帳號:guest(18.223.170.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卡馬拉
作者(外文):Kamalasekaran Sathasivam
論文名稱(中文):TiO2 塗層不銹鋼在紫外線照射下的長期和增強緩蝕作用
論文名稱(外文):Prolonged and Enhanced Corrosion Mitigation of TiO2-Coated Stainless Steels under UV Illumination
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung-Kuang
口試委員(中文):吳凱
歐陽汎怡
葛明德
藍貫哲
口試委員(外文):Kai, Wu
Fan-Yi, Ouyang
Ming, der-ger
Lan, Kuan-Che
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011457
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:83
中文關鍵詞:二氧化钛涂层紫外线照明304L不锈钢干燥储存罐
外文關鍵詞:Dry storage canister304L stainless steeluv illuminationTiO2 coatings
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
沃斯田不銹鋼常被用作核電廠乾式貯存容器的基材,因其具有優異的耐腐蝕性和機械性能。乾式貯存容器常暴露於靠近海岸的含氯環境中,這可能導致沃斯田不銹鋼在焊接區域的發生局部應力腐蝕開裂。乾式貯存容器的腐蝕劣化不僅可能導致容器內的放射性同位素釋放到環境中,還會因容器更換造成高額成本支出。本研究的目的是在304L不銹鋼基材上施加多層二氧化鈦複合塗層,例如掺雜鈰、鐵的二氧化鈦塗層和純二氧化鈦塗層,並評估塗層在紫外光照射下對容器材料抗腐蝕能力的影響。實驗內容是在不同退火溫度下對不同塗層樣品進行熱處理,接著通過電化學極化分析和開路電位測量,評估紫外光照射下塗層樣品的腐蝕行為和光催化反應。此外,本研究也利用掃描式電子顯微鏡、能量散射X射線光譜和X射線繞射分析樣品的表面形貌和晶體結構。

研究結果發現,在紫外光照射下,掺雜其他元素和純二氧化鈦的複合塗層不僅顯示出明顯的陰極保護作用,在紫外光停止照射後,還能維持高還原性的負開路電位數小時。電化學極化掃瞄分析的結果進一步證實了塗層樣品在紫外光照射下具有優異的抗腐蝕性。更重要的是,經過特殊處理的二氧化鈦複合塗層,經紫外光照射後,在沒有接受照射情況下,仍能持續展現優異的抗腐蝕能力。
Austenitic stainless steels are commonly used as the base materials for dry-storage canisters in nuclear power plants because of their excellent corrosion resistance and mechanical properties. Dry-storage canisters are often exposed to chloride containing atmospheres near seashores that could induce localized stress corrosion cracking in these stainless steels near the welded regions. Failure of a dry storage canister not only would release radioactive isotopes into the environment, but would also lead to a costly replacement of the cracked one. The primary objective of this study is to develop a multilayered titanium dioxide (TiO2) composite coating on a 304L stainless steel substrate. Doped (TiO2) coatings (Ce, Fe) and plain Titanium dioxide TiO2 coatings applied on stainless steel substrates (e.g. Type 304L stainless steels) along with ultraviolet (UV) irradiation have been proposed as a mitigation measure against corrosion in canister materials. The coated samples were then thermally treated at different annealing temperatures. Corrosion behavior and photocatalytic responses of the coated samples with and without UV illumination was evaluated by electrochemical polarization analyses and open-circuit potential measurements. Surface morphologies of the samples and crystal structures were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD).
It was found that the both doped and plain TiO2 coating not only showed markedly enhanced photo-cathodic protection on 304LSS during UV illumination, but could also maintain more active open circuit potentials for several hours after the cutoff of UV. Results from electrochemical polarization analyses further supported the superior corrosion resistance of the coated samples under UV illumination. More importantly, the specifically processed TiO2 coatings applied on the samples, once irradiated with UV, would exhibit a prolonged corrosion resistance that could last for hours in the absence of UV.
Keywords: Dry storage canister, 304L stainless steel (304LSS), Titanium dioxide (TiO2), cerium doping, iron doping, photo-cathodic protection
Abstract
Acknowledgements
Chapter 1: Introduction………………………………………………………1
1.1 Outline of the problem………………………………………………….2
1.2 Motivation ……………………………………………………………...4
Chapter 2: Literature Survey…………………………………………………8
Chapter 3: Mechanism……………………………………………………….15
3.1 In-situ Fe doped TiO2 coating over 304LSS at high temperature……..15
3.2 Amorphous TiO2/ Ce doped TiO2 coatings on a 304LSS substrate…...19
3.3 Amorphous TiO2/ Fe doped TiO2 coatings on a 304LSS substrate……22
Chapter 4: Experimental…………………………………………………….25
4.1 In-situ Fe doped TiO2 coating over 304LSS at high temperature…….25
4.1.1 TiO2 solgel preparation………………………………………….25
4.1.2 Fe-doped TiO2 solgel preparation……………………………….25
4.1.3 Plain TiO2 solgel preparation……………………………………25
4.1.4 Substrate sample preparation…………………………………….26
4.1.5 Analytical measurements on coating properties…………………27
4.1.6 Electrochemical analyses…………………………………………27
4.2 Amorphous TiO2/ Ce doped TiO2 coatings on a 304LSS substrate………..30
4.2.1 TiO2 sol-gel preparation…………………………………………..30
4.2.2 Ce-doped TiO2 sol-gel preparation……………………………….30
4.2.3 Plain amorphous TiO2 sol-gel preparation……………………….30
4.2.4 Substrate sample preparation………………………………………31
4.2.5 Analytical measurements of the coating properties……………….32
4.2.6 Electrochemical analyses………………………………………….32
4.3 Amorphous TiO2/ Fe doped TiO2 coatings on a 304LSS substrate………35
4.3.1 Sol-gel preparation………………………………………….35
4.3.2 Plain TiO2 coating…………………………………………..35
4.3.3 Fe-doped TiO2 coating……………………………………..35
4.3.4 Substrate preparation………………………………………..36
4.3.5 Electrochemical analyses…………………………………….36
Chapter 5: Results and Discussion………………………………………………39
5.1 In-situ Fe doped TiO2 coating over 304LSS at high temperature………….39
5.1.1 Determination of optimal calcination temperature by TGA………….39
5.1.2 Optical absorption properties of the TiO2 coatings……………………40
5.1.3 Surface Morphologies of the Coatings……………………………….41
5.1.3.1 Surface analysis…………………………………………….41
5.1.3.2 Depth profile analysis……………………………………….43
5.1.3.3 XRD analysis……………………………………………… 44 5.1.4 OCP responses of TiO2 Coated Samples to UV illumination………..45
5.1.4.1 Variations in OCP of ITO substrates coated with plain TiO2………………………………………………………………….47
5.1.4.2 OCP responses to UV illumination of samples coated with Fe-doped TiO2………………………………………….49
5.1.5 Corrosion rates of the TiO2 coated samples…………………….51
5.2 Amorphous TiO2/ Ce doped TiO2 coatings on a 304LSS substrate…………..55
5.2.1 Optical absorption properties of the TiO2 Coatings……………………..55
5.2.2XRD analysis…………………………………………………………56
5.2.3 X-ray photoelectron spectroscopy analysis………………………….58
5.2.4 Surface analysis………………………………………………………60
5.2.5 Photo-electrochemical responses of TiO2-coated samples to
stimulated UV illumination………………………………………………….62
5.2.5.1 Variations in OCP responses of ITO substrates coated with Ce-doped TiO2 and plain TiO2 coating………………………………..62
5.2.5.2 Variations in OCP responses of 304LSS substrates coated with Ce-doped TiO2 and plain TiO2 coating……………………. …..64
5.2.6 Corrosion Rates of TiO2-coated samples………………………………66
5.3 Amorphous TiO2/ Fe doped TiO2 coatings on a 304LSS substrate……71
5.3.1 Variations in OCP responses of ITO substrates coated with Fe- doped TiO2 …………………………………………………………………..71
Chapter 6: Conclusions……………………………………………………………..75
References…………………………………………………………………………..77
[1] Q. Zhang, X. Wu, Y. Chen, Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy, Energy Policy 168 (2022) 113114.
[2] S. Hong, C.J.A. Bradshaw, B.W. Brook, Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis, Energy Policy 56 (2013) 418-424.
[3] M. Murshed, B. Saboori, M. Madaleno, H. Wang, B. Doğan, Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries, Renewable Energy 190 (2022) 664-674.
[4] J. Bistline, S. Bragg-Sitton, W. Cole, B. Dixon, E. Eschmann, J. Ho, A. Kwon, L. Martin, C. Murphy, C. Namovicz, A. Sowder, Modeling nuclear energy's future role in decarbonized energy systems, iScience 26(2) (2023) 105952.
[5] W.R. Stewart, K. Shirvan, Capital cost estimation for advanced nuclear power plants, Renewable and Sustainable Energy Reviews 155 (2022) 111880.
[6] W.-Y. Wang, Y.-S. Tseng, T.-K. Yeh, Evaluation of crack growth of chloride-induced stress corrosion cracking in dry storage system under different environmental conditions, Progress in Nuclear Energy 130 (2020) 103534.
[7] W.-Y. Wang, Y.-S. Tseng, T.-K. Yeh, Tolerance assessment and crack growth of chloride-induced stress corrosion cracking for Chinshan dry storage system, Progress in Nuclear Energy 147 (2022) 104210.
[8] H. Yeom, K. Sridharan, Cold spray technology in nuclear energy applications: A review of recent advances, Annals of Nuclear Energy 150 (2021) 107835.
[9] H. Yeom, T. Dabney, N. Pocquette, K. Ross, F.E. Pfefferkorn, K. Sridharan, Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage, Journal of Nuclear Materials 538 (2020) 152254.
[10] T.-K. Yeh, Y.-J. Huang, M.-Y. Wang, C.-H. Tsai, Hydrothermal treatments of TiO2 on Type 304 stainless steels for corrosion mitigation in high temperature pure water, Nuclear Engineering and Design 254 (2013) 228-236.
[11] R. Techapiesancharoenkij, W. Sripianem, K. Tongpul, C. Peamjharean, T.N. Wichean, T. Meesak, P. Eiamchai, Investigation of the photocathodic protection of a transparent ZnO coating on an AISI type 304 stainless steel in a 3% NaCl solution, Surface and Coatings Technology 320 (2017) 97-102.
[12] T.-K. Yeh, P.-I. Wu, C.-H. Tsai, Corrosion of ZrO2 treated type 304 stainless steels in high temperature pure water with various amounts of hydrogen peroxide, Progress in Nuclear Energy 57 (2012) 62-70.
[13] Y. Bu, J.-P. Ao, A review on photoelectrochemical cathodic protection semiconductor thin films for metals, Green Energy & Environment 2(4) (2017) 331-362.
[14] J. Yuan, R. Fujisawa, S. Tsujikawa, Photopotentials of Copper Coated with TiO2 by Sol-Gel Method, Zairyo-to-Kankyo 43(8) (1994) 433-440.
[15] T. Konishi, S. Tsujikawa, Photo-Effect of Sol-Gel Derived TiO2 Coating on Type 304 Stainless Steel, Zairyo-to-Kankyo 46(11) (1997) 709-716.
[16] M. Karimi Sahnesarayi, H. Sarpoolaky, S. Rastegari, Effect of heat treatment temperature on the performance of nano-TiO2 coating in protecting 316L stainless steel against corrosion under UV illumination and dark conditions, Surface and Coatings Technology 258 (2014) 861-870.
[17] R. Subasri, T. Shinohara, Application of the photoeffect in TiO2 for cathodic protection of copper, Electrochemistry 72(12) (2004) 880-884.
[18] M. Li, S. Luo, P. Wu, J. Shen, Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions, Electrochimica Acta 50(16) (2005) 3401-3406.
[19] Y. Peng, A.E. Hughes, G.B. Deacon, P.C. Junk, B.R.W. Hinton, M. Forsyth, J.I. Mardel, A.E. Somers, A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions, Corrosion Science 145 (2018) 199-211.
[20] S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, J. Fu, Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel, Nanoscale research letters 7(1) (2012) 1-9.
[21] N. Padmanathan, S. Selladurai, Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes, RSC Advances 4(13) (2014) 6527-6534.
[22] R. Subasri, T. Shinohara, Investigations on SnO2–TiO2 composite photoelectrodes for corrosion protection, Electrochemistry Communications 5(10) (2003) 897-902.
[23] Y. Liu, C. Xu, Z. Feng, Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method, Applied Surface Science 314 (2014) 392-399.
[24] M.M. Momeni, M. Motalebian, Chromium-doped titanium oxide nanotubes grown via one-step anodization for efficient photocathodic protection of stainless steel, Surface and Coatings Technology 420 (2021) 127304.
[25] J. Li, C.-J. Lin, Y.-K. Lai, R.-G. Du, Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel, Surface and Coatings Technology 205(2) (2010) 557-564.
[26] Y. Yang, Y.F. Cheng, Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection, Electrochimica Acta 253 (2017) 134-141.
[27] T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, TiO2−WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability, Chemistry of Materials 13(9) (2001) 2838-2842.
[28] R. Fujisawa, S. Tsujikawa, Cathodic Protection for Nuclear Waste Packaging Under Gamma Ray Irradiation by Using TiO2 Coating Combined with Glass Scintillators, MRS Online Proceedings Library 353(1) (1994) 735-742.
[29] T. Imokawa, R. Fujisawa, A. Suda, S. Tsujikawa, Protection of 304 Stainless Steel with TiO2 Coating, Zairyo-to-Kankyo 43(9) (1994) 482-486.
[30] D. Xu, Y. Liu, Y. Liu, F. Chen, C. Zhang, B. Liu, A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects, Materials & Design 197 (2021) 109235.
[31] M. Erol, T. Dikici, M. Toparli, E. Celik, The effect of anodization parameters on the formation of nanoporous TiO2 layers and their photocatalytic activities, Journal of Alloys and Compounds 604 (2014) 66-72.
[32] C.X. Lei, H. Zhou, Z.D. Feng, Y.F. Zhu, R.G. Du, Liquid phase deposition (LPD) of TiO2 thin films as photoanodes for cathodic protection of stainless steel, Journal of Alloys and Compounds 513 (2012) 552-558.
[33] G.X. Shen, Y.C. Chen, C.J. Lin, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films 489(1) (2005) 130-136.
[34] H. Hassannejad, T. Shahrabi, F. Malekmohammadi, A. Shanaghi, M. Aliofkhazraei, A. Oskuie, Effect of cerium doping on corrosion resistance of amorphous silica–titanium sol–gel coating, Current Applied Physics 10(4) (2010) 1022-1028.
[35] T. Shinohara, Impedance Measurement for Slow Decline of Electrode Potential of Fe-doped TiO2 Coating, Zairyo-to-Kankyo 50(4) (2001) 170-176.
[36] Y. Zhu, L. Zhang, L. Wang, Y. Fu, L. Cao, The preparation and chemical structure of TiO2 film photocatalysts supported on stainless steel substrates via the sol–gel method, Journal of Materials Chemistry 11(7) (2001) 1864-1868.
[37] H.P. Maruska, A.K. Ghosh, Transition-metal dopants for extending the response of titanate photoelectrolysis anodes, Solar Energy Materials 1(3) (1979) 237-247.
[38] J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate, Environmental Science & Technology 37(10) (2003) 2296-2301.
[39] M.A. Butler, D.S. Ginley, Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities, Journal of The Electrochemical Society 125(2) (1978) 228-232.
[40] J. Huang, T. Shinohara, S. Tsujikawa, Effects of Interfacial Iron Oxides on Corrosion Protection of Carbon Steel by TiO2 Coating under Illumination, Zairyo-to-Kankyo 46(10) (1997) 651-661.
[41] J. Huang, T. Konishi, T. Shinohara, S. Tsujikawa, Sol-Gel Derived Ti-Fe Oxide Coating for Photoelectrochemical Cathodic Protection of Carbon Steel, Zairyo-to-Kankyo 47(3) (1998) 193-199.
[42] J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C 116(36) (2012) 19182-19190.
[43] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, Journal of Colloid and Interface Science 315(1) (2007) 382-388.
[44] G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, V. Subramanian, I. Baudin, J.M. Laîné, Titania powder modified sol-gel process for photocatalytic applications, Journal of Materials Science 38(4) (2003) 823-831.
[45] J. Shang, W. Li, Y. Zhu, Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet, Journal of Molecular Catalysis A: Chemical 202(1) (2003) 187-195.
[46] J. Zhang, J. Hu, Y.-F. Zhu, Q. Liu, H. Zhang, R.-G. Du, C.-J. Lin, Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel, Corrosion Science 99 (2015) 118-124.
[47] R. Subasri, T. Shinohara, Investigations on the Photoprotection Ability of TiO2 Coated on Copper, Materials Science Forum 475-479 (2005) 297-300.
[48] M.-j. Zhou, Z.-o. Zeng, L. Zhong, Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating, Corrosion Science 51(6) (2009) 1386-1391.
[49] S. Luo, T.-D. Nguyen-Phan, A.C. Johnston-Peck, L. Barrio, S. Sallis, D.A. Arena, S. Kundu, W. Xu, L.F.J. Piper, E.A. Stach, D.E. Polyansky, E. Fujita, J.A. Rodriguez, S.D. Senanayake, Hierarchical Heterogeneity at the CeOx–TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures, The Journal of Physical Chemistry C 119(5) (2015) 2669-2679.
[50] L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells, RSC Advances 7(33) (2017) 20084-20092.
[51] Y. Zhang, A.H. Yuwono, J. Wang, J. Li, Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films, The Journal of Physical Chemistry C 113(51) (2009) 21406-21412.
[52] R. Subasri, M. Tripathi, K. Murugan, J. Revathi, G.V.N. Rao, T.N. Rao, Investigations on the photocatalytic activity of sol–gel derived plain and Fe3+/Nb5+-doped titania coatings on glass substrates, Materials Chemistry and Physics 124(1) (2010) 63-68.
[53] P.A. Sonar, S.G. Sanjeevagol, J. Manjanna, V.D. Patake, S. Nitin, Electrochemical behavior of cerium (III) hydroxide thin-film electrode in aqueous and non-aqueous electrolyte for supercapacitor applications, Journal of Materials Science: Materials in Electronics 33(34) (2022) 25787-25795.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *