|
[1] Q. Zhang, X. Wu, Y. Chen, Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy, Energy Policy 168 (2022) 113114. [2] S. Hong, C.J.A. Bradshaw, B.W. Brook, Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis, Energy Policy 56 (2013) 418-424. [3] M. Murshed, B. Saboori, M. Madaleno, H. Wang, B. Doğan, Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries, Renewable Energy 190 (2022) 664-674. [4] J. Bistline, S. Bragg-Sitton, W. Cole, B. Dixon, E. Eschmann, J. Ho, A. Kwon, L. Martin, C. Murphy, C. Namovicz, A. Sowder, Modeling nuclear energy's future role in decarbonized energy systems, iScience 26(2) (2023) 105952. [5] W.R. Stewart, K. Shirvan, Capital cost estimation for advanced nuclear power plants, Renewable and Sustainable Energy Reviews 155 (2022) 111880. [6] W.-Y. Wang, Y.-S. Tseng, T.-K. Yeh, Evaluation of crack growth of chloride-induced stress corrosion cracking in dry storage system under different environmental conditions, Progress in Nuclear Energy 130 (2020) 103534. [7] W.-Y. Wang, Y.-S. Tseng, T.-K. Yeh, Tolerance assessment and crack growth of chloride-induced stress corrosion cracking for Chinshan dry storage system, Progress in Nuclear Energy 147 (2022) 104210. [8] H. Yeom, K. Sridharan, Cold spray technology in nuclear energy applications: A review of recent advances, Annals of Nuclear Energy 150 (2021) 107835. [9] H. Yeom, T. Dabney, N. Pocquette, K. Ross, F.E. Pfefferkorn, K. Sridharan, Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage, Journal of Nuclear Materials 538 (2020) 152254. [10] T.-K. Yeh, Y.-J. Huang, M.-Y. Wang, C.-H. Tsai, Hydrothermal treatments of TiO2 on Type 304 stainless steels for corrosion mitigation in high temperature pure water, Nuclear Engineering and Design 254 (2013) 228-236. [11] R. Techapiesancharoenkij, W. Sripianem, K. Tongpul, C. Peamjharean, T.N. Wichean, T. Meesak, P. Eiamchai, Investigation of the photocathodic protection of a transparent ZnO coating on an AISI type 304 stainless steel in a 3% NaCl solution, Surface and Coatings Technology 320 (2017) 97-102. [12] T.-K. Yeh, P.-I. Wu, C.-H. Tsai, Corrosion of ZrO2 treated type 304 stainless steels in high temperature pure water with various amounts of hydrogen peroxide, Progress in Nuclear Energy 57 (2012) 62-70. [13] Y. Bu, J.-P. Ao, A review on photoelectrochemical cathodic protection semiconductor thin films for metals, Green Energy & Environment 2(4) (2017) 331-362. [14] J. Yuan, R. Fujisawa, S. Tsujikawa, Photopotentials of Copper Coated with TiO2 by Sol-Gel Method, Zairyo-to-Kankyo 43(8) (1994) 433-440. [15] T. Konishi, S. Tsujikawa, Photo-Effect of Sol-Gel Derived TiO2 Coating on Type 304 Stainless Steel, Zairyo-to-Kankyo 46(11) (1997) 709-716. [16] M. Karimi Sahnesarayi, H. Sarpoolaky, S. Rastegari, Effect of heat treatment temperature on the performance of nano-TiO2 coating in protecting 316L stainless steel against corrosion under UV illumination and dark conditions, Surface and Coatings Technology 258 (2014) 861-870. [17] R. Subasri, T. Shinohara, Application of the photoeffect in TiO2 for cathodic protection of copper, Electrochemistry 72(12) (2004) 880-884. [18] M. Li, S. Luo, P. Wu, J. Shen, Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions, Electrochimica Acta 50(16) (2005) 3401-3406. [19] Y. Peng, A.E. Hughes, G.B. Deacon, P.C. Junk, B.R.W. Hinton, M. Forsyth, J.I. Mardel, A.E. Somers, A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions, Corrosion Science 145 (2018) 199-211. [20] S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, J. Fu, Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel, Nanoscale research letters 7(1) (2012) 1-9. [21] N. Padmanathan, S. Selladurai, Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes, RSC Advances 4(13) (2014) 6527-6534. [22] R. Subasri, T. Shinohara, Investigations on SnO2–TiO2 composite photoelectrodes for corrosion protection, Electrochemistry Communications 5(10) (2003) 897-902. [23] Y. Liu, C. Xu, Z. Feng, Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method, Applied Surface Science 314 (2014) 392-399. [24] M.M. Momeni, M. Motalebian, Chromium-doped titanium oxide nanotubes grown via one-step anodization for efficient photocathodic protection of stainless steel, Surface and Coatings Technology 420 (2021) 127304. [25] J. Li, C.-J. Lin, Y.-K. Lai, R.-G. Du, Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel, Surface and Coatings Technology 205(2) (2010) 557-564. [26] Y. Yang, Y.F. Cheng, Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection, Electrochimica Acta 253 (2017) 134-141. [27] T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, TiO2−WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability, Chemistry of Materials 13(9) (2001) 2838-2842. [28] R. Fujisawa, S. Tsujikawa, Cathodic Protection for Nuclear Waste Packaging Under Gamma Ray Irradiation by Using TiO2 Coating Combined with Glass Scintillators, MRS Online Proceedings Library 353(1) (1994) 735-742. [29] T. Imokawa, R. Fujisawa, A. Suda, S. Tsujikawa, Protection of 304 Stainless Steel with TiO2 Coating, Zairyo-to-Kankyo 43(9) (1994) 482-486. [30] D. Xu, Y. Liu, Y. Liu, F. Chen, C. Zhang, B. Liu, A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects, Materials & Design 197 (2021) 109235. [31] M. Erol, T. Dikici, M. Toparli, E. Celik, The effect of anodization parameters on the formation of nanoporous TiO2 layers and their photocatalytic activities, Journal of Alloys and Compounds 604 (2014) 66-72. [32] C.X. Lei, H. Zhou, Z.D. Feng, Y.F. Zhu, R.G. Du, Liquid phase deposition (LPD) of TiO2 thin films as photoanodes for cathodic protection of stainless steel, Journal of Alloys and Compounds 513 (2012) 552-558. [33] G.X. Shen, Y.C. Chen, C.J. Lin, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films 489(1) (2005) 130-136. [34] H. Hassannejad, T. Shahrabi, F. Malekmohammadi, A. Shanaghi, M. Aliofkhazraei, A. Oskuie, Effect of cerium doping on corrosion resistance of amorphous silica–titanium sol–gel coating, Current Applied Physics 10(4) (2010) 1022-1028. [35] T. Shinohara, Impedance Measurement for Slow Decline of Electrode Potential of Fe-doped TiO2 Coating, Zairyo-to-Kankyo 50(4) (2001) 170-176. [36] Y. Zhu, L. Zhang, L. Wang, Y. Fu, L. Cao, The preparation and chemical structure of TiO2 film photocatalysts supported on stainless steel substrates via the sol–gel method, Journal of Materials Chemistry 11(7) (2001) 1864-1868. [37] H.P. Maruska, A.K. Ghosh, Transition-metal dopants for extending the response of titanate photoelectrolysis anodes, Solar Energy Materials 1(3) (1979) 237-247. [38] J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate, Environmental Science & Technology 37(10) (2003) 2296-2301. [39] M.A. Butler, D.S. Ginley, Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities, Journal of The Electrochemical Society 125(2) (1978) 228-232. [40] J. Huang, T. Shinohara, S. Tsujikawa, Effects of Interfacial Iron Oxides on Corrosion Protection of Carbon Steel by TiO2 Coating under Illumination, Zairyo-to-Kankyo 46(10) (1997) 651-661. [41] J. Huang, T. Konishi, T. Shinohara, S. Tsujikawa, Sol-Gel Derived Ti-Fe Oxide Coating for Photoelectrochemical Cathodic Protection of Carbon Steel, Zairyo-to-Kankyo 47(3) (1998) 193-199. [42] J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C 116(36) (2012) 19182-19190. [43] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, Journal of Colloid and Interface Science 315(1) (2007) 382-388. [44] G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, V. Subramanian, I. Baudin, J.M. Laîné, Titania powder modified sol-gel process for photocatalytic applications, Journal of Materials Science 38(4) (2003) 823-831. [45] J. Shang, W. Li, Y. Zhu, Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet, Journal of Molecular Catalysis A: Chemical 202(1) (2003) 187-195. [46] J. Zhang, J. Hu, Y.-F. Zhu, Q. Liu, H. Zhang, R.-G. Du, C.-J. Lin, Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel, Corrosion Science 99 (2015) 118-124. [47] R. Subasri, T. Shinohara, Investigations on the Photoprotection Ability of TiO2 Coated on Copper, Materials Science Forum 475-479 (2005) 297-300. [48] M.-j. Zhou, Z.-o. Zeng, L. Zhong, Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating, Corrosion Science 51(6) (2009) 1386-1391. [49] S. Luo, T.-D. Nguyen-Phan, A.C. Johnston-Peck, L. Barrio, S. Sallis, D.A. Arena, S. Kundu, W. Xu, L.F.J. Piper, E.A. Stach, D.E. Polyansky, E. Fujita, J.A. Rodriguez, S.D. Senanayake, Hierarchical Heterogeneity at the CeOx–TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures, The Journal of Physical Chemistry C 119(5) (2015) 2669-2679. [50] L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells, RSC Advances 7(33) (2017) 20084-20092. [51] Y. Zhang, A.H. Yuwono, J. Wang, J. Li, Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films, The Journal of Physical Chemistry C 113(51) (2009) 21406-21412. [52] R. Subasri, M. Tripathi, K. Murugan, J. Revathi, G.V.N. Rao, T.N. Rao, Investigations on the photocatalytic activity of sol–gel derived plain and Fe3+/Nb5+-doped titania coatings on glass substrates, Materials Chemistry and Physics 124(1) (2010) 63-68. [53] P.A. Sonar, S.G. Sanjeevagol, J. Manjanna, V.D. Patake, S. Nitin, Electrochemical behavior of cerium (III) hydroxide thin-film electrode in aqueous and non-aqueous electrolyte for supercapacitor applications, Journal of Materials Science: Materials in Electronics 33(34) (2022) 25787-25795.
|