帳號:guest(18.119.17.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):倪齊歐
作者(外文):Pathak, Nikhil
論文名稱(中文):透過藥效基團錨點進行泛病毒蛋白酶藥物開發及舊藥新用
論文名稱(外文):Pan-Virus Protease Drug Discovery and Repurposing using Pharmacophore Anchors
指導教授(中文):楊進⽊
楊立威
指導教授(外文):Yang, Jinn-Moon
Yang, Lee-Wei
口試委員(中文):黃明經
徐祖安
蔡懷寬
口試委員(外文):Hwang, Ming-Jing
Hsu, John Tsu-An
Tsai, Huai-Kuang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:102080866
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:121
中文關鍵詞:泛病毒病毒蛋白酶藥理錨藥物利用登革熱病毒寨卡病毒2019冠狀病毒
外文關鍵詞:Pan-virusPharmacophore anchorsDrug repurposingDengue VirusZika VirusCOVID-19
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
抽象:
過去幾十年來,從 HIV,HCV,DENV 病毒感染到最近的 ZIKA,流感,埃博拉病毒和當前的 COVID-19 大流行,傳染性病毒疾病一直持續影響著人類。典型的病毒性疾病(或感染)發生在生物體被病原性病毒入侵時,傳染性病毒顆粒(病毒體)附著並進入易感細胞,進一步導致病毒基因組和蛋白質組複製,隨後組裝並釋放出大量病毒副本。這些病毒儘管具有遺傳材料(DNA / RNA),進入和傳染機制,影響器官系統和傳播方式(空氣,液體或載體傳播),但仍具有一些共同的基本特徵和進入人體宿主的機制。在許多病毒中,病毒複製中的此類關鍵步驟之一是將病毒基因組翻譯的多蛋白裂解為功能性病毒蛋白。該關鍵的複制步驟由病毒蛋白酶進行。病毒蛋白酶是具有不同催化機制的催化酶(內切肽酶 EC 3.4.2),涉及絲氨酸,半胱氨酸或天冬氨酸殘基,以攻擊可裂解的肽鍵。因此,它們代表了阻斷病毒複製的有吸引力且有效的抗病毒靶標。另一方面,在當前除聚合酶抑製劑之外的抗病毒治療藥物中,一種主要批准的抗病毒藥物類別是靶向和阻斷病毒蛋白酶活性的蛋白酶抑製劑(例如:HIV 蛋白酶抑製劑藥物)。然而,目前在蛋白酶藥物的發現中,除了針對艾滋病毒和其他幾種病毒的蛋白酶抑製劑藥物之外,黃病毒科的大多數病毒(如 DENV,WNV,ZIKV 病毒)也是如此。冠狀病毒科,例如 SARS,MERS 和 COVID-19 病毒,目前尚無蛋白酶抑製劑藥物被批准。靶向病毒蛋白酶的蛋白酶藥物發現具有挑戰性,以抑制通過小分子藥物天然結合肽底物的活性位點腔。此外,儘管對病毒蛋白酶(例如黃病毒科)進行了大量的工作和研究,但缺乏系統的藥物設計和發現策略已成為阻礙。抑製劑分子還將病毒蛋白酶殘基作為靶標也更容易發生突變,這些突變很容易幫助病毒發現對抑製劑的抗性。該領域最重要但最具挑戰性的目標是最具吸引力但很難實現的泛病毒抑製劑(針對多種病毒的抑製劑)的聖杯。
為了解決這些科學問題,我們構建了一個系統的病毒蛋白酶藥物發現平台,以採用“ Pharmacophore Anchor”策略(目前主要針對黃病毒科病毒)來實現泛病毒蛋白酶抑製劑的目標(例如:DENV,WNV,JEV ,ZIKV)”和冠狀病毒科(例如:SARS-CoV-2,SARS-CoV, MERS-CoV)。藥效基團錨代表支持抑製劑分子結合的蛋白質表面上可藥用的熱點結合環境。給定活動位點腔的一組 Pharmacophore 錨點熱點包括病毒蛋白酶的“藥效基團錨點模型”。例如,對於使用藥效基團錨定靶向黃病毒 NS3 病毒蛋白酶的情況,我們建立了 HCV, DENV,WNV,JEV 和 ZIKV 感染性病毒的黃病毒蛋白酶的藥效基團錨定(PA)模型。這是通過 Big Compound 文庫對接到蛋白酶活性位點並總結殘基-化合物相互作用圖譜並對其進行分析以找到共有亞位點(殘基)-部分(化合物)藥效基團相互作用(被指定為Pharmacophore 錨點)而實現的。對於給定的病毒蛋白酶,Pharmacophore 錨(PA)模型錨描述了在空間上排列在活性位點上的所有 Pharmacophore 錨,具有以下特徵:錨類型
(E-H-V),錨殘基和部分偏好。發現的病毒蛋白酶藥理學錨和錨特徵的知識已用於虛擬篩選,基於錨的虛擬篩選用於發現病毒蛋白酶抑製劑。與傳統的基於對接能量的篩查相比,這種由藥典錨指導的計算機篩選方法具有更高的性能。此外,為使藥物重新利用,我們特意針對病毒蛋白酶篩選了 FDA 藥物。為了驗證病毒蛋白酶的 Pharmacophore 錨(例如:DENV, ZIKV)及其在錨固增強虛擬篩選中的實用性,我們對發現的抗病毒藥物候選物進行了實驗測試。我們發現–previr 類 FDA 藥物在體外抑制 DENV 和 ZIKV NS3 蛋白酶。我們通過斑塊試驗檢測到 FDA 藥物 Asunaprevir 和 telaprevir 抑制 DENV 病毒複製,其 EC50 值分別為10.4μM 和 24.5μM。此外,通過測試針對 ZIKV 的抗病毒候選物,我們發現 FDA 藥物Asunaprevir 和 Simeprevir 具有有效的抗 ZIKV 活性,EC50 值為 4.7μM 和 0.4μM。此外,發現這些–previr 藥物可直接和有效抑制 ZIKV NS3 蛋白酶,IC50 值分別為 6.0μM 和 2.6μM。對目前導致 SAV-CoV-2 大流行的 SARS-CoV-2 的冠狀病毒 3CL 蛋白酶採用了類似的方法,產生了–previr 藥物的抗病毒活性,Boceprevir 的 IC50 為 1.42 µM,EC50 為 49.89 µM,而Telaprevir 則表明–中等的蛋白酶抑製作用,IC50 為 11.47 µM。
我們針對這些特定蛋白酶的 Pharmacophore 錨也可以描述和指導研究可將錨與觀察到的抑制活性聯繫起來的結構-錨定-活性關係(SAAR)。此外,對於黃病毒蛋白酶,我們發現了核心 Pharmacophore 錨,它代表了整個蛋白酶的核心和高度保守的蛋白酶結合環境/熱點,能夠促進泛病毒蛋白酶抑製劑靶向泛病毒蛋白酶。黃病毒蛋白酶的 PA 模型和結果證明,“ 5種核心藥理錨 CEH1,CH3,CH7,CV1 和 CV3”在黃病毒科家族中提供了泛病毒蛋白酶結合,而冠狀病毒蛋白酶的 PA 模型和結果家族發現“ 3 核心藥理錨 EHV2,HV1 和 V3”在冠狀病毒科內部提供了泛病毒蛋白酶結合。對於這兩種情況,錨模型都極大地幫助發現了
“ –previr FDA 藥物”作為泛病毒蛋白酶抑製劑藥物在家庭內部和家庭中起作用。同樣,每種病毒蛋白酶的 Pharmacophore 錨模型有助於指導發現的先導分子的先導優化,從而產生具有納摩爾效率的有效抑製劑。以及目前將 FDA 藥物 Telaprevir 和 Asunaprevir 重新用於 DENV感染的用途; Asunaprevir 和 Simeprevir 用於 ZIKV 感染; Boceprevir 和 Telaprevir 用於SARS-CoV-2 感染,顯示出有望加快對病毒感染患者的治療,從而增強對抗這些病毒感染性疾病的能力。
ABSTRACT:
Infectious viral diseases have been persistently affecting humans for centuries, from HIV, HCV, DENV virus infection in the past decades to the recent ZIKA, influenza, Ebola, and the current COVID-19 pandemics. A typical viral disease (or infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions) attach and enter susceptible cells further leading to replication of the viral genome and proteome, followed by assembly and release of numerous viral copies. These viruses despite their genetic material (DNA/RNA), entry, and infectious mechanisms, affecting organ systems and modes of transmission (air, fluid or vector-borne) but still have some common basic features and entry mechanisms into their human host. Among many viruses, one such key step in viral replication is the cleavage of the virus genome translated polyprotein into functional virus proteins. This critical replication step is carried by the virus protease. Viral proteases are catalytic enzymes (endopeptidases EC 3.4.2) with different catalytic mechanisms involving either serine, cysteine, or aspartic acid residues to attack the scissile peptide bond. Thus they represent an attractive and effective antiviral target in blocking viral replication. On the other hand, amongst the current antiviral therapy drugs in adding to polymerase inhibitors, one major approved category of antiviral pharmaceuticals are the protease inhibitors that target and block the virus protease activity (ex: HIV protease inhibitor drugs). However currently in the protease drug discovery, apart from protease inhibitor drugs targeting HIV and few other viruses, for a majority of the viruses of the flaviviridae family like DENV, WNV, ZIKV viruses; Coronaviridae family like SARS, MERS, and COVID-19 viruses, no proteases inhibitor drugs have been approved as of yet. The protease Drug Discovery targeting the virus proteases has been challenging, to inhibit the active site cavity which naturally binds to peptide substrates by small molecule drugs. Moreover, despite much work and studies on the virus proteases (ex: flaviviridae), a lack of systematic drug design and discovery strategy had been a holdback. Also targeting the virus protease residues by the inhibitor molecules is more prone to mutations that easily can help the virus discover resistance against the inhibitors. The most important but challenging aim in the field is the holy-grail of pan-virus inhibitors (inhibitors targeting multiple viruses) that are most attractive but very difficult to achieve.
To address these scientific issues, we constructed a systematic Drug Discovery platform of the Virus proteases to achieve the Goal of Pan-virus Protease Inhibitors employing a “Pharmacophore Anchor” strategy currently focusing on the viruses of family flaviviridae (ex: DENV, WNV, JEV, ZIKV)” and the Coronaviridae (ex: SARS-CoV-2, SARS-CoV, MERS-CoV). Pharmacophore anchors represent the druggable hotspot binding environments on a protein surface that support the binding of the inhibitor molecules. A set of Pharmacophore anchor hotspots for a given active site cavity comprise “a pharmacophore anchor model” of the virus protease. For example, for the case of targeting the flavivirus NS3 virus proteases using pharmacophore anchors, we build the pharmacophore anchor (PA) models for the flaviviral proteases of HCV, DENV, WNV, JEV, and ZIKV infectious viruses. This was achieved by Big Compound libraries docking into the protease active sites and summarizing the residue-compound interaction profiles and analyzing them to find the consensus subsite (residue) –moiety (compound) pharmacophore interactions which were assigned as Pharmacophore anchors. For a given viral protease, the Pharmacophore anchor (PA) model anchors depict all the Pharmacophore anchors spatially arranged at the active site with features: anchor types (E-H-V), anchor residues, and moiety preferences. The discovered Viral Protease Pharmacophore anchors and the knowledge of the anchor features have been applied for the virtual screening, Anchor based Virtual Screening for discovering virus protease inhibitors. This in silico screening method guided by Pharmacophore anchor has improved performance over the traditional Docking Energy-based screening. Furthermore, to enable drug repurposing we specifically screened FDA Drugs against the virus proteases. To verify the Pharmacophore anchors of the virus proteases (Ex: DENV, ZIKV) and their utility in the Anchor-Enhanced Virtual Screening, we performed experimental testing of the antiviral drug candidates that have been discovered. We discovered –previr class of FDA drugs inhibiting the DENV and ZIKV NS3 proteases in vitro. We discovered FDA drugs asunaprevir and telaprevir inhibiting DENV viral replication as tested by plaque assays with EC50 values of 10.4 μM & 24.5 μM respectively. Moreover, upon testing the antiviral candidates against the ZIKV, we discovered FDA drugs Asunaprevir and Simeprevir to have potent anti-ZIKV activities with EC50 values 4.7 μM and 0.4 μM. Furthermore, these –previr drugs were found directly and potently inhibiting the ZIKV NS3 protease with IC50 values 6.0 μM and 2.6 μM respectively. A similar approach was applied on the coronavirus 3CL protease of the current SARS-CoV-2 causing COVID-19 pandemic, which yielded antiviral activities of –previr drugs, Boceprevir showing an IC50 of 1.42 µM and an EC50 of 49.89 µM, while Telaprevir showing a moderate protease inhibition only with an IC50 of 11.47 µM.
Our Pharmacophore anchors for these specific proteases could also describe and guide to study the structure-anchor-activity relationships (SAAR) that could link the anchors to observed inhibitory activities. In addition, to the flaviviral proteases, we discovered the Core Pharmacophore anchors, that represents the core and highly conserved protease binding environments/hotspots across protease that is capable to facilitate pan-virus protease targeting by pan-virus protease inhibitors. The PA models and Results for the flavivirus protease have proved that the “5 Core Pharmacophore anchors CEH1, CH3, CH7, CV1, and CV3” offering pan-virus protease binding within the flaviviridae family, and the PA models and Results for the coronavirus protease family discovers “3 Core Pharmacophore anchors EHV2, HV1, and V3” offer pan-virus protease binding within the coronaviridae family. For both the cases, the anchor model immensely aided the discovering of the “–previr FDA drugs” as Pan-virus Protease inhibitor drugs working within and across families”. Also, the Pharmacophore anchor models for each viral protease helps in guiding the lead optimization of the discovered lead molecules to give rise to potent inhibitors with nano-molar efficacies. Also the current repurposing of FDA drugs Telaprevir and Asunaprevir for DENV infection; Asunaprevir and Simeprevir for ZIKV infection; Boceprevir and Telaprevir for SARS-CoV-2 Infection, show promise to speed up the treatment of virus-infected Patients boosting up the fight against these viral infectious diseases.
CONTENTS
Abstract 4
CHAPTER 1: Introduction
1.1 Background:
1.1.1 Viral infections. 8
1.1.2 Viral Proteases as drug targets. 9
1.1.3 Introduction of protease families. 10
1.2 Current State and Challenge of Pan-Virus Protease Drugs. 13
1.3 Hypothesis and Aim 14
CHAPTER 2: Flavivirus NS3 Protease Pharmacophore Anchor (PA) Models for Anti-DENV Drug Discovery and Repurposing.
2.1 Introduction 20
2.2 Materials and Methods:
2.2.1 Overview of the strategy for targeting flaviviral NS3 proteases. 21
2.2.2 Preparation of DENV, WNV, JEV, HCV NS3 proteases & compound datasets. 22
2.2.3 Building DENV, WNV, JEV and HCV NS3 protease PA models and finding pharmacophore anchors. 23
2.2.4 Identification of flaviviral protease ‘Core and Specific anchors’. 24
2.2.5 Anchor-based virtual screening for anti-DENV drugs and repurposing. 25
2.3 Results:
2.3.1 The DENV, WNV, JEV and HCV NS3 protease PA models. 27
2.3.2 Core pharmacophore anchor (CPA) model of the flaviviral NS3 proteases. 30
2.3.3 Specific anchors of the DENV NS3 protease. 34
2.3.4. Validation of the PA/CPA model by anchor residue evolutionary conservation & mutational analysis. 35
2.3.5 DENV protease inhibitor candidates and anti-DENV FDA drugs. 42
2.4 Summary 47
CHAPTER 3: ZIKV NS3 Protease Pharmacophore Anchor (PA) Models for Anti-ZIKV Drug Discovery and Repurposing.
3.1 Introduction 50
3.2 Materials and Methods:
3.2.1 Overview of the strategy for targeting ZIKV NS3 Protease. 51
3.2.2 Preparation of ZIKV NS3 protease and compound datasets. 55
3.2.3 Mining pharmacophore anchors abd building ZIKV NS3 protease PA model. 55
3.2.4 Identification of ZIKV ‘Core and Specific anchors’. 56
3.2.5 Application in Anchor-enhanced virtual screening for anti-ZIKV drugs. 58
3.3 Results:
3.3.1 The ZIKV NS3 protease PA model. 58
3.3.2 Core anchors in ZIKV and Specific ZIKV NS3 protease anchors. 61
3.3.3 Protease substrate/inhibitor binding mechanisms explored with anchors. 64
3.3.4 ZIKV protease inhibitor candidates and anti-ZIKV FDA drugs. 70
3.4 Summary 77

CHAPTER 4: SARS-CoV-2 3CL Protease Pharmacophore Anchor (PA) Models for Anti-SARS-CoV-2 Drug Discovery and Repurposing.
4.1 Introduction 80
4.2 Materials and Methods:
4.2.1 Overview of the strategy for targeting SARS-CoV-2 3CL Protease. 81
4.2.2 Preparation of SARS-CoV-2 3CL protease and compound datasets. 83
4.2.3 Building SARS-CoV-2 3CL Protease Pharmacophore clusters (PPCs) by TSCC. 83
4.2.4 Identification of ‘Core and Consensus anchors’ of SARS-CoV-2 3CL proteases. 84
4.2.5 Application in anchor-derived virtual screening for anti-COVID-19 FDA drugs. 84
4.3 Results:
4.3.1 The SARS-CoV-2 3CL Protease Pharmacophore Clusters (PPCs). 85
4.3.2 The SARS-CoV-2 3CL PPC anchor maps. 93
4.3.3 PPC Core and Consensus anchors of SARS-CoV-2 3CL proteases. 94
4.3.4 SARS-CoV-2 protease inhibitors and COVID-19 FDA drugs. 97
4.4 Summary 107
CHAPTER 5: Conclusion:
5.1 Summary of major contributions and discoveries. 108
5.2 Future works. 113
List of Publications 115
References 116
References:
1. Ranjit, S.; Kissoon, N., Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Me 2011, 12 (1), 90-100.
2. Bhatt, S.; Gething, P. W.; Brady, O. J.; Messina, J. P.; Farlow, A. W.; Moyes, C. L.; Drake, J. M.; Brownstein, J. S.; Hoen, A. G.; Sankoh, O.; Myers, M. F.; George, D. B.; Jaenisch, T.; Wint, G. R. W.; Simmons, C. P.; Scott, T. W.; Farrar, J. J.; Hay, S. I., The global distribution and burden of dengue. Nature 2013, 496 (7446), 504-507.
3. Kleinschmidt-DeMasters, B. K.; Beckham, J. D., West Nile Virus Encephalitis 16 Years Later. Brain Pathol 2015, 25 (5), 625-33.
4. Ishikawa, T.; Konishi, E., Potential chemotherapeutic targets for Japanese encephalitis: current status of antiviral drug development and future challenges. Expert Opin Ther Targets 2015, 19 (10), 1379-95.
5. Knox, J.; Cowan, R. U.; Doyle, J. S.; Ligtermoet, M. K.; Archer, J. S.; Burrow, J. N.; Tong, S. Y.; Currie, B. J.; Mackenzie, J. S.; Smith, D. W.; Catton, M.; Moran, R. J.; Aboltins, C. A.; Richards, J. S., Murray Valley encephalitis: a review of clinical features, diagnosis and treatment. Med J Aust 2012, 196 (5), 322-6.
6. Beasley, D. W.; McAuley, A. J.; Bente, D. A., Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2015, 115, 48-70.
7. Borchardt, R. A., Zika virus: A rapidly emerging infectious disease. JAAPA 2016, 29 (4), 48-50.
8. Nabel, G. J.; Zerhouni, E. A., Once and future epidemics: Zika virus emerging. Sci Transl Med 2016, 8 (330), 330ed2.
9. Muramatsu, T.; Takemoto, C.; Kim, Y. T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S., SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A 2016, 113 (46), 12997-13002.
10. Ong, C. W., Zika virus: an emerging infectious threat. Intern Med J 2016, 46 (5), 525-30.
11. Phoo, W. W.; Li, Y.; Zhang, Z.; Lee, M. Y.; Loh, Y. R.; Tan, Y. B.; Ng, E. Y.; Lescar, J.; Kang, C.; Luo, D., Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat Commun 2016, 7, 13410.
12. Xu, M.; Lee, E. M.; Wen, Z.; Cheng, Y.; Huang, W. K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S. C.; Hammack, C.; Jacob, F.; Nguyen, H. N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S. G.; Simeonov, A.; Huang, W.; Christian, K. M.; Goate, A.; Brennand, K. J.; Huang, R.; Xia, M.; Ming, G. L.; Zheng, W.; Song, H.; Tang, H., Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016, 22 (10), 1101-1107.
13. Zhang, Z.; Li, Y.; Loh, Y. R.; Phoo, W. W.; Hung, A. W.; Kang, C.; Luo, D., Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 2016, 354 (6319), 1597-1600.
14. Gulland, A., Zika virus is a global public health emergency, declares WHO. BMJ 2016, 352, i657.
15. Gubler, D. J., Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 2006, 277, 3-16; discussion 16-22, 71-3, 251-3.
16. Nedjadi, T.; El-Kafrawy, S.; Sohrab, S. S.; Despres, P.; Damanhouri, G.; Azhar, E., Tackling dengue fever: Current status and challenges. Virol J 2015, 12, 212.
17. Lim, S. P.; Wang, Q. Y.; Noble, C. G.; Chen, Y. L.; Dong, H.; Zou, B.; Yokokawa, F.; Nilar, S.; Smith, P.; Beer, D.; Lescar, J.; Shi, P. Y., Ten years of dengue drug discovery: progress and prospects. Antiviral Res 2013, 100 (2), 500-19.
18. Bollati, M.; Alvarez, K.; Assenberg, R.; Baronti, C.; Canard, B.; Cook, S.; Coutard, B.; Decroly, E.; de Lamballerie, X.; Gould, E. A.; Grard, G.; Grimes, J. M.; Hilgenfeld, R.; Jansson, A. M.; Malet, H.; Mancini, E. J.; Mastrangelo, E.; Mattevi, A.; Milani, M.; Moureau, G.; Neyts, J.; Owens, R. J.; Ren, J.; Selisko, B.; Speroni, S.; Steuber, H.; Stuart, D. I.; Unge, T.; Bolognesi, M., Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 2010, 87 (2), 125-48.
19. Brecher, M.; Zhang, J.; Li, H., The flavivirus protease as a target for drug discovery. Virol Sin 2013, 28 (6), 326-36.
20. Luo, D.; Vasudevan, S. G.; Lescar, J., The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015, 118, 148-58.
21. Sampath, A.; Padmanabhan, R., Molecular targets for flavivirus drug discovery. Antiviral Res 2009, 81 (1), 6-15.
22. Sinigaglia, A.; Riccetti, S.; Trevisan, M.; Barzon, L., In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018, 13 (9), 825-835.
23. Kang, C.; Keller, T. H.; Luo, D., Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol 2017, 25 (10), 797-808.
24. Oda, K., New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem 2012, 151 (1), 13-25.
25. Puente, X. S.; Sanchez, L. M.; Overall, C. M.; Lopez-Otin, C., Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003, 4 (7), 544-58.
26. Bazan, J. F.; Fletterick, R. J., Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A 1988, 85 (21), 7872-6.
27. Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7 (20), 1047-55.
28. Chiu, Y. Y.; Tseng, J. H.; Liu, K. H.; Lin, C. T.; Hsu, K. C.; Yang, J. M., Homopharma: a new concept for exploring the molecular binding mechanisms and drug repurposing. BMC Genomics 2014, 15 Suppl 9, S8.
29. Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016, 44 (W1), W344-50.
30. Badshah, S. L.; Naeem, A.; Mabkhot, Y., The New High Resolution Crystal Structure of NS2B-NS3 Protease of Zika Virus. Viruses 2017, 9 (1).
31. Nitsche, C.; Zhang, L.; Weigel, L. F.; Schilz, J.; Graf, D.; Bartenschlager, R.; Hilgenfeld, R.; Klein, C. D., Peptide-Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal Chemistry and Structural Biology. J Med Chem 2017, 60 (1), 511-516.
32. Vicente, C. R.; Herbinger, K. H.; Froschl, G.; Malta Romano, C.; de Souza Areias Cabidelle, A.; Cerutti Junior, C., Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitoria, Brazil. BMC Infect Dis 2016, 16, 320.
33. Romano, K. P.; Ali, A.; Royer, W. E.; Schiffer, C. A., Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci U S A 2010, 107 (49), 20986-91.
34. Chen, Y. F.; Hsu, K. C.; Lin, S. R.; Wang, W. C.; Huang, Y. C.; Yang, J. M., SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties. Nucleic Acids Res 2010, 38 (Web Server issue), W424-30.
35. Talwani, R.; Gilliam, B. L.; Rizza, S. A.; Nehra, V.; Temesgen, Z., Current status of treatment for chronic hepatitis C virus infection. Drugs Today (Barc) 2012, 48 (3), 219-31.
36. Zhang, X., Direct anti-HCV agents. Acta Pharm Sin B 2016, 6 (1), 26-31.
37. Ferenci, P., Viral hepatitis: cure of chronic hepatitis C--required length of follow-up? Nat Rev Gastroenterol Hepatol 2015, 12 (1), 10-1.
38. Hilgenfeldt, E. G.; Schlachterman, A.; Firpi, R. J., Hepatitis C: Treatment of difficult to treat patients. World J Hepatol 2015, 7 (15), 1953-63.
39. Geiss, B. J.; Stahla, H.; Hannah, A. M.; Gari, A. M.; Keenan, S. M., Focus on flaviviruses: current and future drug targets. Future Med Chem 2009, 1 (2), 327-44.
40. Shiryaev, S. A.; Strongin, A. Y., Structural and functional parameters of the flaviviral protease: a promising antiviral drug target. Future Virol 2010, 5 (5), 593-606.
41. Poulsen, A.; Kang, C.; Keller, T. H., Drug design for flavivirus proteases: what are we missing? Curr Pharm Des 2014, 20 (21), 3422-7.
42. Tomlinson, S. M.; Malmstrom, R. D.; Russo, A.; Mueller, N.; Pang, Y. P.; Watowich, S. J., Structure-based discovery of dengue virus protease inhibitors. Antiviral Res 2009, 82 (3), 110-4.
43. Cabarcas-Montalvo, M.; Maldonado-Rojas, W.; Montes-Grajales, D.; Bertel-Sevilla, A.; Wagner-Dobler, I.; Sztajer, H.; Reck, M.; Flechas-Alarcon, M.; Ocazionez, R.; Olivero-Verbel, J., Discovery of antiviral molecules for dengue: In silico search and biological evaluation. Eur J Med Chem 2016, 110, 87-97.
44. Yang, J. M.; Chen, C. C., GEMDOCK: a generic evolutionary method for molecular docking. Proteins 2004, 55 (2), 288-304.
45. Hsu, K. C.; Chen, Y. F.; Lin, S. R.; Yang, J. M., iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011, 12 Suppl 1, S33.
46. Soumana, D. I.; Ali, A.; Schiffer, C. A., Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem Biol 2014, 9 (11), 2485-90.
47. Noble, C. G.; Seh, C. C.; Chao, A. T.; Shi, P. Y., Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 2012, 86 (1), 438-46.
48. Erbel, P.; Schiering, N.; D'Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S. P.; Yin, Z.; Keller, T. H.; Vasudevan, S. G.; Hommel, U., Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 2006, 13 (4), 372-3.
49. Weinert, T.; Olieric, V.; Waltersperger, S.; Panepucci, E.; Chen, L.; Zhang, H.; Zhou, D.; Rose, J.; Ebihara, A.; Kuramitsu, S.; Li, D.; Howe, N.; Schnapp, G.; Pautsch, A.; Bargsten, K.; Prota, A. E.; Surana, P.; Kottur, J.; Nair, D. T.; Basilico, F.; Cecatiello, V.; Pasqualato, S.; Boland, A.; Weichenrieder, O.; Wang, B. C.; Steinmetz, M. O.; Caffrey, M.; Wang, M., Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 2015, 12 (2), 131-3.
50. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 2012, 52 (7), 1757-68.
51. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K., BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007, 35 (Database issue), D198-201.
52. Shindyalov, I. N.; Bourne, P. E., Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 1998, 11 (9), 739-47.
53. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G., Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23 (21), 2947-8.
54. Lorenz, I. C.; Marcotrigiano, J.; Dentzer, T. G.; Rice, C. M., Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature 2006, 442 (7104), 831-5.
55. Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N., ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010, 38 (Web Server issue), W529-33.
56. Hsu, K. C.; Cheng, W. C.; Chen, Y. F.; Wang, H. J.; Li, L. T.; Wang, W. C.; Yang, J. M., Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 2012, 7 (2), e32142.
57. Hsu, K. C.; Cheng, W. C.; Chen, Y. F.; Wang, W. C.; Yang, J. M., Pathway-based screening strategy for multitarget inhibitors of diverse proteins in metabolic pathways. PLoS Comput Biol 2013, 9 (7), e1003127.
58. Ascione, A., Boceprevir in chronic hepatitis C infection: a perspective review. Ther Adv Chronic Dis 2012, 3 (3), 113-21.
59. Jesudian, A. B.; Jacobson, I. M., Telaprevir for chronic hepatitis C virus infection. Clin Liver Dis 2013, 17 (1), 47-62.
60. Gentile, I.; Buonomo, A. R.; Zappulo, E.; Minei, G.; Morisco, F.; Borrelli, F.; Coppola, N.; Borgia, G., Asunaprevir, a protease inhibitor for the treatment of hepatitis C infection. Ther Clin Risk Manag 2014, 10, 493-504.
61. Musso, D.; Gubler, D. J., Zika Virus. Clin Microbiol Rev 2016, 29 (3), 487-524.
62. Kuivanen, S.; Bespalov, M. M.; Nandania, J.; Ianevski, A.; Velagapudi, V.; De Brabander, J. K.; Kainov, D. E.; Vapalahti, O., Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res 2017, 139, 117-128.
63. Millies, B.; von Hammerstein, F.; Gellert, A.; Hammerschmidt, S.; Barthels, F.; Goppel, U.; Immerheiser, M.; Elgner, F.; Jung, N.; Basic, M.; Kersten, C.; Kiefer, W.; Bodem, J.; Hildt, E.; Windbergs, M.; Hellmich, U. A.; Schirmeister, T., Proline-Based Allosteric Inhibitors of Zika and Dengue Virus NS2B/NS3 Proteases. J Med Chem 2019, 62 (24), 11359-11382.
64. Nitsche, C., Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019, 11 (2), 157-165.
65. Brecher, M.; Li, Z.; Liu, B.; Zhang, J.; Koetzner, C. A.; Alifarag, A.; Jones, S. A.; Lin, Q.; Kramer, L. D.; Li, H., A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog 2017, 13 (5), e1006411.
66. Shiryaev, S. A.; Farhy, C.; Pinto, A.; Huang, C. T.; Simonetti, N.; Elong Ngono, A.; Dewing, A.; Shresta, S.; Pinkerton, A. B.; Cieplak, P.; Strongin, A. Y.; Terskikh, A. V., Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res 2017, 143, 218-229.
67. Hilgenfeld, R.; Lei, J.; Zhang, L., The Structure of the Zika Virus Protease, NS2B/NS3(pro). Adv Exp Med Biol 2018, 1062, 131-145.
68. Yuan, S.; Chan, J. F.; den-Haan, H.; Chik, K. K.; Zhang, A. J.; Chan, C. C.; Poon, V. K.; Yip, C. C.; Mak, W. W.; Zhu, Z.; Zou, Z.; Tee, K. M.; Cai, J. P.; Chan, K. H.; de la Pena, J.; Perez-Sanchez, H.; Ceron-Carrasco, J. P.; Yuen, K. Y., Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res 2017, 145, 33-43.
69. Hsu, K. C.; Sung, T. Y.; Lin, C. T.; Chiu, Y. Y.; Hsu, J. T.; Hung, H. C.; Sun, C. M.; Barve, I.; Chen, W. L.; Huang, W. C.; Huang, C. T.; Chen, C. H.; Yang, J. M., Anchor-based classification and type-C inhibitors for tyrosine kinases. Sci Rep 2015, 5, 10938.
70. Pathak, N.; Lai, M. L.; Chen, W. Y.; Hsieh, B. W.; Yu, G. Y.; Yang, J. M., Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection. BMC Bioinformatics 2017, 18 (Suppl 16), 548.
71. Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D.; Lopez, R., The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019.
72. Crunkhorn, S., Infectious disease: 3D structure of Zika virus protease. Nat Rev Drug Discov 2016, 15 (9), 604.
73. Lei, J.; Hansen, G.; Nitsche, C.; Klein, C. D.; Zhang, L.; Hilgenfeld, R., Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 2016, 353 (6298), 503-5.
74. Phoo, W. W.; Zhang, Z.; Wirawan, M.; Chew, E. J. C.; Chew, A. B. L.; Kouretova, J.; Steinmetzer, T.; Luo, D., Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Res 2018, 160, 17-24.
75. Rut, W.; Zhang, L.; Kasperkiewicz, P.; Poreba, M.; Hilgenfeld, R.; Drag, M., Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Res 2017, 139, 88-94.
76. Gruba, N.; Rodriguez Martinez, J. I.; Grzywa, R.; Wysocka, M.; Skorenski, M.; Burmistrz, M.; Lecka, M.; Lesner, A.; Sienczyk, M.; Pyrc, K., Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett 2016, 590 (20), 3459-3468.
77. Kumar, A.; Liang, B.; Aarthy, M.; Singh, S. K.; Garg, N.; Mysorekar, I. U.; Giri, R., Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. ACS Omega 2018, 3 (12), 18132-18141.
78. Lee, H.; Ren, J.; Nocadello, S.; Rice, A. J.; Ojeda, I.; Light, S.; Minasov, G.; Vargas, J.; Nagarathnam, D.; Anderson, W. F.; Johnson, M. E., Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res 2017, 139, 49-58.
79. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579 (7798), 270-273.
80. Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zheng, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z., A new coronavirus associated with human respiratory disease in China. Nature 2020, 579 (7798), 265-269.
81. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W.; China Novel Coronavirus, I.; Research, T., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020, 382 (8), 727-733.
82. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 2020, 368 (6489), 409-412.
83. Coronaviridae Study Group of the International Committee on Taxonomy of, V., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020, 5 (4), 536-544.
84. World Health Organisation, WHO Director-media briefing on COVID-19. 2020.
85. Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S.; Albaiu, D., Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci 2020, 6 (3), 315-331.
86. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020, 30 (3), 269-271.
87. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L. W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H., Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582 (7811), 289-293.
88. Dai, W.; Zhang, B.; Jiang, X. M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L. K.; Xu, Y.; Yang, H.; Liu, H., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368 (6497), 1331-1335.
89. Kneller, D. W.; Phillips, G.; O'Neill, H. M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A., Structural plasticity of SARS-CoV-2 3CL M(pro) active site cavity revealed by room temperature X-ray crystallography. Nat Commun 2020, 11 (1), 3202.
90. Pathak, N.; Kuo, Y. P.; Chang, T. Y.; Huang, C. T.; Hung, H. C.; Hsu, J. T.; Yu, G. Y.; Yang, J. M., Zika Virus NS3 Protease Pharmacophore Anchor Model and Drug Discovery. Sci Rep 2020, 10 (1), 8929.
91. Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S. H., An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016, 59 (14), 6595-628.
92. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F. T.; de Beer, T. A. P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018, 46 (W1), W296-W303.
93. Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D.; Lopez, R., The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019, 47 (W1), W636-W641.
94. Haider, N., Functionality pattern matching as an efficient complementary structure/reaction search tool: an open-source approach. Molecules 2010, 15 (8), 5079-92.
95. Clinciu, D. L.; Chen, Y. F.; Ko, C. N.; Lo, C. C.; Yang, J. M., TSCC: Two-Stage Combinatorial Clustering for virtual screening using protein-ligand interactions and physicochemical features. BMC Genomics 2010, 11 Suppl 4, S26.
96. Drag, M.; Salvesen, G. S., Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010, 9 (9), 690-701.
97. Xu, J.; Zhao, S.; Teng, T.; Abdalla, A. E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X., Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020, 12 (2).
98. Bhakat, S.; Delang, L.; Kaptein, S.; Neyts, J.; Leyssen, P.; Jayaprakash, V., Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. Rsc Adv 2015, 5 (104), 85938-85949.
99. Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L. W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z., Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol 2020, 27 (6), 529-532.
100. Ma, C.; Sacco, M. D.; Hurst, B.; Townsend, J. A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M. T.; Chen, Y.; Wang, J., Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res 2020, 30 (8), 678-692.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *