帳號:guest(3.17.183.27)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):唐銘甫
作者(外文):Tang, Neos
論文名稱(中文):第二b型忌熱型腸毒素作為黏膜佐劑增強保護性免疫對抗H5N1禽流感病毒
論文名稱(外文):Type IIb Heat Labile Enterotoxin B Subunit as a Mucosal Adjuvant to Enhance Protective Immunity against H5N1 Avian Influenza Viruses
指導教授(中文):吳夙欽
蘇士哲
指導教授(外文):Wu, Suh-Chin
Sue, Shih-Che
口試委員(中文):呂平江
黃明熙
吳弘毅
口試委員(外文):Lyu, Ping-Chiang
Huang, Ming-Hsi
Wu, Hung-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:102080506
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:54
中文關鍵詞:大腸桿菌第二b 型忌熱型腸毒素 之B 次單元黏膜佐劑IL-17AH5N1
外文關鍵詞:LTIIb-B5mucosal adjuvantIL-17AH5N1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
高致病性禽流感病毒目前仍威脅著全球人類與禽類的健康,其中H5N1禽流感病毒從1997年被發現能傳染人類後,至今H5N1的突變株病毒依然可傳播至野外飛禽、家禽、海生哺乳動物(如海獅)、一般陸地哺乳動物(如貂、浣熊、貓),以及人類。目前疫苗接種是預防 H5N1 和其他新型禽流感病毒感染的最主要保護策略,但一般的傳統肌肉注射疫苗無法產生具有對抗原專一性的IgA抗體於黏膜表面,需使用黏膜疫苗才有辦法於黏膜產生對抗原專一性的IgA抗體,然而黏膜免疫系統需仰賴黏膜佐劑突破黏膜免疫系統的耐受性。在本論文中,大腸桿菌第二b 型忌熱型腸毒素 之B 次單元 (LTIIb-B5) 作為黏膜佐劑,與 HA 蛋白一起施打於小鼠的鼻腔免疫。結果顯示:LTIIb-B5 佐劑在血清和支氣管肺泡灌洗液中,引發明顯更高的 IgG、IgA 和中和抗體,從而增強對致命性病毒的保護。 LTIIb-B5 也會在脾臟淋巴細胞和頸部淋巴結中引發更強的 Th17 細胞反應。小鼠被注射抗 IL-17A 單株抗體後,經過致命性病毒的感染測試,小鼠體內的IL-17A 耗竭導致死亡率從 0% 增加至 50%,代表 Th17 的細胞反應對保護性免疫有所關連。這些發現可能為H5N1次單元黏膜疫苗的開發提供有用的資訊。
Infections in humans caused by highly pathogenic avian influenza viruses continue to pose a significant global health threat. Vaccination represents the primary preventive measure against H5N1 and other emerging avian influenza virus infections. However, conventional intramuscular vaccines cannot generate antigen-specific IgA antibodies on mucosal surfaces. Mucosal vaccines are necessary to produce antigen-specific IgA antibodies. Mucosal immunization relies on mucosal adjuvants to overcome the tolerance of the mucosal immune system. This dissertation utilized E. coli type IIb heat labile enterotoxin B subunit (LTIIb-B5) as a mucosal adjuvant in conjunction with HA proteins for intranasal immunizations in a mouse model. The findings demonstrated that the LTIIb-B5 adjuvant induced notably elevated levels of IgG, IgA, and neutralizing antibodies in both sera and bronchoalveolar lavage fluids, thereby enhancing protection against lethal virus challenges. Additionally, LTIIb-B5 elicited a more robust Th17 cellular response in spleen lymphocytes and cervical lymph nodes. Depletion of IL-17A subsequent to vaccinations with anti-IL-17A monoclonal antibodies led to an increase in mortality from 0% to 50%, indicating a potential contribution of the Th17 cellular response to protective immunity. These results offer valuable insights for the development of mucosal H5N1 subunit vaccines.
中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
Abbreviations vii
1. Introduction 1
1.1 Overview of influenza A virus 1
1.2 Vaccination strategies for Influenza A virus 3
1.3 Mucosal immunization 4
1.4 Toll like receptor and innate immunity 5
1.5 Mucosal adjuvants and LTIIb-B5 6
1.6 Research aims 8
2. Materials and methods 9
2.1 Cloning, Expression, and Purification of Recombinant LTIIb-B5 9
2.2 Functional assays for Toll-like receptor (TLR) ligands 10
2.3 Expression and Purification of Recombinant HA Protein 10
2.4 Mouse immunization and sampling 11
2.5 Analysis of H5HA-specific antibody titers 12
2.6 Neutralization Assays 13
2.7 Analysis of secretory cytokines in SPL and CLN cells 13
2.8 Cell populations in SPL and CLN cells by flow cytometry 14
2.9 Virus Challenges 14
2.10 Pathological sections and H&E staining of lungs of mice 15
2.11 Statistical Analyses 15
3. Results 16
3.1 Expression, Purification, and Characterization of Recombinant LTIIb-B5 Proteins 16
3.1.1 Characterization of structure of recombinant LTIIb-B5 proteins 16
3.1.2 Characterization of function of recombinant LTIIb-B5 proteins 17
3.2 The humoral immune responses after H5HA protein intranasal immunizations with LTIIb-B5 proteins as a mucosal adjuvant 17
3.3 Protection immunity after intranasal immunization by Viral challenge 18
3.4 The influences on the lungs after intranasal immunization 19
3.5 Detecting T cell responses in SPLs and CLNs 19
3.6 Protection immunity of mice with IL-17A depletion and IL-17A knockout mice against H5N1 challenges 20
4. Discussion 22
5. References 26
6. Figures 37
Figure 1. 3D structure of LTIIb-B5 protein 37
Figure 2. The original sequence of LTIIb-B5 protein 38
Figure 3. Functional assays for Toll-like receptor ligands 39
Figure 4. Characterization of H5HA protein 40
Figure 5. Characterization of LTIIb-b5 protein 41
Figure 6. Analysis of the molecular weight of pentameric LTIIb-B5 protein 42
Figure 7. The 1H-15N HSQC spectrum of LTIIb-B5 43
Figure 8. TLR 2/1 functional assays for LTIIb-B5 and Pam3Csk4 44
Figure 9. The schedule of intranasal immunization in mice model and the H5HA-specific IgG and IgA titers 45
Figure 10. Neutralization test for antibodies from sera and BAL fluids of the immunized mice 46
Figure 11. Intranasal immunization was followed by H5N1 viral challenges 47
Figure 12. Illustrative images of lung tissue sections 48
Figure 13. T cell responses were assessed in both SPLs and CLNs 49
Figure 14. Flow analyses were conducted to identify the source of IL-17A in SPLs or CLNs 51
Figure 15. IL-17A depletion and its impact on protective immunity against influenza virus 52
Figure 16. The protective effect induced by LTIIb-B5 was reversed in
IL-17A knockout mice 54


1. Aliahmadi, E., Gramlich, R., Grutzkau, A., Hitzler, M., Kruger, M., Baumgrass, R., . . . Peiser, M. (2009). TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur J Immunol, 39(5), 1221-1230. doi:10.1002/eji.200838742
2. Baz, M., Luke, C. J., Cheng, X., Jin, H., & Subbarao, K. (2013). H5N1 vaccines in humans. Virus Res, 178(1), 78-98. doi:10.1016/j.virusres.2013.05.006
3. Centers for Disease, C., & Prevention. (2009). Update on influenza A (H1N1) 2009 monovalent vaccines. MMWR Morb Mortal Wkly Rep, 58(39), 1100-1101. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19816398
4. Clements, J. D., & Norton, E. B. (2018). The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere, 3(4). doi:10.1128/mSphere.00215-18
5. Cody, V., Pace, J., Nawar, H. F., King-Lyons, N., Liang, S., Connell, T. D., & Hajishengallis, G. (2012). Structure-activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding. Acta Crystallogr D Biol Crystallogr, 68(Pt 12), 1604-1612. doi:10.1107/S0907444912038917
6. Cruz, C. D., Icochea, M. E., Espejo, V., Troncos, G., Castro-Sanguinetti, G. R., Schilling, M. A., & Tinoco, Y. (2023). Highly Pathogenic Avian Influenza A(H5N1) from Wild Birds, Poultry, and Mammals, Peru. Emerg Infect Dis, 29(12), 2572-2576. doi:10.3201/eid2912.230505
7. Czerkinsky, C., & Holmgren, J. (2010). Topical immunization strategies. Mucosal Immunol, 3(6), 545-555. doi:10.1038/mi.2010.55
8. de Aquino, S. G., Abdollahi-Roodsaz, S., Koenders, M. I., van de Loo, F. A., Pruijn, G. J., Marijnissen, R. J., . . . van den Berg, W. B. (2014). Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. J Immunol, 192(9), 4103-4111. doi:10.4049/jimmunol.1301970
9. de Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J., Chau, T. N., . . . Farrar, J. (2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 12(10), 1203-1207. doi:10.1038/nm1477
10. Demento, S. L., Siefert, A. L., Bandyopadhyay, A., Sharp, F. A., & Fahmy, T. M. (2011). Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol, 29(6), 294-306. doi:10.1016/j.tibtech.2011.02.004
11. Eliasson, D. G., El Bakkouri, K., Schon, K., Ramne, A., Festjens, E., Lowenadler, B., . . . Lycke, N. (2008). CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine, 26(9), 1243-1252. doi:10.1016/j.vaccine.2007.12.027
12. Eliasson, D. G., Omokanye, A., Schon, K., Wenzel, U. A., Bernasconi, V., Bemark, M., . . . Lycke, N. (2018). M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol, 11(1), 273-289. doi:10.1038/mi.2017.14
13. Elsmo, E. J., Wunschmann, A., Beckmen, K. B., Broughton-Neiswanger, L. E., Buckles, E. L., Ellis, J., . . . Lim, A. L. (2023). Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b Infections in Wild Terrestrial Mammals, United States, 2022. Emerg Infect Dis, 29(12), 2451-2460. doi:10.3201/eid2912.230464
14. Facciola, A., Visalli, G., Lagana, A., & Di Pietro, A. (2022). An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel), 10(5). doi:10.3390/vaccines10050819
15. Field, M. (2003). Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest, 111(7), 931-943. doi:10.1172/JCI18326
16. Fraser, C., Donnelly, C. A., Cauchemez, S., Hanage, W. P., Van Kerkhove, M. D., Hollingsworth, T. D., . . . Collaboration, W. H. O. R. P. A. (2009). Pandemic potential of a strain of influenza A (H1N1): early findings. Science, 324(5934), 1557-1561. doi:10.1126/science.1176062
17. Freytag, L. C., & Clements, J. D. (2005). Mucosal adjuvants. Vaccine, 23(15), 1804-1813. doi:10.1016/j.vaccine.2004.11.010
18. Fukuta, S., Magnani, J. L., Twiddy, E. M., Holmes, R. K., & Ginsburg, V. (1988). Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun, 56(7), 1748-1753. doi:10.1128/iai.56.7.1748-1753.1988
19. Gopal, R., Rangel-Moreno, J., Fallert Junecko, B. A., Mallon, D. J., Chen, K., Pociask, D. A., . . . Khader, S. A. (2014). Mucosal pre-exposure to Th17-inducing adjuvants exacerbates pathology after influenza infection. Am J Pathol, 184(1), 55-63. doi:10.1016/j.ajpath.2013.09.012
20. Gopal, R., Rangel-Moreno, J., Slight, S., Lin, Y., Nawar, H. F., Fallert Junecko, B. A., . . . Khader, S. A. (2013). Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol, 6(5), 972-984. doi:10.1038/mi.2012.135
21. Greene, C. J., Chadwick, C. M., Mandell, L. M., Hu, J. C., O'Hara, J. M., Brey, R. N., 3rd, . . . Connell, T. D. (2013). LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity. PLoS One, 8(8), e69678. doi:10.1371/journal.pone.0069678
22. Hajishengallis, G., & Connell, T. D. (2013). Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol, 152(1-2), 68-77. doi:10.1016/j.vetimm.2012.09.034
23. Hajishengallis, G., Tapping, R. I., Martin, M. H., Nawar, H., Lyle, E. A., Russell, M. W., & Connell, T. D. (2005). Toll-like receptor 2 mediates cellular activation by the B subunits of type II heat-labile enterotoxins. Infect Immun, 73(3), 1343-1349. doi:10.1128/IAI.73.3.1343-1349.2005
24. Huleatt, J. W., Nakaar, V., Desai, P., Huang, Y., Hewitt, D., Jacobs, A., . . . Powell, T. J. (2008). Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 26(2), 201-214. doi:10.1016/j.vaccine.2007.10.062
25. Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., . . . Kawaoka, Y. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol, 72(9), 7367-7373. doi:10.1128/JVI.72.9.7367-7373.1998
26. Kim, S. H., & Jang, Y. S. (2017). The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res, 6(1), 15-21. doi:10.7774/cevr.2017.6.1.15
27. Kiyono, H., & Fukuyama, S. (2004). NALT- versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol, 4(9), 699-710. doi:10.1038/nri1439
28. Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annu Rev Immunol, 27, 485-517. doi:10.1146/annurev.immunol.021908.132710
29. Kumar, P., Chen, K., & Kolls, J. K. (2013). Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol, 25(3), 373-380. doi:10.1016/j.coi.2013.03.011
30. Leguia, M., Garcia-Glaessner, A., Munoz-Saavedra, B., Juarez, D., Barrera, P., Calvo-Mac, C., . . . Lescano, J. (2023). Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun, 14(1), 5489. doi:10.1038/s41467-023-41182-0
31. Lewis, D. J., Huo, Z., Barnett, S., Kromann, I., Giemza, R., Galiza, E., . . . Rappuoli, R. (2009). Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One, 4(9), e6999. doi:10.1371/journal.pone.0006999
32. Liang, S., & Hajishengallis, G. (2010). Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunological investigations, 39(4-5), 449-467. doi:10.3109/08820130903563998
33. Liang, S., Hosur, K. B., Lu, S., Nawar, H. F., Weber, B. R., Tapping, R. I., . . . Hajishengallis, G. (2009). Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer. J Immunol, 182(5), 2978-2985. doi:10.4049/jimmunol.0803737
34. Liang, S., Hosur, K. B., Nawar, H. F., Russell, M. W., Connell, T. D., & Hajishengallis, G. (2009). In vivo and in vitro adjuvant activities of the B subunit of Type IIb heat-labile enterotoxin (LT-IIb-B5) from Escherichia coli. Vaccine, 27(32), 4302-4308. doi:10.1016/j.vaccine.2009.05.027
35. Liang, S., Wang, M., Tapping, R. I., Stepensky, V., Nawar, H. F., Triantafilou, M., . . . Hajishengallis, G. (2007). Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin. J Biol Chem, 282(10), 7532-7542. doi:10.1074/jbc.M611722200
36. Liang, S., Wang, M., Triantafilou, K., Triantafilou, M., Nawar, H. F., Russell, M. W., . . . Hajishengallis, G. (2007). The A subunit of type IIb enterotoxin (LT-IIb) suppresses the proinflammatory potential of the B subunit and its ability to recruit and interact with TLR2. J Immunol, 178(8), 4811-4819. doi:10.4049/jimmunol.178.8.4811
37. Lin, S. C., Huang, M. H., Tsou, P. C., Huang, L. M., Chong, P., & Wu, S. C. (2011). Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PLoS One, 6(5), e20052. doi:10.1371/journal.pone.0020052
38. Lin, S. C., Liu, W. C., Jan, J. T., & Wu, S. C. (2014). Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One, 9(3), e92822. doi:10.1371/journal.pone.0092822
39. Liu, M., Ruan, X., Zhang, C., Lawson, S. R., Knudsen, D. E., Nataro, J. P., . . . Zhang, W. (2011). Heat-labile- and heat-stable-toxoid fusions (LTR(1)(9)(2)G-STaP(1)(3)F) of human enterotoxigenic Escherichia coli elicit neutralizing antitoxin antibodies. Infect Immun, 79(10), 4002-4009. doi:10.1128/IAI.00165-11
40. Liu, W. C., Lin, S. C., Yu, Y. L., Chu, C. L., & Wu, S. C. (2010). Dendritic cell activation by recombinant hemagglutinin proteins of H1N1 and H5N1 influenza A viruses. J Virol, 84(22), 12011-12017. doi:10.1128/JVI.01316-10
41. Lycke, N., & Lebrero-Fernandez, C. (2018). ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol, 41, 42-51. doi:10.1016/j.coph.2018.03.015
42. Maroof, A., Yorgensen, Y. M., Li, Y., & Evans, J. T. (2014). Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog, 10(1), e1003875. doi:10.1371/journal.ppat.1003875
43. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A., & Klenk, H. D. (2004). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A, 101(13), 4620-4624. doi:10.1073/pnas.0308001101
44. Meng, S., Liu, Z., Xu, L., Li, L., Mei, S., Bao, L., . . . Zhang, L. (2011). Intranasal immunization with recombinant HA and mast cell activator C48/80 elicits protective immunity against 2009 pandemic H1N1 influenza in mice. PLoS One, 6(5), e19863. doi:10.1371/journal.pone.0019863
45. Milpied, P. J., & McHeyzer-Williams, M. G. (2013). High-affinity IgA needs TH17 cell functional plasticity. Nat Immunol, 14(4), 313-315. doi:10.1038/ni.2567
46. Mitsdoerffer, M., Lee, Y., Jager, A., Kim, H. J., Korn, T., Kolls, J. K., . . . Kuchroo, V. K. (2010). Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci U S A, 107(32), 14292-14297. doi:10.1073/pnas.1009234107
47. Moyle, P. M. (2017). Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv, 35(3), 375-389. doi:10.1016/j.biotechadv.2017.03.005
48. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's immunobiology (8th ed.). New York: Garland Science.
49. Mutsch, M., Zhou, W., Rhodes, P., Bopp, M., Chen, R. T., Linder, T., . . . Steffen, R. (2004). Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med, 350(9), 896-903. doi:10.1056/NEJMoa030595
50. Nefkens, I., Garcia, J. M., Ling, C. S., Lagarde, N., Nicholls, J., Tang, D. J., . . . Altmeyer, R. (2007). Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J Clin Virol, 39(1), 27-33. doi:10.1016/j.jcv.2007.02.005
51. Neumann, G., Noda, T., & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(7249), 931-939. doi:10.1038/nature08157
52. Norton, E. B., Lawson, L. B., Mahdi, Z., Freytag, L. C., & Clements, J. D. (2012). The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect Immun, 80(7), 2426-2435. doi:10.1128/IAI.00181-12
53. Pavot, V., Rochereau, N., Genin, C., Verrier, B., & Paul, S. (2012). New insights in mucosal vaccine development. Vaccine, 30(2), 142-154. doi:10.1016/j.vaccine.2011.11.003
54. Peppoloni, S., Ruggiero, P., Contorni, M., Morandi, M., Pizza, M., Rappuoli, R., . . . Del Giudice, G. (2003). Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Rev Vaccines, 2(2), 285-293. doi:10.1586/14760584.2.2.285
55. Pizza, M., Giuliani, M. M., Fontana, M. R., Monaci, E., Douce, G., Dougan, G., . . . Del Giudice, G. (2001). Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine, 19(17-19), 2534-2541. doi:10.1016/s0264-410x(00)00553-3
56. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., . . . Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2(4), 361-367. doi:10.1038/86373
57. Rockman, S., & Brown, L. (2010). Pre-pandemic and pandemic influenza vaccines. Hum Vaccin, 6(10), 792-801. doi:10.4161/hv.6.10.12915
58. Rubino, S. J., Geddes, K., & Girardin, S. E. (2012). Innate IL-17 and IL-22 responses to enteric bacterial pathogens. Trends Immunol, 33(3), 112-118. doi:10.1016/j.it.2012.01.003
59. Skehel, J. J., & Wiley, D. C. (2000). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 69, 531-569. doi:10.1146/annurev.biochem.69.1.531
60. Soema, P. C., Kompier, R., Amorij, J. P., & Kersten, G. F. (2015). Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm, 94, 251-263. doi:10.1016/j.ejpb.2015.05.023
61. Stevens, J., Blixt, O., Paulson, J. C., & Wilson, I. A. (2006). Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol, 4(11), 857-864. doi:10.1038/nrmicro1530
62. Subbarao, K., & Joseph, T. (2007). Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol, 7(4), 267-278. doi:10.1038/nri2054
63. Taylor, D. N., Treanor, J. J., Strout, C., Johnson, C., Fitzgerald, T., Kavita, U., . . . Shaw, A. (2011). Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine, 29(31), 4897-4902. doi:10.1016/j.vaccine.2011.05.001
64. Tran, T. H., Nguyen, T. L., Nguyen, T. D., Luong, T. S., Pham, P. M., Nguyen v, V., . . . World Health Organization International Avian Influenza Investigative, T. (2004). Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med, 350(12), 1179-1188. doi:10.1056/NEJMoa040419
65. Tregoning, J. S., Russell, R. F., & Kinnear, E. (2018). Adjuvanted influenza vaccines. Hum Vaccin Immunother, 14(3), 550-564. doi:10.1080/21645515.2017.1415684
66. Tunis, M. C., Dawod, B., Carson, K. R., Veinotte, L. L., & Marshall, J. S. (2015). Toll-like receptor 2 activators modulate oral tolerance in mice. Clin Exp Allergy, 45(11), 1690-1702. doi:10.1111/cea.12605
67. Tunis, M. C., & Marshall, J. S. (2014). Toll-like receptor 2 as a regulator of oral tolerance in the gastrointestinal tract. Mediators Inflamm, 2014, 606383. doi:10.1155/2014/606383
68. Turley, C. B., Rupp, R. E., Johnson, C., Taylor, D. N., Wolfson, J., Tussey, L., . . . Shaw, A. (2011). Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine, 29(32), 5145-5152. doi:10.1016/j.vaccine.2011.05.041
69. van Riel, D., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D., & Kuiken, T. (2006). H5N1 Virus Attachment to Lower Respiratory Tract. Science, 312(5772), 399. doi:10.1126/science.1125548
70. Veazey, R. S., Siddiqui, A., Klein, K., Buffa, V., Fischetti, L., Doyle-Meyers, L., . . . Shattock, R. J. (2015). Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques. Hum Vaccin Immunother, 11(12), 2913-2922. doi:10.1080/21645515.2015.1070998
71. Wang, C. C., Chen, J. R., Tseng, Y. C., Hsu, C. H., Hung, Y. F., Chen, S. W., . . . Wong, C. H. (2009). Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A, 106(43), 18137-18142. doi:10.1073/pnas.0909696106
72. Wang, H., Feng, Z., Shu, Y., Yu, H., Zhou, L., Zu, R., . . . Wang, Y. (2008). Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet, 371(9622), 1427-1434. doi:10.1016/S0140-6736(08)60493-6
73. Wang, X., Fan, X., Bi, S., Li, N., & Wang, B. (2017). Toll-like Receptors 2 and 4-Mediated Reciprocal Th17 and Antibody Responses to Group A Streptococcus Infection. J Infect Dis, 215(4), 644-652. doi:10.1093/infdis/jiw598
74. Wang, X., Ma, K., Chen, M., Ko, K. H., Zheng, B. J., & Lu, L. (2016). IL-17A Promotes Pulmonary B-1a Cell Differentiation via Induction of Blimp-1 Expression during Influenza Virus Infection. PLoS Pathog, 12(1), e1005367. doi:10.1371/journal.ppat.1005367
75. Watanabe, Y., Ibrahim, M. S., Ellakany, H. F., Kawashita, N., Daidoji, T., Takagi, T., . . . Ikuta, K. (2012). Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt. J Gen Virol, 93(Pt 10), 2215-2226. doi:10.1099/vir.0.044032-0
76. Woodrow, K. A., Bennett, K. M., & Lo, D. D. (2012). Mucosal vaccine design and delivery. Annu Rev Biomed Eng, 14, 17-46. doi:10.1146/annurev-bioeng-071811-150054
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
2. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
3. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
4. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
5. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
6. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
7. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
8. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
9. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
10. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
11. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
12. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
13. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
14. 表達呼吸道融合病毒融合蛋白及其特性分析
15. 以DNA-prime和似病毒顆粒-booster方法來研發免疫聚焦性H5HA流感疫苗
 
* *