帳號:guest(18.227.89.244)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王俊中
作者(外文):Wang, Chun-Chung
論文名稱(中文):遠志與冬瓜皮萃取物抑制3T3-L1脂肪細胞與高脂飼料誘發肥胖小鼠之脂肪累積並影響肝臟基因表現與腸道菌相分布
論文名稱(外文):Polygala tenuifolia and Benincasa hispida Extracts Inhibit Lipid Accumulation in 3T3-L1 Adipocytes and High-Fat Diet-Induced Obesity Mice and Affects Hepatic Transcriptome and Gut Microbiota Profiles
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):彭明德
石英珠
莊秀琪
邱淑嬌
口試委員(外文):Perng, Ming-Der
Shih, Ying-Chu
Chaung, Hso-Chi
Chiou, Shu-Jiau
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:102080809
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:76
中文關鍵詞:肥胖遠志冬瓜腸道菌相
外文關鍵詞:ObesityPolygala tenuifoliaBenincasa hispidaGut microbiota
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:36
  • 收藏收藏:0
肥胖,為體內脂肪過度累積造成的現象,雖不是疾病,但卻與人體許多疾病密切相關。本研究目的在於探討遠志與冬瓜皮萃取物是否具有抑制脂肪累積之功效。我們使用3T3-L1脂肪細胞與高脂飼料誘發小鼠肥胖,進行抑制脂肪累積功效實驗,並透過次世代基因定序方法,分析小鼠肝臟基因表現與腸道菌相分布,進而了解兩種萃取物抑制脂肪累積之可能機轉。透過細胞實驗證實,遠志與冬瓜皮萃取物皆具有抑制脂肪生成、降低三酸甘油脂含量與促進脂肪脂解酶活性,且不具有細胞毒性。活體實驗證實,高脂飼料誘發肥胖鼠於餵食遠志或冬瓜皮萃取物五周後,其體型外觀、體重增加量、三酸甘油脂含量與肝臟損傷程度,皆有明顯改善現象。進一步透過分析各組小鼠肝臟基因表現,相較於僅餵食高脂飼料組小鼠,發現餵食遠志與冬瓜皮萃取物五周後,小鼠肝臟參與脂肪與膽固醇合成代謝的基因表現量皆有明顯改變。遠志萃取物具有促進轉錄因子PPARα基因表現,顯示其具有促進脂肪分解的功效,同時,遠志萃取物亦抑制發炎因子IL-1β基因表現,顯示其具有降低因肥胖造成慢性發炎反應的功效。冬瓜皮萃取物抑制脂肪累積的機轉則與遠志不盡相同,冬瓜皮萃取物主要改變參與膽汁合成的基因表現。此外,實驗發現兩種萃取物皆具有改變腸道菌相的效果,相較於僅餵食高脂飼料組別,遠志與冬瓜皮萃取物皆可提高 Bacteriodetes / Firmicutes細菌比例,同時亦可增加Proteobacteria 細菌與減少 Deferribacteres細菌數量。根據這些實驗結果,遠志與冬瓜皮萃取物,兩者皆具有開發為抑制脂肪累積之保健品或藥物的潛力。
Obesity, an excessive accumulation of lipid in the body, is closely associated with many important human disorders. The aim of this study is to investigate whether a Polygala tenuifolia extract (PTE) or a Benincasa hispida extract (BHE) possesses an anti-obesity activity and how it affects liver gene expression and gut microbiota. We used 3T3-L1 adipocytes and a high-fat diet-induced obesity mouse model to determine the effects of these extracts on lipid accumulation. Next generation sequencing analysis of liver gene expression and gut microbiota profiles on both of the treatments were conducted to elucidate the possible mechanisms. Treatment of fully differentiated 3T3-L1 adipocytes with either PTE or BHE inhibited lipid accumulation through reducing lipid formation and triglyceride content, and increasing lipase activity. No cytotoxicity was observed by both treatments. After 5 weeks of both treatments, the weight gain, serum triglyceride content and liver steatosis in the high fat diet-induced obese mice were all reduced. Liver transcriptomic analysis revealed that expression of genes involved in lipid and cholesterol metabolism was altered significantly. PTE inhibited lipid accumulation via inducing the expression of the master transcription factor PPARα and attenuating the chronic inflammation of the obesity. On the other hand, BHE inhibited lipid accumulation via regulating bile acid synthesis or composition. In addition, treatment with PTE and BHE elevated the Bacteriodetes/Firmicutes ratio in the gut, enriched the Proteobacteria population and reduce the Deferribacteres populations. These results indicate that both PTE and BHE have potential to be developed into anti-obesity food supplements and therapy.
中文摘要.................2
Abstract................3
Introduction............5
Materials and Methods..11
Results................19
Discussion.............48
Conclusion.............54
References.............57
Additional files.......68

1. WHO. OBESITY: PREVENTING AND MANAGING. THE GLOBAL EPIDEMIC. WHO Technical Report Sseries 894. 2000. p. 268.
2. WHO. Obesity and overweight: Fact sheet. In: WHO Media centre Updated June 2016. [updated Updated June 2016.; cited 2016]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
3. Ota T. Chemokine systems link obesity to insulin resistance. Diabetes & metabolism journal. 2013 Jun;37(3):165-72. doi: 10.4093/dmj.2013.37.3.165. PubMed PMID: 23807918; PubMed Central PMCID: PMC3689012.
4. WV B, Fujioka K, Wilson PW, et al. Obesity: why be concerned. American Journal of Medicine. 2009 Apr;122(4 Suppl 1):S4-11.
5. Machova L, Cizek L, Koutna J, et al. The impact of obesity on cardiovascular disease mortality in the District Sumperk, Czech Republic. International journal of public health. 2007;52(4):255-8. PubMed PMID: 18030957.
6. Karagozian R, Derdak Z, Baffy G. Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism: clinical and experimental. 2014 May;63(5):607-17. doi: 10.1016/j.metabol.2014.01.011. PubMed PMID: 24629562.
7. Gan L, Xiang W, Xie B, et al. Molecular mechanisms of fatty liver in obesity. Frontiers of medicine. 2015 Sep;9(3):275-87. doi: 10.1007/s11684-015-0410-2. PubMed PMID: 26290284.
8. Dominguez-Avila JA, Gonzalez-Aguilar GA, Alvarez-Parrilla E, et al. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets. International journal of molecular sciences. 2016 Jun 29;17(7). doi: 10.3390/ijms17071002. PubMed PMID: 27367676; PubMed Central PMCID: PMC4964378.
9. Kim DH, Lee B, Kim MJ, et al. Molecular Mechanism of Betaine on Hepatic Lipid Metabolism: Inhibition of Forkhead Box O1 (FoxO1) Binding to Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma). Journal of agricultural and food chemistry. 2016 Sep 14;64(36):6819-25. doi: 10.1021/acs.jafc.6b02644. PubMed PMID: 27546313.
10. Ip E, Farrell GC, Robertson G, et al. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003 Jul;38(1):123-32. doi: 10.1053/jhep.2003.50307. PubMed PMID: 12829994.
11. Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell research. 2010 Feb;20(2):124-37. doi: 10.1038/cr.2010.13. PubMed PMID: 20101262; PubMed Central PMCID: PMC4084607.
12. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996 Jan;137(1):354-66. doi: 10.1210/endo.137.1.8536636. PubMed PMID: 8536636.
13. Duval C, Muller M, Kersten S. PPARalpha and dyslipidemia. Biochimica et biophysica acta. 2007 Aug;1771(8):961-71. doi: 10.1016/j.bbalip.2007.05.003. PubMed PMID: 17604218.
14. Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. The Journal of clinical investigation. 2006 Mar;116(3):571-80. doi: 10.1172/JCI27989. PubMed PMID: 16511589; PubMed Central PMCID: PMC1386122.
15. Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. The Journal of clinical investigation. 2006 Mar;116(3):590-7. doi: 10.1172/JCI27955. PubMed PMID: 16511591; PubMed Central PMCID: PMC1386117.
16. Farmer SR. Transcriptional control of adipocyte formation. Cell metabolism. 2006 Oct;4(4):263-73. doi: 10.1016/j.cmet.2006.07.001. PubMed PMID: 17011499; PubMed Central PMCID: PMC1958996.
17. Semple RK, Chatterjee VK, O'Rahilly S. PPAR gamma and human metabolic disease. The Journal of clinical investigation. 2006 Mar;116(3):581-9. doi: 10.1172/JCI28003. PubMed PMID: 16511590; PubMed Central PMCID: PMC1386124.
18. Kim JK. Endothelial nuclear factor kappaB in obesity and aging: is endothelial nuclear factor kappaB a master regulator of inflammation and insulin resistance? Circulation. 2012 Mar 6;125(9):1081-3. doi: 10.1161/CIRCULATIONAHA.111.090134. PubMed PMID: 22302839.
19. Szabo G, Csak T. Inflammasomes in liver diseases. Journal of Hepatology. 2012 Sep;57(3):642-54. doi: 10.1016/j.jhep.2012.03.035. PubMed PMID: 22634126.
20. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best practice & research Clinical gastroenterology. 2013 Feb;27(1):73-83. doi: 10.1016/j.bpg.2013.03.007. PubMed PMID: 23768554.
21. Robles Alonso V, Guarner F. Linking the gut microbiota to human health. The British journal of nutrition. 2013 Jan;109 Suppl 2:S21-6. doi: 10.1017/S0007114512005235. PubMed PMID: 23360877.
22. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234. PubMed PMID: 22699609; PubMed Central PMCID: PMC3564958.
23. Jin Y, Zeng Z, Wu Y, et al. Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis. Toxicological sciences : an official journal of the Society of Toxicology. 2015 Sep;147(1):116-26. doi: 10.1093/toxsci/kfv115. PubMed PMID: 26071454.
24. Lin H, An Y, Hao F, et al. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State. Scientific reports. 2016 Feb 26;6:21618. doi: 10.1038/srep21618. PubMed PMID: 26916743; PubMed Central PMCID: PMC4768318.
25. Everard A, Lazarevic V, Derrien M, et al. Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes. 2011;60(11):2775-86. doi: 10.2337/db11-0227/-/DC1.
26. Clarke SF, Murphy EF, Nilaweera K, et al. The gut microbiota and its relationship to diet and obesity: new insights. Gut microbes. 2012 May-Jun;3(3):186-202. doi: 10.4161/gmic.20168. PubMed PMID: 22572830; PubMed Central PMCID: PMC3427212.
27. V M, McCrary QM, Sinha R, et al. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutrition Journal. 2009;21(8):49-59.
28. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011 May 12;473(7346):174-80. doi: 10.1038/nature09944. PubMed PMID: 21508958; PubMed Central PMCID: PMC3728647.
29. Chakraborti CK. New-found link between microbiota and obesity. World journal of gastrointestinal pathophysiology. 2015 Nov 15;6(4):110-9. doi: 10.4291/wjgp.v6.i4.110. PubMed PMID: 26600968; PubMed Central PMCID: PMC4644874.
30. Moreno-Indias I, Cardona F, Tinahones FJ, et al. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in microbiology. 2014;5(190):1-10. doi: 10.3389/fmicb.2014.00190. PubMed PMID: 24808896; PubMed Central PMCID: PMC4010744.
31. Graham C, Mullen A, Whelan K. Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition reviews. 2015 Jun;73(6):376-85. doi: 10.1093/nutrit/nuv004. PubMed PMID: 26011912.
32. Hurt RT, Edakkanambeth Varayil J, Ebbert JO. New pharmacological treatments for the management of obesity. Current gastroenterology reports. 2014;16(6):394. doi: 10.1007/s11894-014-0394-0. PubMed PMID: 24828101.
33. Rodgers RJ, Tschop MH, Wilding JP. Anti-obesity drugs: past, present and future. Disease models & mechanisms. 2012 Sep;5(5):621-6. doi: 10.1242/dmm.009621. PubMed PMID: 22915024; PubMed Central PMCID: PMC3424459.
34. Lee DR, Lee YS, Choi BK, et al. Roots extracts of Adenophora triphylla var. japonica improve obesity in 3T3-L1 adipocytes and high-fat diet-induced obese mice. Asian Pacific journal of tropical medicine. 2015 Nov;8(11):898-906. doi: 10.1016/j.apjtm.2015.10.011. PubMed PMID: 26614988.
35. Jo YH, Choi KM, Liu Q, et al. Anti-Obesity Effect of 6,8-Diprenylgenistein, an Isoflavonoid of Cudrania tricuspidata Fruits in High-Fat Diet-Induced Obese Mice. Nutrients. 2015 Dec 15;7(12):10480-90. doi: 10.3390/nu7125544. PubMed PMID: 26694457; PubMed Central PMCID: PMC4690096.
36. Jeong YJ, Sohn EH, Jung YH, et al. Anti-obesity effect of Crinum asiaticum var. japonicum Baker extract in high-fat diet-induced and monogenic obese mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Aug;82:35-43. doi: 10.1016/j.biopha.2016.04.067. PubMed PMID: 27470336.
37. Huang TW, Chang CL, Kao ES, et al. Effect of Hibiscus sabdariffa extract on high fat diet-induced obesity and liver damage in hamsters. Food & nutrition research. 2015;59:29018. doi: 10.3402/fnr.v59.29018. PubMed PMID: 26475512; PubMed Central PMCID: PMC4608971.
38. Choi BK, Park SB, Lee DR, et al. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pacific journal of tropical medicine. 2016 Jul;9(7):635-43. doi: 10.1016/j.apjtm.2016.05.017. PubMed PMID: 27393090.
39. Liu J, Lee J, Salazar Hernandez MA, et al. Treatment of obesity with celastrol. Cell. 2015 May 21;161(5):999-1011. doi: 10.1016/j.cell.2015.05.011. PubMed PMID: 26000480; PubMed Central PMCID: PMC4768733.
40. Qin L, OU-YANG, Li-bo. Anti-obesity effect of glycyrrhizin on obese rats and its mechanism. Central South Pharmacy. 2010;8:204-208.
41. Xie W, Zhang Y, Wang N, et al. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. European journal of pharmacology. 2008;599(1-3):159-165.
42. Cheng J, Zhou ZW, Sheng HP, et al. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug design, development and therapy. 2015;9:33-78. doi: 10.2147/DDDT.S72892. PubMed PMID: 25552899; PubMed Central PMCID: PMC4277126.
43. Xiao-xu G, Xian-jun M, Ji-hai L. Study on functions of active polysaccharide from Schisandra Chinensis (Turcz) Baill in reducing weight and fat. Science and Technology of Food Industry. 2008;29:248-251.
44. Wei-wei L, Jin Y, Li-hua W, et al. Effect of hawthorn leaf flavonids on lipid metabolism in hyperlipidemia rats. Health Research. 2010;8:8-11.
45. Zhang WL, Zhu L, Jiang JG. Active ingredients from natural botanicals in the treatment of obesity. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2014 Dec;15(12):957-67. doi: 10.1111/obr.12228. PubMed PMID: 25417736.
46. Kim KS, Lee DS, Bae GS, et al. The inhibition of JNK MAPK and NF-kappaB signaling by tenuifoliside A isolated from Polygala tenuifolia in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect. European journal of pharmacology. 2013 Dec 05;721(1-3):267-76. doi: 10.1016/j.ejphar.2013.09.026. PubMed PMID: 24076326.
47. Jin ZL, Gao N, Zhang JR, et al. The discovery of Yuanzhi-1, a triterpenoid saponin derived from the traditional Chinese medicine, has antidepressant-like activity. Progress in neuro-psychopharmacology & biological psychiatry. 2014 Aug 04;53:9-14. doi: 10.1016/j.pnpbp.2014.02.013. PubMed PMID: 24614095.
48. Liu P, Hu Y, Guo DH, et al. Potential antidepressant properties of Radix Polygalae (Yuan Zhi). Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Aug;17(10):794-9. doi: 10.1016/j.phymed.2010.01.004. PubMed PMID: 20541923.
49. The State Commission of Chinese Pharmacopoeia. Pharmacopoeia of People's Republic of China, part I. Beijing: Chemical Industry Press; 2010.
50. Lee H, Kang R, Yoon Y. SH21B, an anti-obesity herbal composition, inhibits fat accumulation in 3T3-L1 adipocytes and high fat diet-induced obese mice through the modulation of the adipogenesis pathway. Journal of ethnopharmacology. 2010 Feb 17;127(3):709-17. doi: 10.1016/j.jep.2009.12.002. PubMed PMID: 19963057.
51. Lee JH, Kim T, Lee JJ, et al. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway. PloS one. 2015;10(12):e0142041. doi: 10.1371/journal.pone.0142041. PubMed PMID: 26649747; PubMed Central PMCID: PMC4674115.
52. Lee JH, Lee JJ, Cho WK, et al. KBH-1, an herbal composition, improves hepatic steatosis and leptin resistance in high-fat diet-induced obese rats. BMC complementary and alternative medicine. 2016 Sep 13;16:355-367. doi: 10.1186/s12906-016-1265-z. PubMed PMID: 27618865; PubMed Central PMCID: PMC5020448.
53. Huang HY HJ, Tso TK, Tsai YC, Chang CK. Antioxidant and angiotension-converting enzyme inhibition capacities of various parts of Benincasa hispida (wax gourd). Nahrung. 2004;48(3):4. doi: 10.1002/food.200300428.
54. Kim YJ, Shin, M.G. Mucolytic effects of various parts of Fructus Benincasa extracts in the rat trachea. Journal of Korean Medical Society. 1999;20:12.
55. Sharma S, Verma HN, Sharma NK. Cationic Bioactive Peptide from the Seeds of Benincasa hispida. International journal of peptides. 2014;2014:12. doi: 10.1155/2014/156060. PubMed PMID: 24834076; PubMed Central PMCID: PMC4009219.
56. Grover JK, Adiga G, Vats V, et al. Extracts of Benincasa hispida prevent development of experimental ulcers. Journal of ethnopharmacology. 2001 Dec;78(2-3):159-64. PubMed PMID: 11694361.
57. Nadhiya K VK, Gaddam Aadinath Reddy G. Antiobesity Effect of Benincasa hispida Fruit Extract in High Fat Diet Fed Wistar Albino Rats. International Journal of Pharmaceutical and Clinical Research. 2016;8(12):9.
58. Krishna Mohan Chinnala MME, Santhosh Sarvu. Antihyperlipidemic and antiobesity activity of ethanolic extract of Benincasa hispida. World Journal of Pharmaceutical Sciences. 2016;4(3):8.
59. Gu M, Fan S, Liu G, et al. Extract of Wax Gourd Peel Prevents High-Fat Diet-Induced Hyperlipidemia in C57BL/6 Mice via the Inhibition of the PPARgamma Pathway. Evidence-based complementary and alternative medicine : eCAM. 2013;2013:342561. doi: 10.1155/2013/342561. PubMed PMID: 23533476; PubMed Central PMCID: PMC3596909.
60. Abhishek Mahatma DSKM, Abhijit Sonowal. Evaluation of Antidiabetic Potential of Methanolic Extract of Benincasa Hispida in Dexamethasone Induced Diabetic Rats. Journal of Dental and Medical Sciences. 2014;13(12):7.
61. Zebisch K, Voigt V, Wabitsch M, et al. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical biochemistry. 2012 Jun 01;425(1):88-90. doi: 10.1016/j.ab.2012.03.005. PubMed PMID: 22425542.
62. CYNTHIA SHACKELFORD GL, JEFFREY WOLF, CARLIN OKERBERG AND RONALD HERBERT. Qualitative and Quantitative Analysis of Nonneoplastic Lesions in Toxicology Studies. TOXICOLOGIC PATHOLOGY. 2002;30(1):93-96.
63. Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq. Nature methods. 2011 Jun;8(6):469-77. doi: 10.1038/nmeth.1613. PubMed PMID: 21623353.
64. Leng N, Dawson JA, Thomson JA, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013 Apr 15;29(8):1035-43. doi: 10.1093/bioinformatics/btt087. PubMed PMID: 23428641; PubMed Central PMCID: PMC3624807.
65. Shin J, Lee S, Go MJ, et al. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific reports. 2016 Jul 14;6:29681. doi: 10.1038/srep29681. PubMed PMID: 27411898; PubMed Central PMCID: PMC4944186.
66. Marmugi A, Ducheix S, Lasserre F, et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology. 2012 Feb;55(2):395-407. doi: 10.1002/hep.24685. PubMed PMID: 21932408.
67. Million M, Lagier JC, Yahav D, et al. Gut bacterial microbiota and obesity. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2013 Apr;19(4):305-13. doi: 10.1111/1469-0691.12172. PubMed PMID: 23452229.
68. Saito T, Nishida M, Saito M, et al. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice. Nutrition research. 2016 Oct;36(10):1090-1097. doi: 10.1016/j.nutres.2016.09.004. PubMed PMID: 27865350.
69. Echeverria F, Ortiz M, Valenzuela R, et al. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins, leukotrienes, and essential fatty acids. 2016 Nov;114:28-34. doi: 10.1016/j.plefa.2016.10.001. PubMed PMID: 27926461.
70. Rakhshandehroo M, Sanderson LM, Matilainen M, et al. Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR research. 2007;2007:26839. doi: 10.1155/2007/26839. PubMed PMID: 18288265; PubMed Central PMCID: PMC2233741.
71. Jennifer R. Dwyer, Donkor J, Zhang P, et al. Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. PNAS. 2012;1093(37):9. doi: 10.1073/pnas.1205221109.
72. Kang HW, Wei J, Cohen DE. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein. Trends in endocrinology and metabolism: TEM. 2010 Jul;21(7):449-56. doi: 10.1016/j.tem.2010.02.001. PubMed PMID: 20338778; PubMed Central PMCID: PMC2897958.
73. Wang J, Mitsche MA, Lutjohann D, et al. Relative roles of ABCG5/ABCG8 in liver and intestine. Journal of lipid research. 2015 Feb;56(2):319-30. doi: 10.1194/jlr.M054544. PubMed PMID: 25378657; PubMed Central PMCID: PMC4306686.
74. Kamisuki S, Mao Q, Abu-Elheiga L, et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chemistry & biology. 2009 Aug 28;16(8):882-92. doi: 10.1016/j.chembiol.2009.07.007. PubMed PMID: 19716478.
75. Zhu X, Bian H, Gao X. The Potential Mechanisms of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease. Molecules. 2016 Oct 14;21(10). doi: 10.3390/molecules21101336. PubMed PMID: 27754444.
76. Nukitrangsan N, Iwasaki H, Okabe T, et al. Effect of Peucedanum japonicum Thunb on the expression of obesity-related genes in mice on a high-fat diet. Journal of Oleo Science. 2011;60(10).
77. Olteanu S, Kandel-Kfir M, Shaish A, et al. Lack of interleukin-1alpha in Kupffer cells attenuates liver inflammation and expression of inflammatory cytokines in hypercholesterolaemic mice. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2014 May;46(5):433-9. doi: 10.1016/j.dld.2014.01.156. PubMed PMID: 24582082.
78. Negrin KA, Roth Flach RJ, DiStefano MT, et al. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PloS one. 2014;9(9):e107265. doi: 10.1371/journal.pone.0107265. PubMed PMID: 25216251; PubMed Central PMCID: PMC4162604.
79. Osborn O, Brownell SE, Sanchez-Alavez M, et al. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity. Cytokine. 2008 Oct;44(1):141-8. doi: 10.1016/j.cyto.2008.07.004. PubMed PMID: 18723371; PubMed Central PMCID: PMC3063393.
80. Chiang JY. Bile acids: regulation of synthesis. Journal of lipid research. 2009 Oct;50(10):1955-66. doi: 10.1194/jlr.R900010-JLR200. PubMed PMID: 19346330; PubMed Central PMCID: PMC2739756.
81. Ferrell JM, Boehme S, Li F, et al. Cholesterol 7alpha-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders. Journal of lipid research. 2016 Jul;57(7):1144-54. doi: 10.1194/jlr.M064709. PubMed PMID: 27146480; PubMed Central PMCID: PMC4918844.
82. Bertaggia E, Jensen KK, Castro-Perez J, et al. Cyp8b1 ablation prevents Western diet-induced weight gain and hepatic steatosis because of impaired fat absorption. American journal of physiology Endocrinology and metabolism. 2017 Aug 01;313(2):E121-E133. doi: 10.1152/ajpendo.00409.2016. PubMed PMID: 28377401; PubMed Central PMCID: PMC5582885.
83. VerHague MA, Cheng D, Weinberg RB, et al. Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arteriosclerosis, thrombosis, and vascular biology. 2013 Nov;33(11):2501-8. doi: 10.1161/ATVBAHA.113.301948. PubMed PMID: 24030551.
84. Valeriy Demchev. GM, Divya Vangala, Janis Stoll, Anal Desai, Hye Won Kang, Yingxia Li, Hamed Nayeb-Hashemi, Michele Niepel, David E. Cohen, Chinweike Ukomadu. Targeted Deletion of Fibrinogen Like Protein 1 Reveals a Novel Role in Energy Substrate Utilization [research]. PloS one. 2013;8(3):12. doi: 10.1371/journal.pone.0058084.g001.
85. L T, Peña S, Ugidos AV, et al. Food Ingredients as Anti-Obesity Agents. Critical Reviews in Food Science and Nutrition. 2013;53(9):585-7.
86. Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgraduate medical journal. 2016 May;92(1087):286-300. doi: 10.1136/postgradmedj-2015-133285. PubMed PMID: 26912499.
87. Wong JM, de Souza R, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. Journal of clinical gastroenterology. 2006 Mar;40(3):235-43. PubMed PMID: 16633129.
88. Semova I, Carten JD, Stombaugh J, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell host & microbe. 2012 Sep 13;12(3):277-88. doi: 10.1016/j.chom.2012.08.003. PubMed PMID: 22980325; PubMed Central PMCID: PMC3517662.
89. Clarke SF, Murphy EF, O'Sullivan O, et al. Targeting the microbiota to address diet-induced obesity: a time dependent challenge. PloS one. 2013;8(6):e65790. doi: 10.1371/journal.pone.0065790. PubMed PMID: 23762426; PubMed Central PMCID: PMC3676335.
90. Looft T, Johnson TA, Allen HK, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan 31;109(5):1691-6. doi: 10.1073/pnas.1120238109. PubMed PMID: 22307632; PubMed Central PMCID: PMC3277147.
91. Kameyama K, Itoh K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes and environments. 2014;29(4):427-30. doi: 10.1264/jsme2.ME14054. PubMed PMID: 25283478; PubMed Central PMCID: PMC4262368.
92. Kim KA, Gu W, Lee IA, et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS one. 2012;7(10):e47713. doi: 10.1371/journal.pone.0047713. PubMed PMID: 23091640; PubMed Central PMCID: PMC3473013.
93. Evans CC, LePard KJ, Kwak JW, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one. 2014;9(3):e92193. doi: 10.1371/journal.pone.0092193. PubMed PMID: 24670791; PubMed Central PMCID: PMC3966766.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *