, M., Guerrero, A., Bisquert, J., and Park, N.G.: ‘Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell’, J Phys Chem Lett, 2015, 6, (22), pp. 4633-4639 162 Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., and Sargent, E.H.: ‘Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes’, Nat Commun, 2015, 6, pp. 7081 163 Shao, Y.H., Xiao, Z.G., Bi, C., Yuan, Y.B., and Huang, J.S.: ‘Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells’, Nat Commun, 2014, 5 164 Noel, N.K., Abate, A., Stranks, S.D., Parrott, E.S., Burlakov, V.M., Goriely, A., and Snaith, H.J.: ‘Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic Inorganic Lead Halide Perovskites’, Acs Nano, 2014, 8, (10), pp. 9815-9821 165 Tian, C.B., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., and Echegoyen, L.: ‘Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers’, Acs Appl Mater Inter, 2016, 8, (45), pp. 31426-31432 166 Davidovich, R.L., Stavila, V., Marinin, D.V., Voit, E.I., and Whitmire, K.H.: ‘Stereochemistry of lead(II) complexes with oxygen donor ligands’, Coordin Chem Rev, 2009, 253, (9-10), pp. 1316-1352 167 Jiang, Q.L., Rebollar, D., Gong, J., Piacentino, E.L., Zheng, C., and Xu, T.: ‘Pseudohalide-Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)(2)I Thin Films’, Angew Chem Int Edit, 2015, 54, (26), pp. 7617-7620 168 Ball, J.M., Lee, M.M., Hey, A., and Snaith, H.J.: ‘Low-temperature processed meso-superstructured to thin-film perovskite solar cells’, Energ Environ Sci, 2013, 6, (6), pp. 1739-1743 169 Wang, Y.W., Zhang, Y.B., Zhang, P.H., and Zhang, W.Q.: ‘High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3’, Phys Chem Chem Phys, 2015, 17, (17), pp. 11516-11520 170 Dong, Q.F., Fang, Y.J., Shao, Y.C., Mulligan, P., Qiu, J., Cao, L., and Huang, J.S.: ‘Electron-hole diffusion lengths > 175 mu m in solution-grown CH3NH3PbI3 single crystals’, Science, 2015, 347, (6225), pp. 967-970 171 Jaramillo-Quintero, O.A., Sanchez, R.S., Rincon, M., and Mora-Sero, I.: ‘Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer’, J Phys Chem Lett, 2015, 6, (10), pp. 1883-1890 172 Li, G.R., Tan, Z.K., Di, D.W., Lai, M.L., Jiang, L., Lim, J.H.W., Friend, R.H., and Greenham, N.C.: ‘Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix’, Nano Lett, 2015, 15, (4), pp. 2640-2644 173 Jiang, Q.L., Chen, M.M., Li, J.Q., Wang, M.C., Zeng, X.Q., Besara, T., Lu, J., Xin, Y., Shan, X., Pan, B.C., Wang, C.C., Lin, S.C., Siegrist, T., Xiao, Q.F., and Yu, Z.B.: ‘Electrochemical Doping of Halide Perovskites with Ion Intercalation’, Acs Nano, 2017, 11, (1), pp. 1073-1079 174 Zhu, H.M., Fu, Y.P., Meng, F., Wu, X.X., Gong, Z.Z., Ding, Q., Gustafsson, M.V., Trinh, M.T., Jin, S., and Zhu, X.Y.: ‘Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors’, Nat Mater, 2015, 14, (6), pp. 636-U115 175 Chin, X.Y., Cortecchia, D., Yin, J., Bruno, A., and Soci, C.: ‘Lead iodide perovskite light-emitting field-effect transistor’, Nat Commun, 2015, 6 176 Mei, Y., Zhang, C., Vardeny, Z.V., and Jurchescu, O.D.: ‘Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature’, Mrs Commun, 2015, 5, (2), pp. 297-301 177 Guo, Y.L., Liu, C., Tanaka, H., and Nakamura, E.: ‘Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light’, J Phys Chem Lett, 2015, 6, (3), pp. 535-539 178 Boopathi, K.M., Ramesh, M., Perumal, P., Huang, Y.C., Tsao, C.S., Chen, Y.F., Lee, C.H., and Chu, C.W.: ‘Preparation of metal halide perovskite solar cells through a liquid droplet assisted method’, J Mater Chem A, 2015, 3, (17), pp. 9257-9263 179 Ramesh, M., Boopathi, K.M., Huang, T.Y., Huang, Y.C., Tsao, C.S., and Chu, C.W.: ‘Using an Airbrush Pen for Layer-by-Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells’, Acs Appl Mater Inter, 2015, 7, (4), pp. 2359-2366 180 Kumar, M.H., Dharani, S., Leong, W.L., Boix, P.P., Prabhakar, R.R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M., Graetzel, M., Mhaisalkar, S.G., and Mathews, N.: ‘Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation’, Adv Mater, 2014, 26, (41), pp. 7122-+ 181 Serrano-Lujan, L., Espinosa, N., Larsen-Olsen, T.T., Abad, J., Urbina, A., and Krebs, F.C.: ‘Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective’, Adv Energy Mater, 2015, 5, (20) 182 Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z.Y., Sherburne, M., Li, S., Asta, M., Mathews, N., and Mhaisalkar, S.G.: ‘Lead-free germanium iodide perovskite materials for photovoltaic applications’, J Mater Chem A, 2015, 3, (47), pp. 23829-23832 183 Cortecchia, D., Dewi, H.A., Yin, J., Bruno, A., Chen, S., Baikie, T., Boix, P.P., Gratzel, M., Mhaisalkar, S., Soci, C., and Mathews, N.: ‘Lead-Free MA(2)CuCl(x)Br(4-x), Hybrid Perovskites’, Inorg Chem, 2016, 55, (3), pp. 1044-1052 184 Park, B.W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., and Johansson, E.M.: ‘Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application’, Adv Mater, 2015, 27, (43), pp. 6806-6813 185 Choi, Y.C., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., and Seok, S.I.: ‘Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb-2(S-x/Se1-x)(3) Graded-Composition Sensitizers’, Adv Energy Mater, 2014, 4, (7) 186 Paek, S., Schouwink, P., Athanasopoulou, E.N., Cho, K.T., Grancini, G., Lee, Y., Zhang, Y., Stellacci, F., Nazeeruddin, M.K., and Gao, P.: ‘From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells’, Chem Mater, 2017, 29, (8), pp. 3490-3498 187 Zheng, X.J., Chen, B., Wu, C.C., and Priya, S.: ‘Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis’, Nano Energy, 2015, 17, pp. 269-278 188 Bi, C., Wang, Q., Shao, Y.C., Yuan, Y.B., Xiao, Z.G., and Huang, J.S.: ‘Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells’, Nat Commun, 2015, 6 189 Wang, Z.K., Gong, X., Li, M., Hu, Y., Wang, J.M., Ma, H., and Liao, L.S.: ‘Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells’, Acs Nano, 2016, 10, (5), pp. 5479-5489 190 Boopathi, K.M., Karuppuswamy, P., Singh, A., Hanmandlu, C., Lin, L., Abbas, S.A., Chang, C.C., Wang, P.C., Li, G., and Chu, C.W.: ‘Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites’, J Mater Chem A, 2017, 5, (39), pp. 20843-20850 191 Kim, H.S., and Park, N.G.: ‘Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer’, J Phys Chem Lett, 2014, 5, (17), pp. 2927-2934 192 Karuppuswamy, P., Chen, H.C., Wang, P.C., Hsu, C.P., Wong, K.T., and Chu, C.W.: ‘The 3D Structure of Twisted Benzo[ghi]perylene-Triimide Dimer as a Non-Fullerene Acceptor for Inverted Perovskite Solar Cells’, Chemsuschem, 2018, 11, (2), pp. 415-423 193 Roose, B., Pathak, S., and Steiner, U.: ‘Doping of TiO2 for sensitized solar cells’, Chem Soc Rev, 2015, 44, (22), pp. 8326-8349
|