|
References [1] M. Hesse, T.M. Magin, K. Weber, Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18, J Cell Sci 114 (2001) 2569-2575. [2] C. Eliasson, C. Sahlgren, C.H. Berthold, J. Stakeberg, J.E. Celis, C. Betsholtz, J.E. Eriksson, M. Pekny, Intermediate filament protein partnership in astrocytes, J Biol Chem 274 (1999) 23996-24006. [3] M. Pekny, P. Leveen, M. Pekna, C. Eliasson, C.H. Berthold, B. Westermark, C. Betsholtz, Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally, EMBO J 14 (1995) 1590-1598. [4] H. Gomi, T. Yokoyama, K. Fujimoto, T. Ikeda, A. Katoh, T. Itoh, S. Itohara, Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions, Neuron 14 (1995) 29-41. [5] W. Liedtke, W. Edelmann, P.L. Bieri, F.C. Chiu, N.J. Cowan, R. Kucherlapati, C.S. Raine, GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination, Neuron 17 (1996) 607-615. [6] M.A. McCall, R.G. Gregg, R.R. Behringer, M. Brenner, C.L. Delaney, E.J. Galbreath, C.L. Zhang, R.A. Pearce, S.Y. Chiu, A. Messing, Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology, Proc Natl Acad Sci U S A 93 (1996) 6361-6366. [7] M. Pekny, C. Eliasson, R. Siushansian, M. Ding, S.J. Dixon, M. Pekna, J.X. Wilson, A. Hamberger, The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes, Neurochem Res 24 (1999) 1357-1362. [8] E.A. Lepekhin, C. Eliasson, C.H. Berthold, V. Berezin, E. Bock, M. Pekny, Intermediate filaments regulate astrocyte motility, J Neurochem 79 (2001) 617-625. [9] M. Anderova, S. Kubinova, T. Mazel, A. Chvatal, C. Eliasson, M. Pekny, E. Sykova, Effect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice, Glia 35 (2001) 189-203. [10] M. Pekny, K.A. Stanness, C. Eliasson, C. Betsholtz, D. Janigro, Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice, Glia 22 (1998) 390-400. [11] M. Pekny, M. Nilsson, Astrocyte activation and reactive gliosis, Glia 50 (2005) 427-434. [12] M.V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci 32 (2009) 638-647. [13] A. Messing, M.W. Head, K. Galles, E.J. Galbreath, J.E. Goldman, M. Brenner, Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice, Am J Pathol 152 (1998) 391-398. [14] M. Brenner, A.B. Johnson, O. Boespflug-Tanguy, D. Rodriguez, J.E. Goldman, A. Messing, Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease, Nat Genet 27 (2001) 117-120. [15] A. Messing, M. Brenner, M.B. Feany, M. Nedergaard, J.E. Goldman, Alexander disease, J Neurosci 32 (2012) 5017-5023. [16] T. Iwaki, A. Iwaki, J.E. Goldman, Alpha B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle, Acta Neuropathol 85 (1993) 475-480. [17] N. Tomokane, T. Iwaki, J. Tateishi, A. Iwaki, J.E. Goldman, Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold, Am J Pathol 138 (1991) 875-885. [18] M.W. Head, E. Corbin, J.E. Goldman, Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease, Am J Pathol 143 (1993) 1743-1753. [19] A. Messing, Transgenic studies of peripheral and central glia, Int J Dev Biol 42 (1998) 1019-1024. [20] T.L. Hagemann, J.X. Connor, A. Messing, Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response, J Neurosci 26 (2006) 11162-11173. [21] W. Cho, A. Messing, Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice, Exp Cell Res 315 (2009) 1260-1272. [22] Y.S. Chen, S.C. Lim, M.H. Chen, R.A. Quinlan, M.D. Perng, Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability, Exp Cell Res 317 (2011) 2252-2266. [23] C. Pop, G.S. Salvesen, Human caspases: activation, specificity, and regulation, J Biol Chem 284 (2009) 21777-21781. [24] K. Orth, A.M. Chinnaiyan, M. Garg, C.J. Froelich, V.M. Dixit, The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A, J Biol Chem 271 (1996) 16443-16446. [25] L. Rao, D. Perez, E. White, Lamin proteolysis facilitates nuclear events during apoptosis, J Cell Biol 135 (1996) 1441-1455. [26] A. Takahashi, E.S. Alnemri, Y.A. Lazebnik, T. Fernandes-Alnemri, G. Litwack, R.D. Moir, R.D. Goldman, G.G. Poirier, S.H. Kaufmann, W.C. Earnshaw, Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis, Proc Natl Acad Sci U S A 93 (1996) 8395-8400. [27] C. Caulin, G.S. Salvesen, R.G. Oshima, Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis, J Cell Biol 138 (1997) 1379-1394. [28] N.O. Ku, M.B. Omary, Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation, J Biol Chem 276 (2001) 26792-26798. [29] G.Z. Tao, D.H. Li, Q. Zhou, D.M. Toivola, P. Strnad, N. Sandesara, R.C. Cheung, A. Hong, M.B. Omary, Monitoring of epithelial cell caspase activation via detection of durable keratin fragment formation, J Pathol 215 (2008) 164-174. [30] N.O. Ku, J. Liao, M.B. Omary, Apoptosis generates stable fragments of human type I keratins, J Biol Chem 272 (1997) 33197-33203. [31] F. Chen, R. Chang, M. Trivedi, Y. Capetanaki, V.L. Cryns, Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis, J Biol Chem 278 (2003) 6848-6853. [32] N. Morishima, Changes in nuclear morphology during apoptosis correlate with vimentin cleavage by different caspases located either upstream or downstream of Bcl-2 action, Genes Cells 4 (1999) 401-414. [33] Y. Byun, F. Chen, R. Chang, M. Trivedi, K.J. Green, V.L. Cryns, Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis, Cell Death Differ 8 (2001) 443-450. [34] K. Nakanishi, M. Maruyama, T. Shibata, N. Morishima, Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development, J Biol Chem 276 (2001) 41237-41244. [35] N. Marceau, B. Schutte, S. Gilbert, A. Loranger, M.E. Henfling, J.L. Broers, J. Mathew, F.C. Ramaekers, Dual roles of intermediate filaments in apoptosis, Exp Cell Res 313 (2007) 2265-2281. [36] H. Hirata, A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai, T. Okazaki, K. Yamamoto, M. Sasada, Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis, J Exp Med 187 (1998) 587-600. [37] K.M. Boatright, G.S. Salvesen, Mechanisms of caspase activation, Curr Opin Cell Biol 15 (2003) 725-731. [38] E.A. Slee, M.T. Harte, R.M. Kluck, B.B. Wolf, C.A. Casiano, D.D. Newmeyer, H.G. Wang, J.C. Reed, D.W. Nicholson, E.S. Alnemri, D.R. Green, S.J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner, J Cell Biol 144 (1999) 281-292. [39] V. Cowling, J. Downward, Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain, Cell Death Differ 9 (2002) 1046-1056. [40] R.K. Graham, Y. Deng, J. Carroll, K. Vaid, C. Cowan, M.A. Pouladi, M. Metzler, N. Bissada, L. Wang, R.L. Faull, M. Gray, X.W. Yang, L.A. Raymond, M.R. Hayden, Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo, J Neurosci 30 (2010) 15019-15029. [41] T.E. Allsopp, J. McLuckie, L.E. Kerr, M. Macleod, J. Sharkey, J.S. Kelly, Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis, Cell Death Differ 7 (2000) 984-993. [42] R.K. Graham, D.E. Ehrnhoefer, M.R. Hayden, Caspase-6 and neurodegeneration, Trends Neurosci 34 (2011) 646-656. [43] P.E. Mouser, E. Head, K.H. Ha, T.T. Rohn, Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain, Am J Pathol 168 (2006) 936-946. [44] G. Klaiman, T.L. Petzke, J. Hammond, A.C. Leblanc, Targets of caspase-6 activity in human neurons and Alzheimer disease, Mol Cell Proteomics 7 (2008) 1541-1555. [45] M. Perng, M. Su, S.F. Wen, R. Li, T. Gibbon, A.R. Prescott, M. Brenner, R.A. Quinlan, The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27, Am J Hum Genet 79 (2006) 197-213. [46] J.E. Ralton, X. Lu, A.M. Hutcheson, R.A. Quinlan, Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein, J Cell Sci 107 ( Pt 7) (1994) 1935-1948. [47] M.D. Perng, A. Sandilands, J. Kuszak, R. Dahm, A. Wegener, A.R. Prescott, R.A. Quinlan, The intermediate filament systems in the eye lens, Methods Cell Biol 78 (2004) 597-624. [48] I.D. Nicholl, R.A. Quinlan, Chaperone activity of alpha-crystallins modulates intermediate filament assembly, EMBO J 13 (1994) 945-953. [49] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680-685. [50] T.L. Hagemann, E.M. Jobe, A. Messing, Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival, PLoS One 7 (2012) e37304. [51] S. Ruchaud, N. Korfali, P. Villa, T.J. Kottke, C. Dingwall, S.H. Kaufmann, W.C. Earnshaw, Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation, EMBO J 21 (2002) 1967-1977. [52] N.O. Ku, R. Gish, T.L. Wright, M.B. Omary, Keratin 8 mutations in patients with cryptogenic liver disease, N Engl J Med 344 (2001) 1580-1587. [53] H. Herrmann, U. Aebi, Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds, Annu Rev Biochem 73 (2004) 749-789. [54] M. Brenner, K. Lampel, Y. Nakatani, J. Mill, C. Banner, K. Mearow, M. Dohadwala, R. Lipsky, E. Freese, Characterization of human cDNA and genomic clones for glial fibrillary acidic protein, Brain Res Mol Brain Res 7 (1990) 277-286. [55] R.V. Talanian, C. Quinlan, S. Trautz, M.C. Hackett, J.A. Mankovich, D. Banach, T. Ghayur, K.D. Brady, W.W. Wong, Substrate specificities of caspase family proteases, J Biol Chem 272 (1997) 9677-9682. [56] D.W. Nicholson, Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ 6 (1999) 1028-1042. [57] R. Moll, W.W. Franke, Intermediate filaments and their interaction with membranes. The desmosome-cytokeratin filament complex and epithelial differentiation, Pathol Res Pract 175 (1982) 146-161. [58] B. Schutte, M. Henfling, W. Kolgen, M. Bouman, S. Meex, M.P. Leers, M. Nap, V. Bjorklund, P. Bjorklund, B. Bjorklund, E.B. Lane, M.B. Omary, H. Jornvall, F.C. Ramaekers, Keratin 8/18 breakdown and reorganization during apoptosis, Exp Cell Res 297 (2004) 11-26. [59] S.J. DeArmond, M. Fajardo, S.A. Naughton, L.F. Eng, Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study, Brain Res 262 (1983) 275-282. [60] Y.B. Lee, S. Du, H. Rhim, E.B. Lee, G.J. Markelonis, T.H. Oh, Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I, Brain Res 864 (2000) 220-229. [61] J.S. Zoltewicz, D. Scharf, B. Yang, A. Chawla, K.J. Newsom, L. Fang, Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury, Biomark Insights 7 (2012) 71-79. [62] G. Tang, M.D. Perng, S. Wilk, R. Quinlan, J.E. Goldman, Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition, J Biol Chem 285 (2010) 10527-10537. [63] G. Tang, Z. Xu, J.E. Goldman, Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease, J Biol Chem 281 (2006) 38634-38643. [64] R.A. Quinlan, R.D. Moir, M. Stewart, Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation, J Cell Sci 93 ( Pt 1) (1989) 71-83. [65] W.J. Chen, R.K. Liem, The endless story of the glial fibrillary acidic protein, J Cell Sci 107 ( Pt 8) (1994) 2299-2311. [66] P.D. Kouklis, T. Papamarcaki, A. Merdes, S.D. Georgatos, A potential role for the COOH-terminal domain in the lateral packing of type III intermediate filaments, J Cell Biol 114 (1991) 773-786. [67] H. Herrmann, S.V. Strelkov, B. Feja, K.R. Rogers, M. Brettel, A. Lustig, M. Haner, D.A. Parry, P.M. Steinert, P. Burkhard, U. Aebi, The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly, J Mol Biol 298 (2000) 817-832. [68] H. Herrmann, M. Haner, M. Brettel, S.A. Muller, K.N. Goldie, B. Fedtke, A. Lustig, W.W. Franke, U. Aebi, Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains, J Mol Biol 264 (1996) 933-953. [69] H. Bar, S. Sharma, H. Kleiner, N. Mucke, H. Zentgraf, H.A. Katus, U. Aebi, H. Herrmann, Interference of amino-terminal desmin fragments with desmin filament formation, Cell Motil Cytoskeleton 66 (2009) 986-999. [70] L. Chang, K. Barlan, Y.H. Chou, B. Grin, M. Lakonishok, A.S. Serpinskaya, D.K. Shumaker, H. Herrmann, V.I. Gelfand, R.D. Goldman, The dynamic properties of intermediate filaments during organelle transport, J Cell Sci 122 (2009) 2914-2923. [71] C. Kural, A.S. Serpinskaya, Y.H. Chou, R.D. Goldman, V.I. Gelfand, P.R. Selvin, Tracking melanosomes inside a cell to study molecular motors and their interaction, Proc Natl Acad Sci U S A 104 (2007) 5378-5382. [72] K. Yoneda, T. Furukawa, Y.J. Zheng, T. Momoi, I. Izawa, M. Inagaki, M. Manabe, N. Inagaki, An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex, J Biol Chem 279 (2004) 7296-7303. [73] C.M. Sahlgren, H.M. Pallari, T. He, Y.H. Chou, R.D. Goldman, J.E. Eriksson, A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death, EMBO J 25 (2006) 4808-4819. [74] T.L. Hagemann, S.A. Gaeta, M.A. Smith, D.A. Johnson, J.A. Johnson, A. Messing, Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction, Hum Mol Genet 14 (2005) 2443-2458. [75] L.F. Eng, Y.L. Lee, H. Kwan, M. Brenner, A. Messing, Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers, J Neurosci Res 53 (1998) 353-360. [76] S.J. DeArmond, Y.L. Lee, H.A. Kretzschmar, L.F. Eng, Turnover of glial filaments in mouse spinal cord, J Neurochem 47 (1986) 1749-1753. [77] F.C. Chiu, J.E. Goldman, Synthesis and turnover of cytoskeletal proteins in cultured astrocytes, J Neurochem 42 (1984) 166-174. [78] G. Tang, Z. Yue, Z. Talloczy, T. Hagemann, W. Cho, A. Messing, D.L. Sulzer, J.E. Goldman, Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways, Hum Mol Genet 17 (2008) 1540-1555. [79] Y. Zhang, B.A. Barres, Astrocyte heterogeneity: an underappreciated topic in neurobiology, Curr Opin Neurobiol 20 (2010) 588-594. [80] S.M. Sullivan, A. Lee, S.T. Bjorkman, S.M. Miller, R.K. Sullivan, P. Poronnik, P.B. Colditz, D.V. Pow, Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP, J Biol Chem 282 (2007) 29414-29423. [81] R. Tian, X. Wu, T.L. Hagemann, A.A. Sosunov, A. Messing, G.M. McKhann, J.E. Goldman, Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes, J Neuropathol Exp Neurol 69 (2010) 335-345. [82] T.W. Meisingset, O. Risa, M. Brenner, A. Messing, U. Sonnewald, Alteration of glial-neuronal metabolic interactions in a mouse model of Alexander disease, Glia 58 (2010) 1228-1234. [83] L. Acarin, S. Villapol, M. Faiz, T.T. Rohn, B. Castellano, B. Gonzalez, Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation, Glia 55 (2007) 954-965. [84] D.C. Wagner, U.M. Riegelsberger, S. Michalk, W. Hartig, A. Kranz, J. Boltze, Cleaved caspase-3 expression after experimental stroke exhibits different phenotypes and is predominantly non-apoptotic, Brain Res 1381 (2011) 237-242. [85] T.T. Rohn, L.W. Catlin, W.W. Poon, Caspase-cleaved glial fibrillary acidic protein within cerebellar white matter of the Alzheimer's disease brain, Int J Clin Exp Pathol 6 (2013) 41-48. [86] R. Porchet, A. Probst, C. Bouras, E. Draberova, P. Draber, B.M. Riederer, Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer's disease, Proteomics 3 (2003) 1476-1485. [87] J.H. Herskowitz, N.T. Seyfried, D.M. Duong, Q. Xia, H.D. Rees, M. Gearing, J. Peng, J.J. Lah, A.I. Levey, Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration, J Proteome Res 9 (2010) 6368-6379. [88] M.A. Korolainen, S. Auriola, T.A. Nyman, I. Alafuzoff, T. Pirttila, Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain, Neurobiol Dis 20 (2005) 858-870. [89] A. Verkhratsky, M.V. Sofroniew, A. Messing, N.C. deLanerolle, D. Rempe, J.J. Rodriguez, M. Nedergaard, Neurological diseases as primary gliopathies: a reassessment of neurocentrism, ASN Neuro 4 (2012) 131-149.
|