|
References: 1. Ranjit, S.; Kissoon, N., Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Me 2011, 12 (1), 90-100. 2. Bhatt, S.; Gething, P. W.; Brady, O. J.; Messina, J. P.; Farlow, A. W.; Moyes, C. L.; Drake, J. M.; Brownstein, J. S.; Hoen, A. G.; Sankoh, O.; Myers, M. F.; George, D. B.; Jaenisch, T.; Wint, G. R. W.; Simmons, C. P.; Scott, T. W.; Farrar, J. J.; Hay, S. I., The global distribution and burden of dengue. Nature 2013, 496 (7446), 504-507. 3. Kleinschmidt-DeMasters, B. K.; Beckham, J. D., West Nile Virus Encephalitis 16 Years Later. Brain Pathol 2015, 25 (5), 625-33. 4. Ishikawa, T.; Konishi, E., Potential chemotherapeutic targets for Japanese encephalitis: current status of antiviral drug development and future challenges. Expert Opin Ther Targets 2015, 19 (10), 1379-95. 5. Knox, J.; Cowan, R. U.; Doyle, J. S.; Ligtermoet, M. K.; Archer, J. S.; Burrow, J. N.; Tong, S. Y.; Currie, B. J.; Mackenzie, J. S.; Smith, D. W.; Catton, M.; Moran, R. J.; Aboltins, C. A.; Richards, J. S., Murray Valley encephalitis: a review of clinical features, diagnosis and treatment. Med J Aust 2012, 196 (5), 322-6. 6. Beasley, D. W.; McAuley, A. J.; Bente, D. A., Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2015, 115, 48-70. 7. Borchardt, R. A., Zika virus: A rapidly emerging infectious disease. JAAPA 2016, 29 (4), 48-50. 8. Nabel, G. J.; Zerhouni, E. A., Once and future epidemics: Zika virus emerging. Sci Transl Med 2016, 8 (330), 330ed2. 9. Muramatsu, T.; Takemoto, C.; Kim, Y. T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S., SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A 2016, 113 (46), 12997-13002. 10. Ong, C. W., Zika virus: an emerging infectious threat. Intern Med J 2016, 46 (5), 525-30. 11. Phoo, W. W.; Li, Y.; Zhang, Z.; Lee, M. Y.; Loh, Y. R.; Tan, Y. B.; Ng, E. Y.; Lescar, J.; Kang, C.; Luo, D., Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat Commun 2016, 7, 13410. 12. Xu, M.; Lee, E. M.; Wen, Z.; Cheng, Y.; Huang, W. K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S. C.; Hammack, C.; Jacob, F.; Nguyen, H. N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S. G.; Simeonov, A.; Huang, W.; Christian, K. M.; Goate, A.; Brennand, K. J.; Huang, R.; Xia, M.; Ming, G. L.; Zheng, W.; Song, H.; Tang, H., Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016, 22 (10), 1101-1107. 13. Zhang, Z.; Li, Y.; Loh, Y. R.; Phoo, W. W.; Hung, A. W.; Kang, C.; Luo, D., Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 2016, 354 (6319), 1597-1600. 14. Gulland, A., Zika virus is a global public health emergency, declares WHO. BMJ 2016, 352, i657. 15. Gubler, D. J., Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 2006, 277, 3-16; discussion 16-22, 71-3, 251-3. 16. Nedjadi, T.; El-Kafrawy, S.; Sohrab, S. S.; Despres, P.; Damanhouri, G.; Azhar, E., Tackling dengue fever: Current status and challenges. Virol J 2015, 12, 212. 17. Lim, S. P.; Wang, Q. Y.; Noble, C. G.; Chen, Y. L.; Dong, H.; Zou, B.; Yokokawa, F.; Nilar, S.; Smith, P.; Beer, D.; Lescar, J.; Shi, P. Y., Ten years of dengue drug discovery: progress and prospects. Antiviral Res 2013, 100 (2), 500-19. 18. Bollati, M.; Alvarez, K.; Assenberg, R.; Baronti, C.; Canard, B.; Cook, S.; Coutard, B.; Decroly, E.; de Lamballerie, X.; Gould, E. A.; Grard, G.; Grimes, J. M.; Hilgenfeld, R.; Jansson, A. M.; Malet, H.; Mancini, E. J.; Mastrangelo, E.; Mattevi, A.; Milani, M.; Moureau, G.; Neyts, J.; Owens, R. J.; Ren, J.; Selisko, B.; Speroni, S.; Steuber, H.; Stuart, D. I.; Unge, T.; Bolognesi, M., Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 2010, 87 (2), 125-48. 19. Brecher, M.; Zhang, J.; Li, H., The flavivirus protease as a target for drug discovery. Virol Sin 2013, 28 (6), 326-36. 20. Luo, D.; Vasudevan, S. G.; Lescar, J., The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015, 118, 148-58. 21. Sampath, A.; Padmanabhan, R., Molecular targets for flavivirus drug discovery. Antiviral Res 2009, 81 (1), 6-15. 22. Sinigaglia, A.; Riccetti, S.; Trevisan, M.; Barzon, L., In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018, 13 (9), 825-835. 23. Kang, C.; Keller, T. H.; Luo, D., Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol 2017, 25 (10), 797-808. 24. Oda, K., New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem 2012, 151 (1), 13-25. 25. Puente, X. S.; Sanchez, L. M.; Overall, C. M.; Lopez-Otin, C., Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003, 4 (7), 544-58. 26. Bazan, J. F.; Fletterick, R. J., Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A 1988, 85 (21), 7872-6. 27. Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7 (20), 1047-55. 28. Chiu, Y. Y.; Tseng, J. H.; Liu, K. H.; Lin, C. T.; Hsu, K. C.; Yang, J. M., Homopharma: a new concept for exploring the molecular binding mechanisms and drug repurposing. BMC Genomics 2014, 15 Suppl 9, S8. 29. Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016, 44 (W1), W344-50. 30. Badshah, S. L.; Naeem, A.; Mabkhot, Y., The New High Resolution Crystal Structure of NS2B-NS3 Protease of Zika Virus. Viruses 2017, 9 (1). 31. Nitsche, C.; Zhang, L.; Weigel, L. F.; Schilz, J.; Graf, D.; Bartenschlager, R.; Hilgenfeld, R.; Klein, C. D., Peptide-Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal Chemistry and Structural Biology. J Med Chem 2017, 60 (1), 511-516. 32. Vicente, C. R.; Herbinger, K. H.; Froschl, G.; Malta Romano, C.; de Souza Areias Cabidelle, A.; Cerutti Junior, C., Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitoria, Brazil. BMC Infect Dis 2016, 16, 320. 33. Romano, K. P.; Ali, A.; Royer, W. E.; Schiffer, C. A., Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci U S A 2010, 107 (49), 20986-91. 34. Chen, Y. F.; Hsu, K. C.; Lin, S. R.; Wang, W. C.; Huang, Y. C.; Yang, J. M., SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties. Nucleic Acids Res 2010, 38 (Web Server issue), W424-30. 35. Talwani, R.; Gilliam, B. L.; Rizza, S. A.; Nehra, V.; Temesgen, Z., Current status of treatment for chronic hepatitis C virus infection. Drugs Today (Barc) 2012, 48 (3), 219-31. 36. Zhang, X., Direct anti-HCV agents. Acta Pharm Sin B 2016, 6 (1), 26-31. 37. Ferenci, P., Viral hepatitis: cure of chronic hepatitis C--required length of follow-up? Nat Rev Gastroenterol Hepatol 2015, 12 (1), 10-1. 38. Hilgenfeldt, E. G.; Schlachterman, A.; Firpi, R. J., Hepatitis C: Treatment of difficult to treat patients. World J Hepatol 2015, 7 (15), 1953-63. 39. Geiss, B. J.; Stahla, H.; Hannah, A. M.; Gari, A. M.; Keenan, S. M., Focus on flaviviruses: current and future drug targets. Future Med Chem 2009, 1 (2), 327-44. 40. Shiryaev, S. A.; Strongin, A. Y., Structural and functional parameters of the flaviviral protease: a promising antiviral drug target. Future Virol 2010, 5 (5), 593-606. 41. Poulsen, A.; Kang, C.; Keller, T. H., Drug design for flavivirus proteases: what are we missing? Curr Pharm Des 2014, 20 (21), 3422-7. 42. Tomlinson, S. M.; Malmstrom, R. D.; Russo, A.; Mueller, N.; Pang, Y. P.; Watowich, S. J., Structure-based discovery of dengue virus protease inhibitors. Antiviral Res 2009, 82 (3), 110-4. 43. Cabarcas-Montalvo, M.; Maldonado-Rojas, W.; Montes-Grajales, D.; Bertel-Sevilla, A.; Wagner-Dobler, I.; Sztajer, H.; Reck, M.; Flechas-Alarcon, M.; Ocazionez, R.; Olivero-Verbel, J., Discovery of antiviral molecules for dengue: In silico search and biological evaluation. Eur J Med Chem 2016, 110, 87-97. 44. Yang, J. M.; Chen, C. C., GEMDOCK: a generic evolutionary method for molecular docking. Proteins 2004, 55 (2), 288-304. 45. Hsu, K. C.; Chen, Y. F.; Lin, S. R.; Yang, J. M., iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011, 12 Suppl 1, S33. 46. Soumana, D. I.; Ali, A.; Schiffer, C. A., Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem Biol 2014, 9 (11), 2485-90. 47. Noble, C. G.; Seh, C. C.; Chao, A. T.; Shi, P. Y., Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 2012, 86 (1), 438-46. 48. Erbel, P.; Schiering, N.; D'Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S. P.; Yin, Z.; Keller, T. H.; Vasudevan, S. G.; Hommel, U., Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 2006, 13 (4), 372-3. 49. Weinert, T.; Olieric, V.; Waltersperger, S.; Panepucci, E.; Chen, L.; Zhang, H.; Zhou, D.; Rose, J.; Ebihara, A.; Kuramitsu, S.; Li, D.; Howe, N.; Schnapp, G.; Pautsch, A.; Bargsten, K.; Prota, A. E.; Surana, P.; Kottur, J.; Nair, D. T.; Basilico, F.; Cecatiello, V.; Pasqualato, S.; Boland, A.; Weichenrieder, O.; Wang, B. C.; Steinmetz, M. O.; Caffrey, M.; Wang, M., Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 2015, 12 (2), 131-3. 50. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 2012, 52 (7), 1757-68. 51. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K., BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007, 35 (Database issue), D198-201. 52. Shindyalov, I. N.; Bourne, P. E., Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 1998, 11 (9), 739-47. 53. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G., Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23 (21), 2947-8. 54. Lorenz, I. C.; Marcotrigiano, J.; Dentzer, T. G.; Rice, C. M., Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature 2006, 442 (7104), 831-5. 55. Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N., ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010, 38 (Web Server issue), W529-33. 56. Hsu, K. C.; Cheng, W. C.; Chen, Y. F.; Wang, H. J.; Li, L. T.; Wang, W. C.; Yang, J. M., Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 2012, 7 (2), e32142. 57. Hsu, K. C.; Cheng, W. C.; Chen, Y. F.; Wang, W. C.; Yang, J. M., Pathway-based screening strategy for multitarget inhibitors of diverse proteins in metabolic pathways. PLoS Comput Biol 2013, 9 (7), e1003127. 58. Ascione, A., Boceprevir in chronic hepatitis C infection: a perspective review. Ther Adv Chronic Dis 2012, 3 (3), 113-21. 59. Jesudian, A. B.; Jacobson, I. M., Telaprevir for chronic hepatitis C virus infection. Clin Liver Dis 2013, 17 (1), 47-62. 60. Gentile, I.; Buonomo, A. R.; Zappulo, E.; Minei, G.; Morisco, F.; Borrelli, F.; Coppola, N.; Borgia, G., Asunaprevir, a protease inhibitor for the treatment of hepatitis C infection. Ther Clin Risk Manag 2014, 10, 493-504. 61. Musso, D.; Gubler, D. J., Zika Virus. Clin Microbiol Rev 2016, 29 (3), 487-524. 62. Kuivanen, S.; Bespalov, M. M.; Nandania, J.; Ianevski, A.; Velagapudi, V.; De Brabander, J. K.; Kainov, D. E.; Vapalahti, O., Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res 2017, 139, 117-128. 63. Millies, B.; von Hammerstein, F.; Gellert, A.; Hammerschmidt, S.; Barthels, F.; Goppel, U.; Immerheiser, M.; Elgner, F.; Jung, N.; Basic, M.; Kersten, C.; Kiefer, W.; Bodem, J.; Hildt, E.; Windbergs, M.; Hellmich, U. A.; Schirmeister, T., Proline-Based Allosteric Inhibitors of Zika and Dengue Virus NS2B/NS3 Proteases. J Med Chem 2019, 62 (24), 11359-11382. 64. Nitsche, C., Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019, 11 (2), 157-165. 65. Brecher, M.; Li, Z.; Liu, B.; Zhang, J.; Koetzner, C. A.; Alifarag, A.; Jones, S. A.; Lin, Q.; Kramer, L. D.; Li, H., A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog 2017, 13 (5), e1006411. 66. Shiryaev, S. A.; Farhy, C.; Pinto, A.; Huang, C. T.; Simonetti, N.; Elong Ngono, A.; Dewing, A.; Shresta, S.; Pinkerton, A. B.; Cieplak, P.; Strongin, A. Y.; Terskikh, A. V., Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res 2017, 143, 218-229. 67. Hilgenfeld, R.; Lei, J.; Zhang, L., The Structure of the Zika Virus Protease, NS2B/NS3(pro). Adv Exp Med Biol 2018, 1062, 131-145. 68. Yuan, S.; Chan, J. F.; den-Haan, H.; Chik, K. K.; Zhang, A. J.; Chan, C. C.; Poon, V. K.; Yip, C. C.; Mak, W. W.; Zhu, Z.; Zou, Z.; Tee, K. M.; Cai, J. P.; Chan, K. H.; de la Pena, J.; Perez-Sanchez, H.; Ceron-Carrasco, J. P.; Yuen, K. Y., Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res 2017, 145, 33-43. 69. Hsu, K. C.; Sung, T. Y.; Lin, C. T.; Chiu, Y. Y.; Hsu, J. T.; Hung, H. C.; Sun, C. M.; Barve, I.; Chen, W. L.; Huang, W. C.; Huang, C. T.; Chen, C. H.; Yang, J. M., Anchor-based classification and type-C inhibitors for tyrosine kinases. Sci Rep 2015, 5, 10938. 70. Pathak, N.; Lai, M. L.; Chen, W. Y.; Hsieh, B. W.; Yu, G. Y.; Yang, J. M., Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection. BMC Bioinformatics 2017, 18 (Suppl 16), 548. 71. Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D.; Lopez, R., The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019. 72. Crunkhorn, S., Infectious disease: 3D structure of Zika virus protease. Nat Rev Drug Discov 2016, 15 (9), 604. 73. Lei, J.; Hansen, G.; Nitsche, C.; Klein, C. D.; Zhang, L.; Hilgenfeld, R., Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 2016, 353 (6298), 503-5. 74. Phoo, W. W.; Zhang, Z.; Wirawan, M.; Chew, E. J. C.; Chew, A. B. L.; Kouretova, J.; Steinmetzer, T.; Luo, D., Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Res 2018, 160, 17-24. 75. Rut, W.; Zhang, L.; Kasperkiewicz, P.; Poreba, M.; Hilgenfeld, R.; Drag, M., Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Res 2017, 139, 88-94. 76. Gruba, N.; Rodriguez Martinez, J. I.; Grzywa, R.; Wysocka, M.; Skorenski, M.; Burmistrz, M.; Lecka, M.; Lesner, A.; Sienczyk, M.; Pyrc, K., Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett 2016, 590 (20), 3459-3468. 77. Kumar, A.; Liang, B.; Aarthy, M.; Singh, S. K.; Garg, N.; Mysorekar, I. U.; Giri, R., Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. ACS Omega 2018, 3 (12), 18132-18141. 78. Lee, H.; Ren, J.; Nocadello, S.; Rice, A. J.; Ojeda, I.; Light, S.; Minasov, G.; Vargas, J.; Nagarathnam, D.; Anderson, W. F.; Johnson, M. E., Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res 2017, 139, 49-58. 79. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579 (7798), 270-273. 80. Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zheng, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z., A new coronavirus associated with human respiratory disease in China. Nature 2020, 579 (7798), 265-269. 81. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W.; China Novel Coronavirus, I.; Research, T., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020, 382 (8), 727-733. 82. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 2020, 368 (6489), 409-412. 83. Coronaviridae Study Group of the International Committee on Taxonomy of, V., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020, 5 (4), 536-544. 84. World Health Organisation, WHO Director-media briefing on COVID-19. 2020. 85. Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S.; Albaiu, D., Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci 2020, 6 (3), 315-331. 86. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020, 30 (3), 269-271. 87. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L. W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H., Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582 (7811), 289-293. 88. Dai, W.; Zhang, B.; Jiang, X. M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L. K.; Xu, Y.; Yang, H.; Liu, H., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368 (6497), 1331-1335. 89. Kneller, D. W.; Phillips, G.; O'Neill, H. M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A., Structural plasticity of SARS-CoV-2 3CL M(pro) active site cavity revealed by room temperature X-ray crystallography. Nat Commun 2020, 11 (1), 3202. 90. Pathak, N.; Kuo, Y. P.; Chang, T. Y.; Huang, C. T.; Hung, H. C.; Hsu, J. T.; Yu, G. Y.; Yang, J. M., Zika Virus NS3 Protease Pharmacophore Anchor Model and Drug Discovery. Sci Rep 2020, 10 (1), 8929. 91. Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S. H., An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016, 59 (14), 6595-628. 92. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F. T.; de Beer, T. A. P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018, 46 (W1), W296-W303. 93. Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D.; Lopez, R., The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019, 47 (W1), W636-W641. 94. Haider, N., Functionality pattern matching as an efficient complementary structure/reaction search tool: an open-source approach. Molecules 2010, 15 (8), 5079-92. 95. Clinciu, D. L.; Chen, Y. F.; Ko, C. N.; Lo, C. C.; Yang, J. M., TSCC: Two-Stage Combinatorial Clustering for virtual screening using protein-ligand interactions and physicochemical features. BMC Genomics 2010, 11 Suppl 4, S26. 96. Drag, M.; Salvesen, G. S., Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010, 9 (9), 690-701. 97. Xu, J.; Zhao, S.; Teng, T.; Abdalla, A. E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X., Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020, 12 (2). 98. Bhakat, S.; Delang, L.; Kaptein, S.; Neyts, J.; Leyssen, P.; Jayaprakash, V., Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. Rsc Adv 2015, 5 (104), 85938-85949. 99. Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L. W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z., Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol 2020, 27 (6), 529-532. 100. Ma, C.; Sacco, M. D.; Hurst, B.; Townsend, J. A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M. T.; Chen, Y.; Wang, J., Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res 2020, 30 (8), 678-692.
|