|
[1] G. Ferry, C. Ubeaud, C. Dauly, J. Mozo, S. Guillard, S. Berger, S. Jimenez, C. Scoul, G. Leclerc, S. Yous, P. Delagrange, J.A. Boutin, Purification of the recombinant human serotonin N-acetyltransferase (EC 2.3.1.87): further characterization of and comparison with AANAT from other species, Protein Expres Purif 38 (2004) 84-98. [2] M.A.A. Namboodiri, M.J. Brownstein, J. Weller, P. Voisin, D.C. Klein, Multiple Forms of Arylalkylamine N-Acetyltransferases in the Rat Pineal-Gland - Purification of One Molecular-Form, J Pineal Res 4 (1987) 235-246. [3] D. Brodbeck, R. Amherd, P. Callaerts, E. Hintermann, U.A. Meyer, M. Affolter, Molecular and biochemical characterization of the aaNAT1 (Dat) locus in Drosophila melanogaster: Differential expression of two gene products, DNA Cell Biol 17 (1998) 621-633. [4] P. Mehere, Q. Han, B.M. Christensen, J.Y. Li, Identification and characterization of two arylalkylamine N-acetyltransferases in the yellow fever mosquito, Aedes aegypti, Insect Biochem Molec 41 (2011) 707-714. [5] J. De Angelis, J. Gastel, D.C. Klein, P.A. Cole, Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87), J Biol Chem 273 (1998) 3045-3050. [6] D.C. Klein, Arylalkylamine N-acetyltransferase: "the timezyme", J Biol Chem 282 (2007) 4233-4237. [7] H. Hohjoh, M. Takasu, K. Shishikura, Y. Takahashi, Y. Honda, K. Tokunaga, Significant association of the arylalkylamine N-acetyltransferase (AA-NAT) gene with delayed sleep phase syndrome, Neurogenetics 4 (2003) 151-153. [8] Q. Han, H. Robinson, H.Z. Ding, B.M. Christensen, J.Y. Li, Evolution of insect arylalkylamine N-acetyltransferases: Structural evidence from the yellow fever mosquito, Aedes aegypti, P Natl Acad Sci USA 109 (2012) 11669-11674. [9] T. Tsugehara, S. Iwai, Y. Fujiwara, K. Mita, M. Takeda, Cloning and characterization of insect arylalkylamine N-acetyltransferase from Bombyx mori, Comp Biochem Phys B 147 (2007) 358-366. [10] S.A. Dewhurst, K. Ikeda, R.E. Mccaman, S.G. Croker, Metabolism of Biogenic-Amines in Drosophila Nervous-Tissue, Comp Biochem Physiol 43 (1972) 975-981. [11] S. Hiragaki, T. Suzuki, A.A.M. Mohamed, M. Takeda, Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods, Front Physiol 6 (2015) 113. [12] B.D. Sloley, Metabolism of monoamines in invertebrates: The relative importance of monoamine oxidase in different phyla, Neurotoxicology 25 (2004) 175-183. [13] S.O. Andersen, Insect cuticular sclerotization: A review, Insect Biochem Molec 40 (2010) 166-178. [14] Y.H. Long, J.R. Li, T.F. Zhao, G.N. Li, Y. Zhu, A New Arylalkylamine N-Acetyltransferase in Silkworm (Bombyx mori) Affects Integument Pigmentation, Appl Biochem Biotech 175 (2015) 3447-3457. [15] M.Y. Noh, B. Koo, K.J. Kramer, S. Muthukrishnan, Y. Arakane, Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum, Insect Biochem Molec 79 (2016) 119-129. [16] D.R. Dempsey, K.A. Jeffries, R.L. Anderson, A.M. Carpenter, S.R. Opsina, D.J. Merkler, Identification of an arylalkylamine N-acyltransferase from Drosophila melanogaster that catalyzes the formation of long-chain N-acylserotonins, Febs Lett 588 (2014) 594-599. [17] R.L. Anderson, M.R. Battistini, D.J. Wallis, C. Shoji, B.G. O'Flynn, J.E. Dillashaw, D.J. Merkler, Bm-iAANAT and its potential role in fatty acid amide biosynthesis in Bombyx mori, Prostag Leukotr Ess 135 (2018) 10-17. [18] A.A.M. Mohamed, Q.S. Wang, J. Bembenek, N. Ichihara, S. Hiragaki, T. Suzuki, M. Takeda, N-acetyltransferase (nat) Is a Critical Conjunct of Photoperiodism between the Circadian System and Endocrine Axis in Antheraea pernyi, Plos One 15 (2014) e0235916. [19] B.G. O'Flynn, A.J. Hawley, D.J. Merkler, Insect Arylalkylamine N-Acetyltransferases as Potential Targets for Novel Insecticide Design, Biochem Mol Biol J 4 (2018) 4. [20] T. Tsugehara, T. Imai, M. Takeda, Characterization of arylalkylamine N-acetyltransferase from silkmoth (Antheraea pernyi) and pesticidal drug design based on the baculovirus-expressed enzyme, Comp Biochem Phys C 157 (2013) 93-102. [21] B.G. O'Flynn, E.M. Lewandowski, K.C. Prins, G. Suarez, A.N. McCaskey, N.M. Rios-Guzman, R.L. Anderson, B.A. Shepherd, I. Gelis, J.W. Leahy, Y. Chen, D.J. Merkler, Characterization of Arylalkylamine N-Acyltransferase from Tribolium castaneum: An Investigation into a Potential Next-Generation Insecticide Target, Acs Chem Biol 15 (2020) 513-523. [22] F. Dyda, D.C. Klein, A.B. Hickman, GCN5-related N-acetyltransferases: A structural overview, Annu Rev Bioph Biom 29 (2000) 81-103. [23] A.I.M.S. Ud-Din, A. Tikhomirova, A. Roujeinikova, Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT), Int J Mol Sci 17 (2016) 1018. [24] M.W. Vetting, L.P.S. de Carvalho, M. Yu, S.S. Hegde, S. Magnet, S.L. Roderick, J.S. Blanchard, Structure and functions of the GNAT superfamily of acetyltransferases, Arch Biochem Biophys 433 (2005) 212-226. [25] E. Wolf, A. Vassilev, Y. Makino, A. Sali, Y. Nakatani, S.K. Burley, Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase, Cell 94 (1998) 439-449. [26] R.H. Evjenth, A.K. Brenner, P.R. Thompson, T. Arnesen, N.A. Froystein, J.R. Lillehaug, Human protein N-terminal acetyltransferase hNaa50p (hNAT5/hSAN) follows ordered sequential catalytic mechanism: combined kinetic and NMR study, J Biol Chem 287 (2012) 10081-10088. [27] C. Peneff, D. Mengin-Lecreulx, Y. Bourne, The crystal structures of apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase, J Biol Chem 276 (2001) 16328-16334. [28] A.B. Hickman, M.A.A. Namboodiri, D.C. Klein, F. Dyda, The structural basis of ordered substrate binding by serotonin N-acetyltransferase: Enzyme complex at 1.8 angstrom resolution with a bisubstrate analog, Cell 97 (1999) 361-369. [29] A.A. Aboalroub, A.B. Bachman, Z.M. Zhang, D. Keramisanou, D.J. Merkler, I. Gelis, Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase, Plos One 12 (2017) e0177270. [30] A.A. Aboalroub, Z. Zhang, D. Keramisanou, I. Gelis, Backbone resonance assignment of an insect arylalkylamine N-acetyltransferase from Bombyx mori reveals conformational heterogeneity, Biomol Nmr Assign 11 (2017) 105-109. [31] D.R. Dempsey, K.A. Jeffries, J.D. Bond, A.M. Carpenter, S. Rodriguez-Ospina, L. Breydo, K.K. Caswell, D.J. Merkler, Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases, Biochemistry-Us 53 (2014) 7777-7793. [32] H. Wang, L. Liu, P.E. Hanna, C.R. Wagner, Catalytic mechanism of hamster arylamine N-acetyltransferase 2, Biochemistry-Us 44 (2005) 11295-11306. [33] I.M. Westwood, A. Kawamura, E. Fullam, A.J. Russell, S.G. Davies, E. Sim, Structure and mechanism of arylamine N-acetyltransferases, Curr Top Med Chem 6 (2006) 1641-1654. [34] K.C. Cheng, J.N. Liao, P.C. Lyu, Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism, Biochem J 446 (2012) 395-404. [35] Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Method Enzymol 276 (1997) 307-326. [36] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D 66 (2010) 213-221. [37] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Features and development of Coot, Acta Crystallogr D 66 (2010) 486-501. [38] R.A. Laskowski, M.W. Macarthur, D.S. Moss, J.M. Thornton, Procheck - a Program to Check the Stereochemical Quality of Protein Structures, J Appl Crystallogr 26 (1993) 283-291. [39] F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, A. Bax, NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J Biomol Nmr 6 (1995) 277-293. [40] W. Lee, M. Tonelli, J.L. Markley, NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy, Bioinformatics 31 (2015) 1325-1327. [41] M.P. Williamson, Using chemical shift perturbation to characterise ligand binding, Prog Nucl Mag Res Sp 73 (2013) 1-16. [42] D.S. Waugh, Genetic tools for selective labeling of proteins with alpha-15N-amino acids, J Biomol Nmr 8 (1996) 184-192. [43] C. Prasanna, A. Dubey, H.S. Atreya, Amino acid selective unlabeling in protein NMR spectroscopy, Methods Enzymol 565 (2015) 167-189. [44] Y. Shen, A. Bax, Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks, J Biomol Nmr 56 (2013) 227-241. [45] C.C. Valley, A. Cembran, J.D. Perlmutter, A.K. Lewis, N.P. Labello, J. Gao, J.N. Sachs, The Methionine-aromatic Motif Plays a Unique Role in Stabilizing Protein Structure, J Biol Chem 287 (2012) 34979-34991. [46] L. Pravda, D. Sehnal, D. Tousek, V. Navratilova, V. Bazgier, K. Berka, R.S. Varekova, J. Koca, M. Otyepka, MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update), Nucleic Acids Res 46 (2018) W368-W373. [47] Z. Prokop, A. Gora, J. Brezovsky, R. Chaloupkova, V. Stepankova, J. Damborský, Engineering of protein tunnels: Keyhole-lock-key model for catalysis by the enzymes with active sites, 2012, pp. 421-464. [48] A. Gora, J. Brezovsky, J. Damborsky, Gates of enzymes, Chem Rev 113 (2013) 5871-5923. [49] D.R. Dempsey, D.A. Nichols, M.R. Battistini, O. Pemberton, S.R. Ospina, X. Zhang, A.M. Carpenter, B.G. O'Flynn, J.W. Leahy, A. Kanwar, E.M. Lewandowski, Y. Chen, D.J. Merkler, Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine, Sci Rep 7 (2017) 13432. [50] H. Guan, M.Y. Wang, C.H. Liao, J. Liang, P. Mehere, M.L. Tian, H.R. Liu, H. Robinson, J.Y. Li, Q. Han, Identification of aaNAT5b as a spermine N-acetyltransferase in the mosquito, Aedes aegypti, Plos One 13 (2018) e0194499. [51] S.S. Hegde, J. Chandler, M.W. Vetting, M. Yu, J.S. Blanchard, Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase, Biochemistry-Us 46 (2007) 7187-7195. [52] R.A. Laskowski, M.B. Swindells, LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery, J Chem Inf Model 51 (2011) 2778-2786.
|