帳號:guest(18.119.129.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳美璇
作者(外文):Chen, Mei-Hsuan
論文名稱(中文):Caspase水解GFAP產生無法聚合的蛋白片斷促進中間絲的不正常聚集
論文名稱(外文):Caspase Cleavage of GFAP Produces an Assembly-Compromised Proteolytic Fragment that Promotes Filament Aggregation
指導教授(中文):彭明德
指導教授(外文):Perng, Ming-der
口試委員(中文):高茂傑
林玉俊
劉銀樟
吳宗遠
口試委員(外文):Kao, Mou-Chieh
Lin, Yu-chun
Liu, Yin-Chang
Wu, Tzong-Yuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:102080872
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:39
中文關鍵詞:亞力山氏症中間絲蛋白
外文關鍵詞:Alexander diseaseC-terminal GFAPCentral nervous systemGlial fibrillary acidic proteinIntermediate filamentN-terminal GFAP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:170
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
Caspase (cysteine-containing asparte-specific protease ) 蛋白質脢水解GFAP神經膠質纖維酸性蛋白質(glial-specific intermediate filament protein, GFAP) 一連串的蛋白質脢解作用(proteolysi cascade),此死亡訊息送至死亡路徑去破壞DNA而使細胞死亡,此時細胞的蛋白質結構被破壞會引起中間型蛋白絲的不正常聚集。發生的逆境反應所媒介的下游訊號傳遞可能是造成亞歷山大氏症的一個關鍵因素。前人研究顯示中樞神經系統內的星狀細胞的中間型蛋白絲GFAP基因突變會引起亞歷山大氏症,而基因突變所引起的不正常中間絲蛋白失去支持細胞結構的能力是引起亞歷山大氏症的可能原因之一。這裡我們發現caspase蛋白質脢解的作用會讓GFAP序列分成carboxyl-terminal fragment (C-GFAP)端蛋白無法完成結構, 而 amino-terminal fragment (N-GFAP) 端之蛋白絲會不正常聚集,進而影響正常細胞完成正確結構。將利用誘導表現的細胞培養模式來建立中間型蛋白絲GFAP基因突變所造成的蛋白質聚合,逆境反應的誘發,為了再次確認caspase媒介的下游訊號傳遞蛋白質結構破壞時會引起中間型蛋白絲的不正常聚集及功能失調的關連性。此實驗進而研發出抗原決定位的抗體能夠辨認caspaes引起死亡路徑去破壞DNA而使細胞死亡時引發蛋白質結構改變的片段。這些在細胞層次上的關連性將有助於了解疾病形成的過程。此研究成果將可能應用於臨床上的治療,這些方法不但可以應用在亞歷山大氏症,對於治療病源於其他膠質細胞具有類似細胞骨架功能失調所造成的神經性疾病,也會有相當大的助益。

Glial fibrillary acidic protein (GFAP) is the major constituent of the glial intermediate filaments that are expressed mainly in mature astrocytes of the central nervous system. Dominant mutations in the gene encoding GFAP cause Alexander disease, a primary genetic disorder of astrocytes that typically affects young children. The expression of mutant GFAP or overexpression of wild-type GFAP promotes the formation of cytoplasmic aggregates, with caspase activation and GFAP proteolysis. In this study, we report that GFAP is cleaved specifically by caspase 6 at VELD225 in its L12 linker domain in vitro. Caspase cleavage of GFAP at Asp225 produces two major cleavage products. While the carboxyl terminal fragment (C-GFAP) is unable to assemble into filaments, the amino-terminal fragment (N-GFAP) forms filamentous structures that are variable in width and prone to aggregation. The effect of N-GFAP is dominant, thus affecting normal filament assembly in a way that promotes filament aggregation. Transient transfection of N-GFAP induces the formation of GFAP-containing aggregates, which also disrupt the endogenous networks of intact GFAP in a human astrocytoma cell line. In addition, we generated a caspase cleavage site-specific antibody that recognizes caspase-cleaved but not intact GFAP, as determine by immunoblotting and immunofluorescence. Using this antibody, we demonstrate the presence of the caspase-generated GFAP fragment in transfected cells expressing a disease-causing mutant GFAP and in two types of AxD models that have previously been shown to have varying levels of GFAP accumulation in different regions of the central nervous system. These results imply that caspase-mediated cleavage of GFAP correlates with elevated GFAP in the context of GFAP mutation and accumulation. Moreover, we provide evidence to suggest that caspase cleavage of GFAP has important functional consequences, decreasing GFAP filament solubility by changing filament–filament interactions in a way that promotes aggregation.
Abstract(I)
Abbreviation(III) Contents(I)
VChapter 1 Introduction(1)
Chapter 2 Materials & Method s( 3)
2.1 Plasmid construction and site-directed mutagenesis(3)
2.2 Expression and purification of recombinant GFAPs(3)
2.3 Caspase cleavage of GFAP in vitro(4)
2.4 In vitro assembly and sedimentation assay(4)
2.5 Electron microscopy(5)
2.6 Cell cultures and transient transfection(5)
2.7 Generation of caspase cleavage site-directed antibody(5)
2.8 Cell fractionation, immunoblotting and immunoprecipitation(6)
2.9 Cell fractionation, immunoblotting and immunoprecipitation(6)
2.10 Immunological analyses of GFAP proteolysis in transgenic mice(7)
Chapter 3 Results (9)
3.1 Specific cleavage of GFAP at Asp225 by caspase 6 in vitro (9)
3.2 Assembly properties of the caspase-generated cleavage products (9)
3.3 In vitro analysis of preassembled materials from intact GFAP and caspase cleavage products(11)
3.4 Generation and characterization of site-directed caspase cleavage antibody(12)
3.5 Effects of N-GFAP on the endogenous GFAP networks in U343MG cells(13)
3.6 Detection of N-GFAP in transgenic mice overexpressing human GFAP(14)
Chapter4 Discussion(16)
4.1 Caspases play an essential role during apoptotic cell death(16)
4.2 Structural consequences of caspase-mediated GFAP proteolysis(17)
4.3 Functional consequences of caspase-mediated GFAP proteolysis(18)
Reference (22)
Figure legends(30)
Figure 1(30)
Figure 2.(31)
Figure 3.(32)
Figure 4.(33)
Figure 5.(34)
Figure 6. (36)
Figure 7.(38)
Figure 8.(39)
References
[1] M. Hesse, T.M. Magin, K. Weber, Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18, J Cell Sci 114 (2001) 2569-2575.
[2] C. Eliasson, C. Sahlgren, C.H. Berthold, J. Stakeberg, J.E. Celis, C. Betsholtz, J.E. Eriksson, M. Pekny, Intermediate filament protein partnership in astrocytes, J Biol Chem 274 (1999) 23996-24006.
[3] M. Pekny, P. Leveen, M. Pekna, C. Eliasson, C.H. Berthold, B. Westermark, C. Betsholtz, Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally, EMBO J 14 (1995) 1590-1598.
[4] H. Gomi, T. Yokoyama, K. Fujimoto, T. Ikeda, A. Katoh, T. Itoh, S. Itohara, Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions, Neuron 14 (1995) 29-41.
[5] W. Liedtke, W. Edelmann, P.L. Bieri, F.C. Chiu, N.J. Cowan, R. Kucherlapati, C.S. Raine, GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination, Neuron 17 (1996) 607-615.
[6] M.A. McCall, R.G. Gregg, R.R. Behringer, M. Brenner, C.L. Delaney, E.J. Galbreath, C.L. Zhang, R.A. Pearce, S.Y. Chiu, A. Messing, Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology, Proc Natl Acad Sci U S A 93 (1996) 6361-6366.
[7] M. Pekny, C. Eliasson, R. Siushansian, M. Ding, S.J. Dixon, M. Pekna, J.X. Wilson, A. Hamberger, The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes, Neurochem Res 24 (1999) 1357-1362.
[8] E.A. Lepekhin, C. Eliasson, C.H. Berthold, V. Berezin, E. Bock, M. Pekny, Intermediate filaments regulate astrocyte motility, J Neurochem 79 (2001) 617-625.
[9] M. Anderova, S. Kubinova, T. Mazel, A. Chvatal, C. Eliasson, M. Pekny, E. Sykova, Effect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice, Glia 35 (2001) 189-203.
[10] M. Pekny, K.A. Stanness, C. Eliasson, C. Betsholtz, D. Janigro, Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice, Glia 22 (1998) 390-400.
[11] M. Pekny, M. Nilsson, Astrocyte activation and reactive gliosis, Glia 50 (2005) 427-434.
[12] M.V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci 32 (2009) 638-647.
[13] A. Messing, M.W. Head, K. Galles, E.J. Galbreath, J.E. Goldman, M. Brenner, Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice, Am J Pathol 152 (1998) 391-398.
[14] M. Brenner, A.B. Johnson, O. Boespflug-Tanguy, D. Rodriguez, J.E. Goldman, A. Messing, Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease, Nat Genet 27 (2001) 117-120.
[15] A. Messing, M. Brenner, M.B. Feany, M. Nedergaard, J.E. Goldman, Alexander disease, J Neurosci 32 (2012) 5017-5023.
[16] T. Iwaki, A. Iwaki, J.E. Goldman, Alpha B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle, Acta Neuropathol 85 (1993) 475-480.
[17] N. Tomokane, T. Iwaki, J. Tateishi, A. Iwaki, J.E. Goldman, Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold, Am J Pathol 138 (1991) 875-885.
[18] M.W. Head, E. Corbin, J.E. Goldman, Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease, Am J Pathol 143 (1993) 1743-1753.
[19] A. Messing, Transgenic studies of peripheral and central glia, Int J Dev Biol 42 (1998) 1019-1024.
[20] T.L. Hagemann, J.X. Connor, A. Messing, Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response, J Neurosci 26 (2006) 11162-11173.
[21] W. Cho, A. Messing, Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice, Exp Cell Res 315 (2009) 1260-1272.
[22] Y.S. Chen, S.C. Lim, M.H. Chen, R.A. Quinlan, M.D. Perng, Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability, Exp Cell Res 317 (2011) 2252-2266.
[23] C. Pop, G.S. Salvesen, Human caspases: activation, specificity, and regulation, J Biol Chem 284 (2009) 21777-21781.
[24] K. Orth, A.M. Chinnaiyan, M. Garg, C.J. Froelich, V.M. Dixit, The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A, J Biol Chem 271 (1996) 16443-16446.
[25] L. Rao, D. Perez, E. White, Lamin proteolysis facilitates nuclear events during apoptosis, J Cell Biol 135 (1996) 1441-1455.
[26] A. Takahashi, E.S. Alnemri, Y.A. Lazebnik, T. Fernandes-Alnemri, G. Litwack, R.D. Moir, R.D. Goldman, G.G. Poirier, S.H. Kaufmann, W.C. Earnshaw, Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis, Proc Natl Acad Sci U S A 93 (1996) 8395-8400.
[27] C. Caulin, G.S. Salvesen, R.G. Oshima, Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis, J Cell Biol 138 (1997) 1379-1394.
[28] N.O. Ku, M.B. Omary, Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation, J Biol Chem 276 (2001) 26792-26798.
[29] G.Z. Tao, D.H. Li, Q. Zhou, D.M. Toivola, P. Strnad, N. Sandesara, R.C. Cheung, A. Hong, M.B. Omary, Monitoring of epithelial cell caspase activation via detection of durable keratin fragment formation, J Pathol 215 (2008) 164-174.
[30] N.O. Ku, J. Liao, M.B. Omary, Apoptosis generates stable fragments of human type I keratins, J Biol Chem 272 (1997) 33197-33203.
[31] F. Chen, R. Chang, M. Trivedi, Y. Capetanaki, V.L. Cryns, Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis, J Biol Chem 278 (2003) 6848-6853.
[32] N. Morishima, Changes in nuclear morphology during apoptosis correlate with vimentin cleavage by different caspases located either upstream or downstream of Bcl-2 action, Genes Cells 4 (1999) 401-414.
[33] Y. Byun, F. Chen, R. Chang, M. Trivedi, K.J. Green, V.L. Cryns, Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis, Cell Death Differ 8 (2001) 443-450.
[34] K. Nakanishi, M. Maruyama, T. Shibata, N. Morishima, Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development, J Biol Chem 276 (2001) 41237-41244.
[35] N. Marceau, B. Schutte, S. Gilbert, A. Loranger, M.E. Henfling, J.L. Broers, J. Mathew, F.C. Ramaekers, Dual roles of intermediate filaments in apoptosis, Exp Cell Res 313 (2007) 2265-2281.
[36] H. Hirata, A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai, T. Okazaki, K. Yamamoto, M. Sasada, Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis, J Exp Med 187 (1998) 587-600.
[37] K.M. Boatright, G.S. Salvesen, Mechanisms of caspase activation, Curr Opin Cell Biol 15 (2003) 725-731.
[38] E.A. Slee, M.T. Harte, R.M. Kluck, B.B. Wolf, C.A. Casiano, D.D. Newmeyer, H.G. Wang, J.C. Reed, D.W. Nicholson, E.S. Alnemri, D.R. Green, S.J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner, J Cell Biol 144 (1999) 281-292.
[39] V. Cowling, J. Downward, Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain, Cell Death Differ 9 (2002) 1046-1056.
[40] R.K. Graham, Y. Deng, J. Carroll, K. Vaid, C. Cowan, M.A. Pouladi, M. Metzler, N. Bissada, L. Wang, R.L. Faull, M. Gray, X.W. Yang, L.A. Raymond, M.R. Hayden, Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo, J Neurosci 30 (2010) 15019-15029.
[41] T.E. Allsopp, J. McLuckie, L.E. Kerr, M. Macleod, J. Sharkey, J.S. Kelly, Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis, Cell Death Differ 7 (2000) 984-993.
[42] R.K. Graham, D.E. Ehrnhoefer, M.R. Hayden, Caspase-6 and neurodegeneration, Trends Neurosci 34 (2011) 646-656.
[43] P.E. Mouser, E. Head, K.H. Ha, T.T. Rohn, Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain, Am J Pathol 168 (2006) 936-946.
[44] G. Klaiman, T.L. Petzke, J. Hammond, A.C. Leblanc, Targets of caspase-6 activity in human neurons and Alzheimer disease, Mol Cell Proteomics 7 (2008) 1541-1555.
[45] M. Perng, M. Su, S.F. Wen, R. Li, T. Gibbon, A.R. Prescott, M. Brenner, R.A. Quinlan, The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27, Am J Hum Genet 79 (2006) 197-213.
[46] J.E. Ralton, X. Lu, A.M. Hutcheson, R.A. Quinlan, Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein, J Cell Sci 107 ( Pt 7) (1994) 1935-1948.
[47] M.D. Perng, A. Sandilands, J. Kuszak, R. Dahm, A. Wegener, A.R. Prescott, R.A. Quinlan, The intermediate filament systems in the eye lens, Methods Cell Biol 78 (2004) 597-624.
[48] I.D. Nicholl, R.A. Quinlan, Chaperone activity of alpha-crystallins modulates intermediate filament assembly, EMBO J 13 (1994) 945-953.
[49] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680-685.
[50] T.L. Hagemann, E.M. Jobe, A. Messing, Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival, PLoS One 7 (2012) e37304.
[51] S. Ruchaud, N. Korfali, P. Villa, T.J. Kottke, C. Dingwall, S.H. Kaufmann, W.C. Earnshaw, Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation, EMBO J 21 (2002) 1967-1977.
[52] N.O. Ku, R. Gish, T.L. Wright, M.B. Omary, Keratin 8 mutations in patients with cryptogenic liver disease, N Engl J Med 344 (2001) 1580-1587.
[53] H. Herrmann, U. Aebi, Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds, Annu Rev Biochem 73 (2004) 749-789.
[54] M. Brenner, K. Lampel, Y. Nakatani, J. Mill, C. Banner, K. Mearow, M. Dohadwala, R. Lipsky, E. Freese, Characterization of human cDNA and genomic clones for glial fibrillary acidic protein, Brain Res Mol Brain Res 7 (1990) 277-286.
[55] R.V. Talanian, C. Quinlan, S. Trautz, M.C. Hackett, J.A. Mankovich, D. Banach, T. Ghayur, K.D. Brady, W.W. Wong, Substrate specificities of caspase family proteases, J Biol Chem 272 (1997) 9677-9682.
[56] D.W. Nicholson, Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ 6 (1999) 1028-1042.
[57] R. Moll, W.W. Franke, Intermediate filaments and their interaction with membranes. The desmosome-cytokeratin filament complex and epithelial differentiation, Pathol Res Pract 175 (1982) 146-161.
[58] B. Schutte, M. Henfling, W. Kolgen, M. Bouman, S. Meex, M.P. Leers, M. Nap, V. Bjorklund, P. Bjorklund, B. Bjorklund, E.B. Lane, M.B. Omary, H. Jornvall, F.C. Ramaekers, Keratin 8/18 breakdown and reorganization during apoptosis, Exp Cell Res 297 (2004) 11-26.
[59] S.J. DeArmond, M. Fajardo, S.A. Naughton, L.F. Eng, Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study, Brain Res 262 (1983) 275-282.
[60] Y.B. Lee, S. Du, H. Rhim, E.B. Lee, G.J. Markelonis, T.H. Oh, Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I, Brain Res 864 (2000) 220-229.
[61] J.S. Zoltewicz, D. Scharf, B. Yang, A. Chawla, K.J. Newsom, L. Fang, Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury, Biomark Insights 7 (2012) 71-79.
[62] G. Tang, M.D. Perng, S. Wilk, R. Quinlan, J.E. Goldman, Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition, J Biol Chem 285 (2010) 10527-10537.
[63] G. Tang, Z. Xu, J.E. Goldman, Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease, J Biol Chem 281 (2006) 38634-38643.
[64] R.A. Quinlan, R.D. Moir, M. Stewart, Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation, J Cell Sci 93 ( Pt 1) (1989) 71-83.
[65] W.J. Chen, R.K. Liem, The endless story of the glial fibrillary acidic protein, J Cell Sci 107 ( Pt 8) (1994) 2299-2311.
[66] P.D. Kouklis, T. Papamarcaki, A. Merdes, S.D. Georgatos, A potential role for the COOH-terminal domain in the lateral packing of type III intermediate filaments, J Cell Biol 114 (1991) 773-786.
[67] H. Herrmann, S.V. Strelkov, B. Feja, K.R. Rogers, M. Brettel, A. Lustig, M. Haner, D.A. Parry, P.M. Steinert, P. Burkhard, U. Aebi, The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly, J Mol Biol 298 (2000) 817-832.
[68] H. Herrmann, M. Haner, M. Brettel, S.A. Muller, K.N. Goldie, B. Fedtke, A. Lustig, W.W. Franke, U. Aebi, Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains, J Mol Biol 264 (1996) 933-953.
[69] H. Bar, S. Sharma, H. Kleiner, N. Mucke, H. Zentgraf, H.A. Katus, U. Aebi, H. Herrmann, Interference of amino-terminal desmin fragments with desmin filament formation, Cell Motil Cytoskeleton 66 (2009) 986-999.
[70] L. Chang, K. Barlan, Y.H. Chou, B. Grin, M. Lakonishok, A.S. Serpinskaya, D.K. Shumaker, H. Herrmann, V.I. Gelfand, R.D. Goldman, The dynamic properties of intermediate filaments during organelle transport, J Cell Sci 122 (2009) 2914-2923.
[71] C. Kural, A.S. Serpinskaya, Y.H. Chou, R.D. Goldman, V.I. Gelfand, P.R. Selvin, Tracking melanosomes inside a cell to study molecular motors and their interaction, Proc Natl Acad Sci U S A 104 (2007) 5378-5382.
[72] K. Yoneda, T. Furukawa, Y.J. Zheng, T. Momoi, I. Izawa, M. Inagaki, M. Manabe, N. Inagaki, An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex, J Biol Chem 279 (2004) 7296-7303.
[73] C.M. Sahlgren, H.M. Pallari, T. He, Y.H. Chou, R.D. Goldman, J.E. Eriksson, A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death, EMBO J 25 (2006) 4808-4819.
[74] T.L. Hagemann, S.A. Gaeta, M.A. Smith, D.A. Johnson, J.A. Johnson, A. Messing, Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction, Hum Mol Genet 14 (2005) 2443-2458.
[75] L.F. Eng, Y.L. Lee, H. Kwan, M. Brenner, A. Messing, Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers, J Neurosci Res 53 (1998) 353-360.
[76] S.J. DeArmond, Y.L. Lee, H.A. Kretzschmar, L.F. Eng, Turnover of glial filaments in mouse spinal cord, J Neurochem 47 (1986) 1749-1753.
[77] F.C. Chiu, J.E. Goldman, Synthesis and turnover of cytoskeletal proteins in cultured astrocytes, J Neurochem 42 (1984) 166-174.
[78] G. Tang, Z. Yue, Z. Talloczy, T. Hagemann, W. Cho, A. Messing, D.L. Sulzer, J.E. Goldman, Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways, Hum Mol Genet 17 (2008) 1540-1555.
[79] Y. Zhang, B.A. Barres, Astrocyte heterogeneity: an underappreciated topic in neurobiology, Curr Opin Neurobiol 20 (2010) 588-594.
[80] S.M. Sullivan, A. Lee, S.T. Bjorkman, S.M. Miller, R.K. Sullivan, P. Poronnik, P.B. Colditz, D.V. Pow, Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP, J Biol Chem 282 (2007) 29414-29423.
[81] R. Tian, X. Wu, T.L. Hagemann, A.A. Sosunov, A. Messing, G.M. McKhann, J.E. Goldman, Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes, J Neuropathol Exp Neurol 69 (2010) 335-345.
[82] T.W. Meisingset, O. Risa, M. Brenner, A. Messing, U. Sonnewald, Alteration of glial-neuronal metabolic interactions in a mouse model of Alexander disease, Glia 58 (2010) 1228-1234.
[83] L. Acarin, S. Villapol, M. Faiz, T.T. Rohn, B. Castellano, B. Gonzalez, Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation, Glia 55 (2007) 954-965.
[84] D.C. Wagner, U.M. Riegelsberger, S. Michalk, W. Hartig, A. Kranz, J. Boltze, Cleaved caspase-3 expression after experimental stroke exhibits different phenotypes and is predominantly non-apoptotic, Brain Res 1381 (2011) 237-242.
[85] T.T. Rohn, L.W. Catlin, W.W. Poon, Caspase-cleaved glial fibrillary acidic protein within cerebellar white matter of the Alzheimer's disease brain, Int J Clin Exp Pathol 6 (2013) 41-48.
[86] R. Porchet, A. Probst, C. Bouras, E. Draberova, P. Draber, B.M. Riederer, Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer's disease, Proteomics 3 (2003) 1476-1485.
[87] J.H. Herskowitz, N.T. Seyfried, D.M. Duong, Q. Xia, H.D. Rees, M. Gearing, J. Peng, J.J. Lah, A.I. Levey, Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration, J Proteome Res 9 (2010) 6368-6379.
[88] M.A. Korolainen, S. Auriola, T.A. Nyman, I. Alafuzoff, T. Pirttila, Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain, Neurobiol Dis 20 (2005) 858-870.
[89] A. Verkhratsky, M.V. Sofroniew, A. Messing, N.C. deLanerolle, D. Rempe, J.J. Rodriguez, M. Nedergaard, Neurological diseases as primary gliopathies: a reassessment of neurocentrism, ASN Neuro 4 (2012) 131-149.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *