帳號:guest(3.135.186.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):普莉亞
作者(外文):Karuppuswamy, Priyadharsini
論文名稱(中文):非富勒烯電子傳輸層與非鉛鈣鈦礦吸光層提升鈣鈦礦太陽能電池之永續性
論文名稱(外文):Enhancement of sustainability of perovskite solar cells through the fabrication of fullerene-free electron transport layer and lead-free perovskite-like absorber layer
指導教授(中文):王本誠
朱治偉
指導教授(外文):Wang, Pen-Cheng
Chu, Chih-Wei
口試委員(中文):林皓武
陳永芳
賴朝松
口試委員(外文):Lin, Hao-Wu
Chen, Yang-Fang
Lai, Chao-Sung
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011458
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:170
中文關鍵詞:升鈣鈦礦太阳能电池升鈣鈦礦太阳能电池非富勒烯非鉛非富勒烯锑钙钛矿之永續性
外文關鍵詞:Perovskite solar cellsPerovskite solar cellsfullerene freelead freeelectron transport layerantimony perovskitesustainability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:418
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
摘要
世界對能源的需求不斷成長,迫使研究和開發更便宜和更環保的替代可持續能源。太陽能是最好的可用綠色能源,在過去的幾十年中進行了廣泛的研究。市售的第一代太陽能電池由矽製成;儘管它們具有很高的能量轉換效率(PCE),但它們需要高能量製程及其需要精密的製造工藝而受到限制。第一代太陽能電池技術非常成熟,幾乎沒有改進的餘地,後來第二代光伏發展成為非晶矽,II-IV和III-V薄膜光伏,儘管具有合理高的PCE,但其也遭受高成本,材料稀有,複雜的製造工藝和材料毒性限制。第三代光伏電池,包括染料敏化(DSSC),有機太陽能電池(OSC)和量子點/奈米材料太陽能電池,其具有製程簡單且低成本製造的優點。有機-無機雜化(OIH)材料具有無機半導體和有機(聚合物或小分子)材料的組合性質。OIH太陽能電池可以採用無機材料的優點,如穩定性,良好的光吸收性,高載流子遷移率的方便的製程,以及利用有機物的優點,例如重量輕,靈活性強,可調分子結構用於能帶對準和溶液可加工性等優點。
現今光伏發電的熱門話題包括有機金屬鹵化物鈣鈦礦,在短短的8年時間裡,其能量轉換效率(PCE)從3.8%提高到22.1%,成長幅度相當大。鈣鈦礦太陽能電池(PSCs)的高PCE受益於鈣鈦礦的獨特性質,如高吸收係數、大載流子擴散長度、長載流子壽命、小激子結合能和直接帶隙。鈣鈦礦太陽能電池要實現如此高的PCE的方式包括理解結晶動力學,影響結晶的因素,控制器件處理參數以獲得無缺陷晶體和不同層之間的界面工程。鈣鈦礦太陽能電池如此高的能量轉換效率和矽基太陽能電池相媲美。鈣鈦礦太陽能電池由於其簡單的加工性,與大規模生產的兼容性,材料豐富性和卓越的光電性能,PSC更有利於商業化。 儘管具有良好的性能和高效率,但仍有一些阻礙其商業化的因素。它們具有鉛的毒性,對空氣和濕氣不穩定,使用價格昂貴且不太環保的富勒烯,以及使用微酸性的PEDOT:PSS。為了解決這些問題,我們提出替代材料用於富勒烯基電子傳輸層(ETL)和使用無毒金屬銻(Sb)以取代有毒的鉛(Pb)鈣鈦礦材料。
作為常用電子傳輸層(ETL)的富勒烯衍生物PCBM具有以下缺點,高生產成本、光化學不穩定性、在高溫下聚集的傾嚮導致形態不穩定性及後製造結晶和合成不靈活性。N型共軛Perylene diimide分子具有化學穩定性、耐光降解性、相對易於合成操作、成本更低且它們在工業上用作顏料。本研究提出在倒置平面異質結鈣鈦礦太陽能電池中使用n型共軛Perylene diimide分子作為PCBM ETL的替代材料。使用PDI小分子代替PCBM可獲得11%良好的能量轉換效率。
接著我們研究了benzo[ghi]perylenetriimide(BPTI)衍生物在一系列PSC中作為新型ETL的材料。BPTI在π-共軛平面上通過沿著原始PDI骨架上的短軸的五元酰亞胺環擴展。與PDI相比,BPTI顯示通過連接在五元酰亞胺位置上的取代基團直接獲得官能團。這激勵我們探索並製造新的非平面π共軛電子受體的可能方式。扭曲-BPTI作為替代ETL材料,其結果為約11.7%的能量轉換效率。
關於鉛基鈣鈦礦太陽能電池商業化的另一個主要問題是環境中有毒金屬鉛(Pb)的存在及其在空氣和濕氣中的化學不穩定性。最初錫(Sn)被提出來取代鉛,因為它擁有類似的價態以取代鉛,但是直到現在仍無法達到與鉛基鉛相同的效率。另外,Sn的氧化容易引起元件問題,因此在穩定性方面,不考慮將其作為Pb的替代品。為了替代對環境有毒的鉛基鈣鈦礦,我們建議使用銻基鈣鈦礦材料,它們通過Pb的異質替代形成A3B2X9型鈣鈦礦材料。我們的研究是銻基鈣鈦礦太陽能電池的先驅報告之一。最初我們使用簡單的溶液製程獲得1%的效率,以形成MA3Sb2I9鈣鈦礦層。後來我們增加一種添加劑於鈣鈦礦材料,用於提高氯苯的膜質量和抗溶劑處理能力,以提高結晶度使能量轉換效率達到2.1%。最後,我們在電洞傳輸層和鈣鈦礦層之間導入了疏水性夾層,以促進形成大晶粒尺寸的晶體,並且達到2.8%PCE,這是迄今為止該材料最高的能量轉換效率元件。

The ever-growing energy demand of the world necessitates the research and development of alternate sustainable energy sources that are cheaper and greener. Solar energy is the unmatched forerunner of all the available clean energy sources with an extensive research being done in the past few decades. The commercially available first generation solar cells are made of Silicon; Although they have high power conversion efficiencies (PCEs), they require high energy manufacturing process, suffer from material inavailability and the need for sophisticated device fabrication processes; Also, the first generation solar cell technology is so mature that there is little room for improvement. Later, the second generation photovoltaics evolved into amorphous Si, II-IV and III-V thin film photovoltaics, which also suffer from high cost, material scarcity, complex manufacturing process and material toxicity, in spite of having reasonably high PCEs. In the third generation photovoltaics, the hybrid and multi-junction third generation solar cells, which include dye-sensitized (DSSC), organic solar cells (OSC) and quantum-dot/nanomaterial based solar cells have the advantages of simple and low cost manufacturing. Organic-inorganic hybrid (OIH) materials have the combined properties of inorganic semiconductors and organic (polymer or small molecules) materials. OIH solar cells could adopt the merits of inorganic materials, such as stability, enhanced light absorption, high carrier mobility and compatible fabrication process, and utilize the advantages of organics, such as light weight, flexiblility, adjustable molecular structures for energy band alignment and solution processability.
The hot topic of current generation photovoltaics consist of organo metal halide perovskites that has attained an unprecedented growth from 3.8% to 22.1% of power conversion efficiency (PCE) in a short span of 8 years. Such high PCEs in perovskite solar cells (PSCs) are benefited from the unique properties of the perovskites such as high absorption coefficient, large carrier diffusion lengths, long carrier lifetimes, small exciton binding energies and a direct bandgap. The path to achieve such high PCEs comprised of understanding crystallization kinetics, factors affecting crystallization, controlling the device processing parameters to obtain defect-free crystals and interface engineering between different layers. This resulted in unexpected PCEs approaching its theoretical limits, rivalling Si-based solar cells. PSCs are more favorable for commercialization due to their simple processability, compatibility to large-scale production, material abundance and remarkable optoelectronic properties. In spite of favorable properties and high efficiencies, there are a few factors which hinder their commercialization. They are toxicity of lead, instability to air and moisture, use of fullerenes which are costlier and not very eco-friendly and use of PEDOT:PSS that is slightly acidic. To address a few of these problems, we propose alternative materials for fullerene-based electron transport layers (ETLs) and alternate non-toxic metal, Antimony (Sb) to replace toxic Lead (Pb)-based perovskites.
PCBM, a fullerene derivative, which is the commonly used electron transport layer (ETL) has the following disadvantages- high production costs, photochemical instability, tendency to aggregate at high temperatures leading to morphological instability, postfabrication crystallisation and synthetic inflexibility. N-type conjugated Perylene diimide based molecules are chemically robust, resistant to photodegradation, relatively easy to manipulate synthetically, possess tunable energy levels, cheaper and they are in industrial use as pigments. We propose the use of n-type conjugated perylene diimide based molecules as alternative materials for PCBM ETL in inverted planar heterojunction perovskite solar cells. A decent PCE of 11% was achieved with PDI small molecule in place of PCBM.
Later, we studied the use of benzo[ghi]perylenetriimide (BPTI) derivatives as novel ETL materials in a series of PSCs. The BPTI is expanded on the π-conjugated plane by a five-membered imide ring along the short axis on the original PDI backbone. Compared to PDI, BPTI shows straightforward access to chemical functionality through substituted groups attached on the five-membered imide position. This inspired us to explore possible strategies on making new non-planar π-conjugated electron acceptors. We achieved an efficiency of about 11.7% with the twisted-BPTI as the alternate ETL.
Another major concern regarding the commercialization of lead-based perovskite solar cells is the presence of environmentally toxic metal lead (Pb) and its chemical instability in air and moisture. Initially, Tin (Sn) was proposed to replace Lead as it can homogeneously substitute Pb due to similar valence state, but failed to achieve efficiencies as high as that of Pb-based ones till date. Also, the fact that Sn gets oxidized easily imposes hindrance to consider it as an alternative for Pb in terms of stability. To replace lead-based perovskites which are environmentally toxic, we propose the use of antimony-based perovskite materials, which forms A3B2X9 type perovskites by heterogeneous substitution of Pb. Our work is one of the pioneer reports on Sb-based perovskite solar cells. Initially, we achieved 1% efficiency with a simple solution process to form MA3Sb2I9 perovskite layer. Later, we introduced an additive to enhance the film quality and anti-solvent treatment with Chlorobenzene to enhance the crystallinity resulting in 2.1% PCE. Finally, we introduced hydrophobic interlayer between the hole transport layer and the perovskite layer to facilitate the formation of large-grain size crystals and reached 2.8% PCE, which is one of the highest PCEs reported for this material until now.
Table of Contents
Abstract --------------------------------------------------------------------------------------------------iii
Acknowledgement --------------------------------------------------------------------------------------v
Table of content ----------------------------------------------------------------------------------------vii
List of tables --------------------------------------------------------------------------------------------xii
List of figures ------------------------------------------------------------------------------------------xiv
Chapter 1: Introduction--------------------------------------------------------------------------------1
1.1 Solar photovoltaics-----------------------------------------------------------------------------------1
1.2 Perovskite solar cells---------------------------------------------------------------------------------2
1.2.1 Device architecture------------------------------------------------------------------------4
1.2.1.1 Conventional n-i-p structure--------------------------------------------------4
1.2.1.2 Inverted p-i-n structure--------------------------------------------------------6
1.2.2 Operation mechanism of PSCs----------------------------------------------------------7
1.3 PSCs device characteristics-------------------------------------------------------------------------8
1.3.1 Short circuit current density (Jsc)-------------------------------------------------------8
1.3.2 The open-circuit voltage (Voc) ---------------------------------------------------------9
1.3.4 Fill Factor (FF)-------------------------------------------------------------------------10
1.3.5 Power conversion efficiency (PCE, η)----------------------------------------------10
1.4 Recent developments in Perovskite solar cells--------------------------------------------------10
1.4.1 One-step method-------------------------------------------------------------------------12
1.4.1.1 Role of solvents--------------------------------------------------------------12
1.4.1.2 Solvent engineering, Choice of precursors--------------------------------13
1.4.1.3 Role of precursors, additives------------------------------------------------16
1.4.2 Two-step crystallization-----------------------------------------------------------------17
1.4.3 Vapor phase crystallization-------------------------------------------------------------18
1.4.4 Issues and challenges--------------------------------------------------------------------19
1.4.4.1 Device stability---------------------------------------------------------------20
1.4.4.2 Operational stability----------------------------------------------------------23
1.4.4.3 Toxicity------------------------------------------------------------------------24
1.5 Objective and scope---------------------------------------------------------------------------------29
Chapter 2: Experimental section -------------------------------------------------------------------31
2.1. Fabrication of PSCs with PDI as ETL and MAPbI3-xBrx active layer---------------------31
2.1.1 Materials required------------------------------------------------------------------------31
2.1.2 Preparation of Methyl ammonium iodide (MAI)------------------------------------31
2.1.3 Preparation Methyl ammonium bromide (MABr)-----------------------------------32
2.1.4 Device fabrication-----------------------------------------------------------------------32
2.1.5 Material and device characterization--------------------------------------------------33
2.1.6 Energy level diagram--------------------------------------------------------------------34
2.2 Synthesis of BPTI-based ETL molecules and their PSC fabrication-------------------------35
2.2.1 Synthesis of PDI-C4---------------------------------------------------------------------35
2.2.2 Synthesis of BPTI------------------------------------------------------------------------35
2.2.3 Twisted BPTI dimer (tBPTI)-----------------------------------------------------------36
2.2.4 Steady state spectroscopic and electrochemical studies----------------------------37
2.2.5 Computational details-------------------------------------------------------------------37
2.2.6 Material characterization----------------------------------------------------------------37
2.2.7 Device fabrication and characterization-----------------------------------------------37
2.3 Synthesis of Antimony-based perovskite of the type A3B2X9--------------------------------40
2.3.1 Device fabrication-----------------------------------------------------------------------40
2.3.1.1 Solar cell-----------------------------------------------------------------------40
2.3.1.2 Photodetector------------------------------------------------------------------40
2.3.2 Material and device characterization--------------------------------------------------41
2.4 Introduction of hydrophobic interlayer to facilitate the crystallization of MA3Sb2I9 with large grain size-------------------------------------------------------------------------------------------41
2.4.1 Materials----------------------------------------------------------------------------------41
2.4.2 Device fabrication and characterization----------------------------------------------42
Chapter 3: PDI-based electron transport layer for PSCs--------------------------------------43
3.1 Background------------------------------------------------------------------------------------------43
3.2 Bandgap engineering of MAPbI3 by incorporation of Br-------------------------------------45
3.3 Perovskite solar cell characteristics--------------------------------------------------------------49
3.4 Competency of the new ETL ---------------------------------------------------------------------55
3.5 Final remarks----------------------------------------------------------------------------------------60
Chapter 4: The 3D Benzo perylene triimide (BPTI) based ETL for PSCs-----------------61
4.1 Background------------------------------------------------------------------------------------------61
4.2 Properties of BPTI-based molecules-------------------------------------------------------------64
4.3 Competency of BPTI-based molecules as alternate ETL to PCBM-------------------------69
4.4 Photovoltaic properties of perovskite solar cells-----------------------------------------------75
4.5 Final remarks
Chapter 5: Antimony (Sb)-based Lead-free perovskites of the formula A3B2X9-----------84
5.1 Background-----------------------------------------------------------------------------------------84
5.2. Characterization of the perovskite material, Methyl ammonium Antimony Iodide (MA3Sb2I9) with and without the additive of Hydroiodic acid------------------------------------86
5.3. Photovoltaic performance of MA3Sb2I9 based perovskite-like materials with/without HI in inverted PSCs-----------------------------------------------------------------------------------------98
5.4 Photodetector application-------------------------------------------------------------------------104
5.5 Final remarks---------------------------------------------------------------------------------------106
Chapter 6: Introduction of a hydrophobic interlayer between HTL and MA3Sb2I9 to facilitate large grain size formation---------------------------------------------------------------107
6.1 Background-----------------------------------------------------------------------------------------108
6.2 Structural characterization------------------------------------------------------------------------109
6.3 Photovoltaic device performance----------------------------------------------------------------114 6.4 Impact of the Pyrene interlayer and large grain size on device characteristics------------121 6.5 Final remarks---------------------------------------------------------------------------------------126
Chapter 7: Conclusion and future research directions---------------------------------------127
7.1 Conclusions-----------------------------------------------------------------------------------------127
7.2 Future research directions------------------------------------------------------------------------129
7.2.1. Project 1: Cl-PDI and BPTI based derivatives for electron transport layer (ETL) in PSCs – methodology----------------------------------------------------------------------129
7.2.1.1 . ClPDI based molecules---------------------------------------------------129
7.2.1.2 Overcoming the interfacial problems between perovskite/ETL by substituents in the ETL (ClPDI or BPTI) core-----------------------------------131
7.2.2 Project 2: Antimony based perovskite-like materials to replace Lead in PSCs to realize Lead-free PSCs - Methodology-----------------------------------------------------134
7.2.2.1 Idea----------------------------------------------------------------------------134
7.2.2.2. Sulphur doping by solid state reaction-----------------------------------134
References----------------------------------------------------------------------------------------------137
Appendix A: List of publications------------------------------------------------------------------162

References
1 Nazeeruddin, M.K.: ‘In Retrospect Twenty-five years of low-cost solar cells’, Nature, 2016, 538, (7626), pp. 463-464
2 Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: ‘Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells’, J Am Chem Soc, 2009, 131, (17), pp. 6050-+
3 Oregan, B., and Gratzel, M.: ‘A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films’, Nature, 1991, 353, (6346), pp. 737-740
4 Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Gratzel, M., and Park, N.G.: ‘Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%’, Sci Rep-Uk, 2012, 2
5 Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: ‘Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites’, Science, 2012, 338, (6107), pp. 643-647
6 Green, M.A., Ho-Baillie, A., and Snaith, H.J.: ‘The emergence of perovskite solar cells’, Nat Photonics, 2014, 8, (7), pp. 506-514
7 Song, Z.N., Watthage, S.C., Phillips, A.B., and Heben, M.J.: ‘Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications’, J Photon Energy, 2016, 6, (2)
8 Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.S., Chang, J.A., Lee, Y.H., Kim, H.J., Sarkar, A., Nazeeruddin, M.K., Gratzel, M., and Seok, S.I.: ‘Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors’, Nat Photonics, 2013, 7, (6), pp. 487-492
9 Choi, J.J., Yang, X.H., Norman, Z.M., Billinge, S.J.L., and Owen, J.S.: ‘Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells’, Nano Lett, 2014, 14, (1), pp. 127-133
10 Leijtens, T., Lauber, B., Eperon, G.E., Stranks, S.D., and Snaith, H.J.: ‘The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells’, J Phys Chem Lett, 2014, 5, (7), pp. 1096-1102
11 Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., and Snaith, H.J.: ‘Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells’, Adv Funct Mater, 2014, 24, (1), pp. 151-157
12 Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., and Cahen, D.: ‘Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor)’, Nano Lett, 2014, 14, (2), pp. 1000-1004
13 Jiang, Q., Chu, Z.N., Wang, P.Y., Yang, X.L., Liu, H., Wang, Y., Yin, Z.G., Wu, J.L., Zhang, X.W., and You, J.B.: ‘Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%’, Adv Mater, 2017, 29, (46)
14 Meng, L., You, J.B., Guo, T.F., and Yang, Y.: ‘Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells’, Accounts Chem Res, 2016, 49, (1), pp. 155-165
15 Liu, T.H., Chen, K., Hu, Q., Zhu, R., and Gong, Q.H.: ‘Inverted Perovskite Solar Cells: Progresses and Perspectives’, Adv Energy Mater, 2016, 6, (17)
16 Cao, J., Yu, H., Zhou, S., Qin, M.C., Lau, T.K., Lu, X.H., Zhao, N., and Wong, C.P.: ‘Low-temperature solution-processed NiOx films for air-stable perovskite solar cells’, J Mater Chem A, 2017, 5, (22), pp. 11071-11077
17 Ye, S.Y., Rao, H.X., Zhao, Z.R., Zhang, L.J., Bao, H.L., Sun, W.H., Li, Y.L., Gu, F.D., Wang, J.Q., Liu, Z.W., Bian, Z.Q., and Huang, C.H.: ‘A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I’, J Am Chem Soc, 2017, 139, (22), pp. 7504-7512
18 Tong, X., Lin, F., Wu, J., and Wang, Z.M.M.: ‘High Performance Perovskite Solar Cells’, Adv Sci, 2016, 3, (5)
19 Marinova, N., Valero, S., and Delgado, J.L.: ‘Organic and perovskite solar cells: Working principles, materials and interfaces’, J Colloid Interf Sci, 2017, 488, pp. 373-389
20 Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.W., Stranks, S.D., Snaith, H.J., and Nicholas, R.J.: ‘Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites’, Nat Phys, 2015, 11, (7), pp. 582-U594
21 Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., and Cahen, D.: ‘Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells’, Nat Commun, 2014, 5
22 Marchioro, A., Teuscher, J., Friedrich, D., Kunst, M., van de Krol, R., Moehl, T., Gratzel, M., and Moser, J.E.: ‘Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells’, Nat Photonics, 2014, 8, (3), pp. 250-255
23 Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W.S., Barea, E.M., Fabregat-Santiago, F., Mora-Sero, I., and Bisquert, J.: ‘General Working Principles of CH3NH3PbX3 Perovskite Solar Cells’, Nano Lett, 2014, 14, (2), pp. 888-893
24 Lin, C.F., Zhang, M., Liu, S.W., Chiu, T.L., and Lee, J.H.: ‘High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device’, Int J Mol Sci, 2011, 12, (1), pp. 476-505
25 Yan, K., Dong, B., Xiao, X.Y., Chen, S., Chen, B.X., Gao, X., Hu, H.W., Wen, W., Zhou, J.B., and Zou, D.C.: ‘Memristive property's effects on the I-V characteristics of perovskite solar cells’, Sci Rep-Uk, 2017, 7
26 Dubey;, A., Adhikari;, N., Mabrouk;, S., Wu;, F., Chen;, K., Yang;, S., and Qiao, Q.: ‘A strategic review on processing routes towards highly efficient perovskite solar cells’, J Mater Chem A, 2018
27 Kim, J.H., Chueh, C.C., Williams, S.T., and Jen, A.K.Y.: ‘Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells’, Nanoscale, 2015, 7, (41), pp. 17343-17349
28 Kim, Y.H., Cho, H., Heo, J.H., Kim, T.S., Myoung, N., Lee, C.L., Im, S.H., and Lee, T.W.: ‘Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes’, Adv Mater, 2015, 27, (7), pp. 1248-1254
29 Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: ‘Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber’, Science, 2013, 342, (6156), pp. 341-344
30 Xing, G.C., Mathews, N., Lim, S.S., Yantara, N., Liu, X.F., Sabba, D., Gratzel, M., Mhaisalkar, S., and Sum, T.C.: ‘Low-temperature solution-processed wavelength-tunable perovskites for lasing’, Nat Mater, 2014, 13, (5), pp. 476-480
31 You, J.B., Hong, Z.R., Yang, Y., Chen, Q., Cai, M., Song, T.B., Chen, C.C., Lu, S.R., Liu, Y.S., Zhou, H.P., and Yang, Y.: ‘Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility’, Acs Nano, 2014, 8, (2), pp. 1674-1680
32 Luo, J.S., Im, J.H., Mayer, M.T., Schreier, M., Nazeeruddin, M.K., Park, N.G., Tilley, S.D., Fan, H.J., and Gratzel, M.: ‘Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts’, Science, 2014, 345, (6204), pp. 1593-1596
33 Tan, Z.K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., and Friend, R.H.: ‘Bright light-emitting diodes based on organometal halide perovskite’, Nat Nanotechnol, 2014, 9, (9), pp. 687-692
34 Deschler, F., Price, M., Pathak, S., Klintberg, L.E., Jarausch, D.D., Higler, R., Huttner, S., Leijtens, T., Stranks, S.D., Snaith, H.J., Atature, M., Phillips, R.T., and Friend, R.H.: ‘High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors’, J Phys Chem Lett, 2014, 5, (8), pp. 1421-1426
35 Zhang, Q., Ha, S.T., Liu, X.F., Sum, T.C., and Xiong, Q.H.: ‘Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers’, Nano Lett, 2014, 14, (10), pp. 5995-6001
36 Lee, Y., Kwon, J., Hwang, E., Ra, C.H., Yoo, W.J., Ahn, J.H., Park, J.H., and Cho, J.H.: ‘High-Performance Perovskite-Graphene Hybrid Photodetector’, Adv Mater, 2015, 27, (1), pp. 41-46
37 Dou, L.T., Yang, Y., You, J.B., Hong, Z.R., Chang, W.H., Li, G., and Yang, Y.: ‘Solution-processed hybrid perovskite photodetectors with high detectivity’, Nat Commun, 2014, 5
38 Alwadai, N., Haque, M.A., Mitra, S., Flemban, T., Pak, Y., Wu, T., and Roqan, I.: ‘High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions’, Acs Appl Mater Inter, 2017, 9, (43), pp. 37832-37838
39 Kim, H.B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S., and Kim, J.Y.: ‘Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells’, Nanoscale, 2014, 6, (12), pp. 6679-6683
40 Im, J.H., Lee, C.R., Lee, J.W., Park, S.W., and Park, N.G.: ‘6.5% efficient perovskite quantum-dot-sensitized solar cell’, Nanoscale, 2011, 3, (10), pp. 4088-4093
41 Saliba, M., Matsui, T., Domanski, K., Seo, J.Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.P., Tress, W.R., Abate, A., Hagfeldt, A., and Gratzel, M.: ‘Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance’, Science, 2016, 354, (6309), pp. 206-209
42 Liu, J., Gao, C., He, X.L., Ye, Q.Y., Ouyang, L.Q., Zhuang, D.M., Liao, C., Mei, J., and Lau, W.M.: ‘Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell’, Acs Appl Mater Inter, 2015, 7, (43), pp. 24008-24015
43 Bi, D.Q., Tress, W., Dar, M.I., Gao, P., Luo, J.S., Renevier, C., Schenk, K., Abate, A., Giordano, F., Baena, J.P.C., Decoppet, J.D., Zakeeruddin, S.M., Nazeeruddin, M.K., Gratzel, M., and Hagfeldt, A.: ‘Efficient luminescent solar cells based on tailored mixed-cation perovskites’, Sci Adv, 2016, 2, (1)
44 Wu, T.Y., Wu, J.H., Tu, Y.G., He, X., Lan, Z., Huang, M.L., and Lin, J.M.: ‘Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%’, J Power Sources, 2017, 365, pp. 1-6
45 Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: ‘Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells’, Nat Mater, 2014, 13, (9), pp. 897-903
46 Lee, K.M., Lin, C.J., Liou, B.Y., Yu, S.M., Hsu, C.C., Suryanarayanan, V., and Wu, M.C.: ‘Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells’, Sol Energ Mat Sol C, 2017, 172, pp. 368-375
47 Hammarstrom, L.: ‘Overview: capturing the sun for energy production’, Ambio, 2012, 41 Suppl 2, pp. 103-107
48 Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: ‘Compositional engineering of perovskite materials for high-performance solar cells’, Nature, 2015, 517, (7535), pp. 476-+
49 Rong, Y.G., Tang, Z.J., Zhao, Y.F., Zhong, X., Venkatesan, S., Graham, H., Patton, M., Jing, Y., Guloy, A.M., and Yao, Y.: ‘Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells’, Nanoscale, 2015, 7, (24), pp. 10595-10599
50 Wu, Y.Z., Islam, A., Yang, X.D., Qin, C.J., Liu, J., Zhang, K., Peng, W.Q., and Han, L.Y.: ‘Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition’, Energ Environ Sci, 2014, 7, (9), pp. 2934-2938
51 Zhang, W., Saliba, M., Moore, D.T., Pathak, S.K., Horantner, M.T., Stergiopoulos, T., Stranks, S.D., Eperon, G.E., Alexander-Webber, J.A., Abate, A., Sadhanala, A., Yao, S.H., Chen, Y.L., Friend, R.H., Estroff, L.A., Wiesner, U., and Snaith, H.J.: ‘Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells’, Nat Commun, 2015, 6
52 Moore, D.T., Sai, H., Tan, K.W., Smilgies, D.M., Zhang, W., Snaith, H.J., Wiesner, U., and Estroff, L.A.: ‘Crystallization Kinetics of Organic-Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth’, J Am Chem Soc, 2015, 137, (6), pp. 2350-2358
53 Moore, D.T., Sai, H., Tan, K.W., Estroff, L.A., and Wiesner, U.: ‘Impact of the organic halide salt on final perovskite composition for photovoltaic applications’, Apl Mater, 2014, 2, (8)
54 Munir, R., Sheikh, A.D., Abdelsamie, M., Hu, H.L., Yu, L., Zhao, K., Kim, T., El Tall, O., Li, R.P., Smilgies, D.M., and Amassian, A.: ‘Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases’, Adv Mater, 2017, 29, (2)
55 Oesinghaus, L., Schlipf, J., Giesbrecht, N., Song, L., Hu, Y., Bein, T., Docampo, P., and Muller-Buschbaum, P.: ‘Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films’, Adv Mater Interfaces, 2016, 3, (19)
56 Foley, B.J., Girard, J., Sorenson, B.A., Chen, A.Z., Niezgoda, J.S., Alpert, M.R., Harper, A.F., Smilgies, D.M., Clancy, P., Saidi, W.A., and Choi, J.J.: ‘Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives’, J Mater Chem A, 2017, 5, (1), pp. 113-123
57 Chen, Q., Zhou, H.P., Fang, Y.H., Stieg, A.Z., Song, T.B., Wang, H.H., Xu, X.B., Liu, Y.S., Lu, S.R., You, J.B., Sun, P.Y., Mckay, J., Goorsky, M.S., and Yang, Y.: ‘The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells’, Nat Commun, 2015, 6
58 Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: ‘High-performance photovoltaic perovskite layers fabricated through intramolecular exchange’, Science, 2015, 348, (6240), pp. 1234-1237
59 Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., and Gratzel, M.: ‘Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency’, Energ Environ Sci, 2016, 9, (6), pp. 1989-1997
60 Wang, F., Yu, H., Xu, H.H., and Zhao, N.: ‘HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells’, Adv Funct Mater, 2015, 25, (7), pp. 1120-1126
61 Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Gratzel, M.: ‘Sequential deposition as a route to high-performance perovskite-sensitized solar cells’, Nature, 2013, 499, (7458), pp. 316-+
62 Liu, D.Y., and Kelly, T.L.: ‘Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques’, Nat Photonics, 2014, 8, (2), pp. 133-138
63 Chen, Q., Zhou, H.P., Hong, Z.R., Luo, S., Duan, H.S., Wang, H.H., Liu, Y.S., Li, G., and Yang, Y.: ‘Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process’, J Am Chem Soc, 2014, 136, (2), pp. 622-625
64 Xing, G.C., Mathews, N., Sun, S.Y., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S., and Sum, T.C.: ‘Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3’, Science, 2013, 342, (6156), pp. 344-347
65 Xiao, Z.G., Bi, C., Shao, Y.C., Dong, Q.F., Wang, Q., Yuan, Y.B., Wang, C.G., Gao, Y.L., and Huang, J.S.: ‘Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers’, Energ Environ Sci, 2014, 7, (8), pp. 2619-2623
66 Chiang, C.H., Nazeeruddin, M.K., Gratzel, M., and Wu, C.G.: ‘The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells’, Energ Environ Sci, 2017, 10, (3), pp. 808-817
67 Liu, M.Z., Johnston, M.B., and Snaith, H.J.: ‘Efficient planar heterojunction perovskite solar cells by vapour deposition’, Nature, 2013, 501, (7467), pp. 395-+
68 Abbas, H.A., Kottokkaran, R., Ganapathy, B., Samiee, M., Zhang, L., Kitahara, A., Noack, M., and Dalal, V.L.: ‘High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer’, Apl Mater, 2015, 3, (1)
69 Osterwald, C.R., and McMahon, T.J.: ‘History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review’, Prog Photovoltaics, 2009, 17, (1), pp. 11-33
70 Wang, X., Deng, L.L., Wang, L.Y., Dai, S.M., Xing, Z., Zhan, X.X., Lu, X.Z., Xie, S.Y., Huang, R.B., and Zheng, L.S.: ‘Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature’, J Mater Chem A, 2017, 5, (4), pp. 1706-1712
71 Mei, A.Y., Li, X., Liu, L.F., Ku, Z.L., Liu, T.F., Rong, Y.G., Xu, M., Hu, M., Chen, J.Z., Yang, Y., Gratzel, M., and Han, H.W.: ‘A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability’, Science, 2014, 345, (6194), pp. 295-298
72 Tan, H.R., Jain, A., Voznyy, O., Lan, X.Z., de Arquer, F.P.G., Fan, J.Z., Quintero-Bermudez, R., Yuan, M.J., Zhang, B., Zhao, Y.C., Fan, F.J., Li, P.C., Quan, L.N., Zhao, Y.B., Lu, Z.H., Yang, Z.Y., Hoogland, S., and Sargent, E.H.: ‘Efficient and stable solution-processed planar perovskite solar cells via contact passivation’, Science, 2017, 355, (6326), pp. 722-726
73 Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., and Walsh, A.: ‘Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells’, Nano Lett, 2014, 14, (5), pp. 2584-2590
74 Niu, G.D., Guo, X.D., and Wang, L.D.: ‘Review of recent progress in chemical stability of perovskite solar cells’, J Mater Chem A, 2015, 3, (17), pp. 8970-8980
75 Tang, H., He, S.S., and Peng, C.W.: ‘A Short Progress Report on High-Efficiency Perovskite Solar Cells’, Nanoscale Res Lett, 2017, 12
76 Yang, J.L., Siempelkamp, B.D., Liu, D.Y., and Kelly, T.L.: ‘Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques’, Acs Nano, 2015, 9, (2), pp. 1955-1963
77 Poglitsch, A., and Weber, D.: ‘Dynamic Disorder in Methylammoniumtrihalogenoplumbates(Ii) Observed by Millimeter-Wave Spectroscopy’, J Chem Phys, 1987, 87, (11), pp. 6373-6378
78 Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: ‘Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells’, Energ Environ Sci, 2014, 7, (3), pp. 982-988
79 Tsai, H.H., Nie, W.Y., Blancon, J.C., Toumpos, C.C.S., Asadpour, R., Harutyunyan, B., Neukirch, A.J., Verduzco, R., Crochet, J.J., Tretiak, S., Pedesseau, L., Even, J., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., and Mohite, A.D.: ‘High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells’, Nature, 2016, 536, (7616), pp. 312-+
80 Hu, Y.H., Schlipf, J., Wussler, M., Petrus, M.L., Jaegermann, W., Bein, T., Muller-Buschbaum, P., and Docampo, P.: ‘Hybrid Perovskite/Perovskite Heterojunction Solar Cells’, Acs Nano, 2016, 10, (6), pp. 5999-6007
81 Koh, T.M., Shanmugam, V., Schlipf, J., Oesinghaus, L., Muller-Buschbaum, P., Ramakrishnan, N., Swamy, V., Mathews, N., Boix, P.P., and Mhaisalkar, S.G.: ‘Nanostructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics’, Adv Mater, 2016, 28, (19), pp. 3653-3661
82 Grancini, G., Roldan-Carmona, C., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, S., Oswald, F., De Angelis, F., Graetzel, M., and Nazeeruddin, M.K.: ‘One-Year stable perovskite solar cells by 2D/3D interface engineering’, Nat Commun, 2017, 8
83 Yang, S., Wang, Y., Liu, P.R., Cheng, Y.B., Zhao, H.J., and Yang, H.G.: ‘Functionalization of perovskite thin films with moisture-tolerant molecules’, Nat Energy, 2016, 1
84 Wang, Q., Dong, Q.F., Li, T., Gruverman, A., and Huang, J.S.: ‘Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells’, Adv Mater, 2016, 28, (31), pp. 6734-+
85 Bi, D.Q., Gao, P., Scopelliti, R., Oveisi, E., Luo, J.S., Gratzel, M., Hagfeldt, A., and Nazeeruddin, M.K.: ‘High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3’, Adv Mater, 2016, 28, (15), pp. 2910-2915
86 Bella, F., Griffini, G., Correa-Baena, J.P., Saracco, G., Gratzel, M., Hagfeldt, A., Turri, S., and Gerbaldi, C.: ‘Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers’, Science, 2016, 354, (6309), pp. 203-206
87 Domanski, K., Correa-Baena, J.P., Mine, N., Nazeeruddin, M.K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A., and Gratzel, M.: ‘Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells’, Acs Nano, 2016, 10, (6), pp. 6306-6314
88 Back, H., Kim, G., Kim, J., Kong, J., Kim, T.K., Kang, H., Kim, H., Lee, J., Lee, S., and Lee, K.: ‘Achieving long-term stable perovskite solar cells via ion neutralization’, Energ Environ Sci, 2016, 9, (4), pp. 1258-1263
89 Deng, Y.H., Dong, Q.F., Bi, C., Yuan, Y.B., and Huang, J.S.: ‘Air-Stable, Efficient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer’, Adv Energy Mater, 2016, 6, (11)
90 Rong, Y.G., Liu, L.F., Mei, A.Y., Li, X., and Han, H.W.: ‘Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells’, Adv Energy Mater, 2015, 5, (20)
91 Yang, S.D., Fu, W.F., Zhang, Z.Q., Chen, H.Z., and Li, C.Z.: ‘Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite’, J Mater Chem A, 2017, 5, (23), pp. 11462-11482
92 Babayigit, A., Thanh, D.D., Ethirajan, A., Manca, J., Muller, M., Boyen, H.G., and Conings, B.: ‘Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio’, Sci Rep-Uk, 2016, 6
93 Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., and Snaith, H.J.: ‘Lead-free organic-inorganic tin halide perovskites for photovoltaic applications’, Energ Environ Sci, 2014, 7, (9), pp. 3061-3068
94 Giustino, F., and Snaith, H.J.: ‘Toward Lead-Free Perovskite Solar Cells’, Acs Energy Lett, 2016, 1, (6), pp. 1233-1240
95 Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., and Kanatzidis, M.G.: ‘Lead-free solid-state organic-inorganic halide perovskite solar cells’, Nat Photonics, 2014, 8, (6), pp. 489-494
96 Hoshi, H., Shigeeda, N., and Dai, T.: ‘Improved oxidation stability of tin iodide cubic perovskite treated by 5-ammonium valeric acid iodide’, Mater Lett, 2016, 183, pp. 391-393
97 Koh, T.M., Krishnamoorthy, T., Yantara, N., Shi, C., Leong, W.L., Boix, P.P., Grimsdale, A.C., Mhaisalkar, S.G., and Mathews, N.: ‘Formamidinium tin-based perovskite with low E-g for photovoltaic applications’, J Mater Chem A, 2015, 3, (29), pp. 14996-15000
98 Lee, S.J., Shin, S.S., Kim, Y.C., Kim, D., Ahn, T.K., Noh, J.H., Seo, J., and Seok, S.I.: ‘Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex’, J Am Chem Soc, 2016, 138, (12), pp. 3974-3977
99 Lee, B., Stoumpos, C.C., Zhou, N.J., Hao, F., Malliakas, C., Yeh, C.Y., Marks, T.J., Kanatzidis, M.G., and Chang, R.P.H.: ‘Air-Stable Molecular Semiconducting lodosalts for Solar Cell Applications: Cs(2)Snl(6) as a Hole Conductor’, J Am Chem Soc, 2014, 136, (43), pp. 15379-15385
100 Zuo, F., Williams, S.T., Liang, P.W., Chueh, C.C., Liao, C.Y., and Jen, A.K.Y.: ‘Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells’, Adv Mater, 2014, 26, (37), pp. 6454-6460
101 Hao, F., Stoumpos, C.C., Liu, Z., Chang, R.P.H., and Kanatzidis, M.G.: ‘Controllable Perovskite Crystallization at a Gas-Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%’, J Am Chem Soc, 2014, 136, (46), pp. 16411-16419
102 Im, J., Stoumpos, C.C., Jin, H., Freeman, A.J., and Kanatzidis, M.G.: ‘Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3’, J Phys Chem Lett, 2015, 6, (17), pp. 3503-3509
103 Jain, A., Voznyy, O., and Sargent, E.H.: ‘High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications’, J Phys Chem C, 2017, 121, (13), pp. 7183-7187
104 Saparov, B., Hong, F., Sun, J.P., Duan, H.S., Meng, W.W., Cameron, S., Hill, I.G., Yan, Y.F., and Mitzi, D.B.: ‘Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor’, Chem Mater, 2015, 27, (16), pp. 5622-5632
105 Park, B.W., Philippe, B., Zhang, X.L., Rensmo, H., Boschloo, G., and Johansson, E.M.J.: ‘Bismuth Based Hybrid Perovskites A(3)Bi(2)I(9) (A: Methylammonium or Cesium) for Solar Cell Application’, Adv Mater, 2015, 27, (43), pp. 6806-+
106 Dammak, H., Yangui, A., Triki, S., Abid, Y., and Feki, H.: ‘Structural characterization, vibrational, optical properties and DFT investigation of a new luminescent organic-inorganic material: (C6H14N)(3)Bi2I9’, J Lumin, 2015, 161, pp. 214-220
107 Ran, C.X., Wu, Z.X., Xi, J., Yuan, F., Dong, H., Lei, T., He, X., and Hou, X.: ‘Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V’, J Phys Chem Lett, 2017, 8, (2), pp. 394-400
108 Vigneshwaran, M., Ohta, T., Iikubo, S., Kapil, G., Ripolles, T.S., Ogomi, Y., Ma, T., Pandey, S.S., Shen, Q., Toyoda, T., Yoshino, K., Minemoto, T., and Hayase, S.: ‘Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route’, Chem Mater, 2016, 28, (18), pp. 6436-6440
109 Hebig, J.C., Kuhn, I., Flohre, J., and Kirchartz, T.: ‘Optoelectronic Properties of (CH3NH3)(3)Sb2I9 Thin Films for Photovoltaic Applications’, Acs Energy Lett, 2016, 1, (1), pp. 309-314
110 Lehner, A.J., Fabini, D.H., Evans, H.A., Hebert, C.A., Smock, S.R., Hu, J., Wang, H.B., Zwanziger, J.W., Chabinyc, M.L., and Seshadri, R.: ‘Crystal and Electronic Structures of Complex Bismuth Iodides A(3)Bi(2)I(9) (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics’, Chem Mater, 2015, 27, (20), pp. 7137-7148
111 Harikesh, P.C., Mulmudi, H.K., Ghosh, B., Goh, T.W., Teng, Y.T., Thirumal, K., Lockrey, M., Weber, K., Koh, T.M., Li, S.Z., Mhaisalkar, S., and Mathews, N.: ‘Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics’, Chem Mater, 2016, 28, (20), pp. 7496-7504
112 Zuo, C.T., and Ding, L.M.: ‘Lead-free Perovskite Materials (NH4)(3)Sb2IxBr9-x’, Angew Chem Int Edit, 2017, 56, (23), pp. 6528-6532
113 Jiang;, F., Yang;, D., Jiang;, Y., Liu;, T., Zhao;, X., Ming;, Y., Luo;, B., Qin;, F., Fan;, J., Han;, H., Zhang;, L., and Zhou, Y.: ‘Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells’, Journal of American Chemical Society, 2018, 140, pp. 9
114 Nie;, R., Mehta;, A., Park;, B.-w., Kwon;, H.-W., Im;, J., and Seok, S.I.: ‘Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells’, Journal of American Chemical Society, 2018, 140, (3), pp. 4
115 Wang, Q., Shao, Y.C., Dong, Q.F., Xiao, Z.G., Yuan, Y.B., and Huang, J.S.: ‘Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process’, Energ Environ Sci, 2014, 7, (7), pp. 2359-2365
116 Kumawat, N.K., Dey, A., Narasimhan, K.L., and Kabra, D.: ‘Near Infrared to Visible Electroluminescent Diodes Based on Organometallic Halide Perovskites: Structural and Optical Investigation’, Acs Photonics, 2015, 2, (3), pp. 349-354
117 Boopathi, K.M., Mohan, R., Huang, T.Y., Budiawan, W., Lin, M.Y., Lee, C.H., Ho, K.C., and Chu, C.W.: ‘Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives’, J Mater Chem A, 2016, 4, (5), pp. 1591-1597
118 Yang, D., Zhou, X., Yang, R.X., Yang, Z., Yu, W., Wang, X.L., Li, C., Liu, S.Z., and Chang, R.P.H.: ‘Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells’, Energ Environ Sci, 2016, 9, (10), pp. 3071-3078
119 Wurthner, F., Saha-Moller, C.R., Fimmel, B., Ogi, S., Leowanawat, P., and Schmidt, D.: ‘Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials’, Chem Rev, 2016, 116, (3), pp. 962-1052
120 He, Y.J., and Li, Y.F.: ‘Fullerene derivative acceptors for high performance polymer solar cells’, Phys Chem Chem Phys, 2011, 13, (6), pp. 1970-1983
121 Li, C.Z., Yip, H.L., and Jen, A.K.Y.: ‘Functional fullerenes for organic photovoltaics’, J Mater Chem, 2012, 22, (10), pp. 4161-4177
122 Sauve, G., and Fernando, R.: ‘Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics’, J Phys Chem Lett, 2015, 6, (18), pp. 3770-3780
123 Nielsen, C.B., Holliday, S., Chen, H.Y., Cryer, S.J., and McCulloch, I.: ‘Non-Fullerene Electron Acceptors for Use in Organic Solar Cells’, Accounts Chem Res, 2015, 48, (11), pp. 2803-2812
124 Li, S.X., Zhang, Z.Q., Shi, M.M., Li, C.Z., and Chen, H.Z.: ‘Molecular electron acceptors for efficient fullerene-free organic solar cells’, Phys Chem Chem Phys, 2017, 19, (5), pp. 3440-3458
125 Wang, W.W., Yuan, J.Y., Shi, G.Z., Zhu, X.X., Shi, S.H., Liu, Z.K., Han, L., Wang, H.Q., and Ma, W.L.: ‘Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor’, Acs Appl Mater Inter, 2015, 7, (7), pp. 3994-3999
126 Shao, S., Chen, Z., Fang, H.H., ten Brink, G.H., Bartesaghi, D., Adjokatse, S., Koster, L.J.A., Kooi, B.J., Facchetti, A., and Loi, M.A.: ‘N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability’, J Mater Chem A, 2016, 4, (7), pp. 2419-2426
127 Isakova, A., and Topham, P.D.: ‘Polymer Strategies in Perovskite Solar Cells’, J Polym Sci Pol Phys, 2017, 55, (7), pp. 549-568
128 Cheng, M., Li, Y.Y., Liu, P., Zhang, F.G., Hajian, A., Wang, H.X., Li, J.J., Wang, L.Q., Kloo, L., Yang, X.C., and Sun, L.C.: ‘A Perylenediimide Tetramer-Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell’, Sol Rrl, 2017, 1, (5)
129 Kim, S.S., Bae, S., and Jo, W.H.: ‘A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells’, Rsc Adv, 2016, 6, (24), pp. 19923-19927
130 Aharon, S., El Cohen, B., and Etgar, L.: ‘Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell’, J Phys Chem C, 2014, 118, (30), pp. 17160-17165
131 Ishihara, T.: ‘Optical-Properties of Pbi-Based Perovskite Structures’, J Lumin, 1994, 60-1, pp. 269-274
132 Zuo, C.T., Bolink, H.J., Han, H.W., Huang, J.S., Cahen, D., and Ding, L.M.: ‘Advances in Perovskite Solar Cells’, Adv Sci, 2016, 3, (7)
133 Cowan, S.R., Roy, A., and Heeger, A.J.: ‘Recombination in polymer-fullerene bulk heterojunction solar cells’, Phys Rev B, 2010, 82, (24)
134 Mihailetchi, V.D., Wildeman, J., and Blom, P.W.M.: ‘Space-charge limited photocurrent’, Phys Rev Lett, 2005, 94, (12)
135 Li, Y.W., Meng, L., Yang, Y., Xu, G.Y., Hong, Z.R., Chen, Q., You, J.B., Li, G., Yang, Y., and Li, Y.F.: ‘High-efficiency robust perovskite solar cells on ultrathin flexible substrates’, Nat Commun, 2016, 7
136 Marinova, N., Tress, W., Humphry-Baker, R., Dar, M.I., Bojinov, V., Zakeeruddin, S.M., Nazeeruddin, M.K., and Gratzel, M.: ‘Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation’, Acs Nano, 2015, 9, (4), pp. 4200-4209
137 Heumueller, T., Mateker, W.R., Distler, A., Fritze, U.F., Cheacharoen, R., Nguyen, W.H., Biele, M., Salvador, M., von Delius, M., Egelhaaf, H.J., McGehee, M.D., and Brabec, C.J.: ‘Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability’, Energ Environ Sci, 2016, 9, (1), pp. 247-256
138 Krinichnaya, E.P., Moravsky, A.P., Efimov, O., Sobczak, J.W., Winkler, K., Kutner, W., and Balch, A.L.: ‘Mechanistic studies of the electrochemical polymerization of C-60 in the presence of dioxygen or C60O’, J Mater Chem, 2005, 15, (14), pp. 1468-1476
139 Yang, Q.D., Ng, T.W., Lo, M.F., Wang, F.Y., Wong, N.B., and Lee, C.S.: ‘Effect of Water and Oxygen on the Electronic Structure of the Organic Photovoltaic’, J Phys Chem C, 2012, 116, (20), pp. 10982-10985
140 Anctil, A., Babbitt, C.W., Raffaelle, R.P., and Landi, B.J.: ‘Material and Energy Intensity of Fullerene Production’, Environ Sci Technol, 2011, 45, (6), pp. 2353-2359
141 Chen, L., Li, C., and Mullen, K.: ‘Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores’, J Mater Chem C, 2014, 2, (11), pp. 1938-1956
142 Weil, T., Vosch, T., Hofkens, J., Peneva, K., and Mullen, K.: ‘The Rylene Colorant Family-Tailored Nanoemitters for Photonics Research and Applications’, Angew Chem Int Edit, 2010, 49, (48), pp. 9068-9093
143 Fernandez-Lazaro, F., Zink-Lorre, N., and Sastre-Santos, A.: ‘Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs)’, J Mater Chem A, 2016, 4, (24), pp. 9336-9346
144 Liu, Z.T., Wu, Y., Zhang, Q., and Gao, X.: ‘Non-fullerene small molecule acceptors based on perylene diimides’, J Mater Chem A, 2016, 4, (45), pp. 17604-17622
145 Chen, W.Q., and Zhang, Q.C.: ‘Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs)’, J Mater Chem C, 2017, 5, (6), pp. 1275-1302
146 Guo, Q., Xu, Y.X., Xiao, B., Zhang, B., Zhou, E.J., Wang, F.Z., Bai, Y.M., Hayat, T., Alsaedi, A., and Tan, Z.A.: ‘Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells’, Acs Appl Mater Inter, 2017, 9, (12), pp. 10983-10991
147 Kaltenbrunner, M., Adam, G., Glowacki, E.D., Drack, M., Schwodiauer, R., Leonat, L., Apaydin, D.H., Groiss, H., Scharber, M.C., White, M.S., Sariciftci, N.S., and Bauer, S.: ‘Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air’, Nat Mater, 2015, 14, (10), pp. 1032-+
148 Zhang, H., Xue, L.W., Han, J.B., Fu, Y.Q., Shen, Y., Zhang, Z.G., Li, Y.F., and Wang, M.K.: ‘New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport Layer’, J Mater Chem A, 2016, 4, (22), pp. 8724-8733
149 Zhan, X.W., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R., and Marder, S.R.: ‘Rylene and Related Diimides for Organic Electronics’, Adv Mater, 2011, 23, (2), pp. 268-284
150 Karuppuswamy, P., Hanmandlu, C., Boopathi, K.M., Perumal, P., Liu, C.C., Chen, Y.F., Chang, Y.C., Wang, P.C., Lai, C.S., and Chu, C.W.: ‘Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes’, Sol Energ Mat Sol C, 2017, 169, pp. 78-85
151 Karuppuswamy, P., Chen, H.C., Wang, P.C., Hsu, C.P., Wong, K.T., and Chu, C.W.: ‘The 3 D Structure of Twisted Benzo[ghi]perylene-Triimide Dimer as a Non-Fullerene Acceptor for Inverted Perovskite Solar Cells’, ChemSusChem, 2018, 11, (2), pp. 415-423
152 Skabara, P.J., Arlin, J.B., and Geerts, Y.H.: ‘Close Encounters of the 3D Kind Exploiting High Dimensionality in Molecular Semiconductors’, Adv Mater, 2013, 25, (13), pp. 1948-1954
153 Gajdos, F., Oberhofer, H., Dupuis, M., and Blumberger, J.: ‘On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)’, J Phys Chem Lett, 2013, 4, (6), pp. 1012-1017
154 Gelinas, S., Rao, A., Kumar, A., Smith, S.L., Chin, A.W., Clark, J., van der Poll, T.S., Bazan, G.C., and Friend, R.H.: ‘Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes’, Science, 2014, 343, (6170), pp. 512-516
155 Verhoeven, J.W.: ‘On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states’, J Photoch Photobio C, 2006, 7, (1), pp. 40-60
156 Bredas, J.L., Beljonne, D., Coropceanu, V., and Cornil, J.: ‘Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture’, Chem Rev, 2004, 104, (11), pp. 4971-5003
157 Marcus, R.A.: ‘Electron-Transfer Reactions in Chemistry - Theory and Experiment (Nobel Lecture)’, Angewandte Chemie-International Edition in English, 1993, 32, (8), pp. 1111-1121
158 Imahori, H., Yamada, H., Guldi, D.M., Endo, Y., Shimomura, A., Kundu, S., Yamada, K., Okada, T., Sakata, Y., and Fukuzumi, S.: ‘Comparison of reorganization energies for intra- and intermolecular electron transfer’, Angew Chem Int Edit, 2002, 41, (13), pp. 2344-2347
159 Savage, R.C., Orgiu, E., Mativetsky, J.M., Pisula, W., Schnitzler, T., Eversloh, C.L., Li, C., Mullen, K., and Samori, P.: ‘Charge transport in fibre-based perylene-diimide transistors: effect of the alkyl substitution and processing technique’, Nanoscale, 2012, 4, (7), pp. 2387-2393
160 Chen, B., Yang, M.J., Priya, S., and Zhu, K.: ‘Origin of J-V Hysteresis in Perovskite Solar Cells’, J Phys Chem Lett, 2016, 7, (5), pp. 905-917
161 Kim, H.S., Jang, I.H., Ahn, N., Choi, M., Guerrero, A., Bisquert, J., and Park, N.G.: ‘Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell’, J Phys Chem Lett, 2015, 6, (22), pp. 4633-4639
162 Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., and Sargent, E.H.: ‘Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes’, Nat Commun, 2015, 6, pp. 7081
163 Shao, Y.H., Xiao, Z.G., Bi, C., Yuan, Y.B., and Huang, J.S.: ‘Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells’, Nat Commun, 2014, 5
164 Noel, N.K., Abate, A., Stranks, S.D., Parrott, E.S., Burlakov, V.M., Goriely, A., and Snaith, H.J.: ‘Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic Inorganic Lead Halide Perovskites’, Acs Nano, 2014, 8, (10), pp. 9815-9821
165 Tian, C.B., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., and Echegoyen, L.: ‘Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers’, Acs Appl Mater Inter, 2016, 8, (45), pp. 31426-31432
166 Davidovich, R.L., Stavila, V., Marinin, D.V., Voit, E.I., and Whitmire, K.H.: ‘Stereochemistry of lead(II) complexes with oxygen donor ligands’, Coordin Chem Rev, 2009, 253, (9-10), pp. 1316-1352
167 Jiang, Q.L., Rebollar, D., Gong, J., Piacentino, E.L., Zheng, C., and Xu, T.: ‘Pseudohalide-Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)(2)I Thin Films’, Angew Chem Int Edit, 2015, 54, (26), pp. 7617-7620
168 Ball, J.M., Lee, M.M., Hey, A., and Snaith, H.J.: ‘Low-temperature processed meso-superstructured to thin-film perovskite solar cells’, Energ Environ Sci, 2013, 6, (6), pp. 1739-1743
169 Wang, Y.W., Zhang, Y.B., Zhang, P.H., and Zhang, W.Q.: ‘High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3’, Phys Chem Chem Phys, 2015, 17, (17), pp. 11516-11520
170 Dong, Q.F., Fang, Y.J., Shao, Y.C., Mulligan, P., Qiu, J., Cao, L., and Huang, J.S.: ‘Electron-hole diffusion lengths > 175 mu m in solution-grown CH3NH3PbI3 single crystals’, Science, 2015, 347, (6225), pp. 967-970
171 Jaramillo-Quintero, O.A., Sanchez, R.S., Rincon, M., and Mora-Sero, I.: ‘Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer’, J Phys Chem Lett, 2015, 6, (10), pp. 1883-1890
172 Li, G.R., Tan, Z.K., Di, D.W., Lai, M.L., Jiang, L., Lim, J.H.W., Friend, R.H., and Greenham, N.C.: ‘Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix’, Nano Lett, 2015, 15, (4), pp. 2640-2644
173 Jiang, Q.L., Chen, M.M., Li, J.Q., Wang, M.C., Zeng, X.Q., Besara, T., Lu, J., Xin, Y., Shan, X., Pan, B.C., Wang, C.C., Lin, S.C., Siegrist, T., Xiao, Q.F., and Yu, Z.B.: ‘Electrochemical Doping of Halide Perovskites with Ion Intercalation’, Acs Nano, 2017, 11, (1), pp. 1073-1079
174 Zhu, H.M., Fu, Y.P., Meng, F., Wu, X.X., Gong, Z.Z., Ding, Q., Gustafsson, M.V., Trinh, M.T., Jin, S., and Zhu, X.Y.: ‘Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors’, Nat Mater, 2015, 14, (6), pp. 636-U115
175 Chin, X.Y., Cortecchia, D., Yin, J., Bruno, A., and Soci, C.: ‘Lead iodide perovskite light-emitting field-effect transistor’, Nat Commun, 2015, 6
176 Mei, Y., Zhang, C., Vardeny, Z.V., and Jurchescu, O.D.: ‘Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature’, Mrs Commun, 2015, 5, (2), pp. 297-301
177 Guo, Y.L., Liu, C., Tanaka, H., and Nakamura, E.: ‘Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light’, J Phys Chem Lett, 2015, 6, (3), pp. 535-539
178 Boopathi, K.M., Ramesh, M., Perumal, P., Huang, Y.C., Tsao, C.S., Chen, Y.F., Lee, C.H., and Chu, C.W.: ‘Preparation of metal halide perovskite solar cells through a liquid droplet assisted method’, J Mater Chem A, 2015, 3, (17), pp. 9257-9263
179 Ramesh, M., Boopathi, K.M., Huang, T.Y., Huang, Y.C., Tsao, C.S., and Chu, C.W.: ‘Using an Airbrush Pen for Layer-by-Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells’, Acs Appl Mater Inter, 2015, 7, (4), pp. 2359-2366
180 Kumar, M.H., Dharani, S., Leong, W.L., Boix, P.P., Prabhakar, R.R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M., Graetzel, M., Mhaisalkar, S.G., and Mathews, N.: ‘Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation’, Adv Mater, 2014, 26, (41), pp. 7122-+
181 Serrano-Lujan, L., Espinosa, N., Larsen-Olsen, T.T., Abad, J., Urbina, A., and Krebs, F.C.: ‘Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective’, Adv Energy Mater, 2015, 5, (20)
182 Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z.Y., Sherburne, M., Li, S., Asta, M., Mathews, N., and Mhaisalkar, S.G.: ‘Lead-free germanium iodide perovskite materials for photovoltaic applications’, J Mater Chem A, 2015, 3, (47), pp. 23829-23832
183 Cortecchia, D., Dewi, H.A., Yin, J., Bruno, A., Chen, S., Baikie, T., Boix, P.P., Gratzel, M., Mhaisalkar, S., Soci, C., and Mathews, N.: ‘Lead-Free MA(2)CuCl(x)Br(4-x), Hybrid Perovskites’, Inorg Chem, 2016, 55, (3), pp. 1044-1052
184 Park, B.W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., and Johansson, E.M.: ‘Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application’, Adv Mater, 2015, 27, (43), pp. 6806-6813
185 Choi, Y.C., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., and Seok, S.I.: ‘Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb-2(S-x/Se1-x)(3) Graded-Composition Sensitizers’, Adv Energy Mater, 2014, 4, (7)
186 Paek, S., Schouwink, P., Athanasopoulou, E.N., Cho, K.T., Grancini, G., Lee, Y., Zhang, Y., Stellacci, F., Nazeeruddin, M.K., and Gao, P.: ‘From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells’, Chem Mater, 2017, 29, (8), pp. 3490-3498
187 Zheng, X.J., Chen, B., Wu, C.C., and Priya, S.: ‘Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis’, Nano Energy, 2015, 17, pp. 269-278
188 Bi, C., Wang, Q., Shao, Y.C., Yuan, Y.B., Xiao, Z.G., and Huang, J.S.: ‘Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells’, Nat Commun, 2015, 6
189 Wang, Z.K., Gong, X., Li, M., Hu, Y., Wang, J.M., Ma, H., and Liao, L.S.: ‘Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells’, Acs Nano, 2016, 10, (5), pp. 5479-5489
190 Boopathi, K.M., Karuppuswamy, P., Singh, A., Hanmandlu, C., Lin, L., Abbas, S.A., Chang, C.C., Wang, P.C., Li, G., and Chu, C.W.: ‘Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites’, J Mater Chem A, 2017, 5, (39), pp. 20843-20850
191 Kim, H.S., and Park, N.G.: ‘Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer’, J Phys Chem Lett, 2014, 5, (17), pp. 2927-2934
192 Karuppuswamy, P., Chen, H.C., Wang, P.C., Hsu, C.P., Wong, K.T., and Chu, C.W.: ‘The 3D Structure of Twisted Benzo[ghi]perylene-Triimide Dimer as a Non-Fullerene Acceptor for Inverted Perovskite Solar Cells’, Chemsuschem, 2018, 11, (2), pp. 415-423
193 Roose, B., Pathak, S., and Steiner, U.: ‘Doping of TiO2 for sensitized solar cells’, Chem Soc Rev, 2015, 44, (22), pp. 8326-8349






 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *