|
1. Aliahmadi, E., Gramlich, R., Grutzkau, A., Hitzler, M., Kruger, M., Baumgrass, R., . . . Peiser, M. (2009). TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur J Immunol, 39(5), 1221-1230. doi:10.1002/eji.200838742 2. Baz, M., Luke, C. J., Cheng, X., Jin, H., & Subbarao, K. (2013). H5N1 vaccines in humans. Virus Res, 178(1), 78-98. doi:10.1016/j.virusres.2013.05.006 3. Centers for Disease, C., & Prevention. (2009). Update on influenza A (H1N1) 2009 monovalent vaccines. MMWR Morb Mortal Wkly Rep, 58(39), 1100-1101. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19816398 4. Clements, J. D., & Norton, E. B. (2018). The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere, 3(4). doi:10.1128/mSphere.00215-18 5. Cody, V., Pace, J., Nawar, H. F., King-Lyons, N., Liang, S., Connell, T. D., & Hajishengallis, G. (2012). Structure-activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding. Acta Crystallogr D Biol Crystallogr, 68(Pt 12), 1604-1612. doi:10.1107/S0907444912038917 6. Cruz, C. D., Icochea, M. E., Espejo, V., Troncos, G., Castro-Sanguinetti, G. R., Schilling, M. A., & Tinoco, Y. (2023). Highly Pathogenic Avian Influenza A(H5N1) from Wild Birds, Poultry, and Mammals, Peru. Emerg Infect Dis, 29(12), 2572-2576. doi:10.3201/eid2912.230505 7. Czerkinsky, C., & Holmgren, J. (2010). Topical immunization strategies. Mucosal Immunol, 3(6), 545-555. doi:10.1038/mi.2010.55 8. de Aquino, S. G., Abdollahi-Roodsaz, S., Koenders, M. I., van de Loo, F. A., Pruijn, G. J., Marijnissen, R. J., . . . van den Berg, W. B. (2014). Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. J Immunol, 192(9), 4103-4111. doi:10.4049/jimmunol.1301970 9. de Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J., Chau, T. N., . . . Farrar, J. (2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 12(10), 1203-1207. doi:10.1038/nm1477 10. Demento, S. L., Siefert, A. L., Bandyopadhyay, A., Sharp, F. A., & Fahmy, T. M. (2011). Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol, 29(6), 294-306. doi:10.1016/j.tibtech.2011.02.004 11. Eliasson, D. G., El Bakkouri, K., Schon, K., Ramne, A., Festjens, E., Lowenadler, B., . . . Lycke, N. (2008). CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine, 26(9), 1243-1252. doi:10.1016/j.vaccine.2007.12.027 12. Eliasson, D. G., Omokanye, A., Schon, K., Wenzel, U. A., Bernasconi, V., Bemark, M., . . . Lycke, N. (2018). M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol, 11(1), 273-289. doi:10.1038/mi.2017.14 13. Elsmo, E. J., Wunschmann, A., Beckmen, K. B., Broughton-Neiswanger, L. E., Buckles, E. L., Ellis, J., . . . Lim, A. L. (2023). Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b Infections in Wild Terrestrial Mammals, United States, 2022. Emerg Infect Dis, 29(12), 2451-2460. doi:10.3201/eid2912.230464 14. Facciola, A., Visalli, G., Lagana, A., & Di Pietro, A. (2022). An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel), 10(5). doi:10.3390/vaccines10050819 15. Field, M. (2003). Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest, 111(7), 931-943. doi:10.1172/JCI18326 16. Fraser, C., Donnelly, C. A., Cauchemez, S., Hanage, W. P., Van Kerkhove, M. D., Hollingsworth, T. D., . . . Collaboration, W. H. O. R. P. A. (2009). Pandemic potential of a strain of influenza A (H1N1): early findings. Science, 324(5934), 1557-1561. doi:10.1126/science.1176062 17. Freytag, L. C., & Clements, J. D. (2005). Mucosal adjuvants. Vaccine, 23(15), 1804-1813. doi:10.1016/j.vaccine.2004.11.010 18. Fukuta, S., Magnani, J. L., Twiddy, E. M., Holmes, R. K., & Ginsburg, V. (1988). Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun, 56(7), 1748-1753. doi:10.1128/iai.56.7.1748-1753.1988 19. Gopal, R., Rangel-Moreno, J., Fallert Junecko, B. A., Mallon, D. J., Chen, K., Pociask, D. A., . . . Khader, S. A. (2014). Mucosal pre-exposure to Th17-inducing adjuvants exacerbates pathology after influenza infection. Am J Pathol, 184(1), 55-63. doi:10.1016/j.ajpath.2013.09.012 20. Gopal, R., Rangel-Moreno, J., Slight, S., Lin, Y., Nawar, H. F., Fallert Junecko, B. A., . . . Khader, S. A. (2013). Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol, 6(5), 972-984. doi:10.1038/mi.2012.135 21. Greene, C. J., Chadwick, C. M., Mandell, L. M., Hu, J. C., O'Hara, J. M., Brey, R. N., 3rd, . . . Connell, T. D. (2013). LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity. PLoS One, 8(8), e69678. doi:10.1371/journal.pone.0069678 22. Hajishengallis, G., & Connell, T. D. (2013). Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol, 152(1-2), 68-77. doi:10.1016/j.vetimm.2012.09.034 23. Hajishengallis, G., Tapping, R. I., Martin, M. H., Nawar, H., Lyle, E. A., Russell, M. W., & Connell, T. D. (2005). Toll-like receptor 2 mediates cellular activation by the B subunits of type II heat-labile enterotoxins. Infect Immun, 73(3), 1343-1349. doi:10.1128/IAI.73.3.1343-1349.2005 24. Huleatt, J. W., Nakaar, V., Desai, P., Huang, Y., Hewitt, D., Jacobs, A., . . . Powell, T. J. (2008). Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 26(2), 201-214. doi:10.1016/j.vaccine.2007.10.062 25. Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., . . . Kawaoka, Y. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol, 72(9), 7367-7373. doi:10.1128/JVI.72.9.7367-7373.1998 26. Kim, S. H., & Jang, Y. S. (2017). The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res, 6(1), 15-21. doi:10.7774/cevr.2017.6.1.15 27. Kiyono, H., & Fukuyama, S. (2004). NALT- versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol, 4(9), 699-710. doi:10.1038/nri1439 28. Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annu Rev Immunol, 27, 485-517. doi:10.1146/annurev.immunol.021908.132710 29. Kumar, P., Chen, K., & Kolls, J. K. (2013). Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol, 25(3), 373-380. doi:10.1016/j.coi.2013.03.011 30. Leguia, M., Garcia-Glaessner, A., Munoz-Saavedra, B., Juarez, D., Barrera, P., Calvo-Mac, C., . . . Lescano, J. (2023). Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun, 14(1), 5489. doi:10.1038/s41467-023-41182-0 31. Lewis, D. J., Huo, Z., Barnett, S., Kromann, I., Giemza, R., Galiza, E., . . . Rappuoli, R. (2009). Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One, 4(9), e6999. doi:10.1371/journal.pone.0006999 32. Liang, S., & Hajishengallis, G. (2010). Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunological investigations, 39(4-5), 449-467. doi:10.3109/08820130903563998 33. Liang, S., Hosur, K. B., Lu, S., Nawar, H. F., Weber, B. R., Tapping, R. I., . . . Hajishengallis, G. (2009). Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer. J Immunol, 182(5), 2978-2985. doi:10.4049/jimmunol.0803737 34. Liang, S., Hosur, K. B., Nawar, H. F., Russell, M. W., Connell, T. D., & Hajishengallis, G. (2009). In vivo and in vitro adjuvant activities of the B subunit of Type IIb heat-labile enterotoxin (LT-IIb-B5) from Escherichia coli. Vaccine, 27(32), 4302-4308. doi:10.1016/j.vaccine.2009.05.027 35. Liang, S., Wang, M., Tapping, R. I., Stepensky, V., Nawar, H. F., Triantafilou, M., . . . Hajishengallis, G. (2007). Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin. J Biol Chem, 282(10), 7532-7542. doi:10.1074/jbc.M611722200 36. Liang, S., Wang, M., Triantafilou, K., Triantafilou, M., Nawar, H. F., Russell, M. W., . . . Hajishengallis, G. (2007). The A subunit of type IIb enterotoxin (LT-IIb) suppresses the proinflammatory potential of the B subunit and its ability to recruit and interact with TLR2. J Immunol, 178(8), 4811-4819. doi:10.4049/jimmunol.178.8.4811 37. Lin, S. C., Huang, M. H., Tsou, P. C., Huang, L. M., Chong, P., & Wu, S. C. (2011). Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PLoS One, 6(5), e20052. doi:10.1371/journal.pone.0020052 38. Lin, S. C., Liu, W. C., Jan, J. T., & Wu, S. C. (2014). Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One, 9(3), e92822. doi:10.1371/journal.pone.0092822 39. Liu, M., Ruan, X., Zhang, C., Lawson, S. R., Knudsen, D. E., Nataro, J. P., . . . Zhang, W. (2011). Heat-labile- and heat-stable-toxoid fusions (LTR(1)(9)(2)G-STaP(1)(3)F) of human enterotoxigenic Escherichia coli elicit neutralizing antitoxin antibodies. Infect Immun, 79(10), 4002-4009. doi:10.1128/IAI.00165-11 40. Liu, W. C., Lin, S. C., Yu, Y. L., Chu, C. L., & Wu, S. C. (2010). Dendritic cell activation by recombinant hemagglutinin proteins of H1N1 and H5N1 influenza A viruses. J Virol, 84(22), 12011-12017. doi:10.1128/JVI.01316-10 41. Lycke, N., & Lebrero-Fernandez, C. (2018). ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol, 41, 42-51. doi:10.1016/j.coph.2018.03.015 42. Maroof, A., Yorgensen, Y. M., Li, Y., & Evans, J. T. (2014). Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog, 10(1), e1003875. doi:10.1371/journal.ppat.1003875 43. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A., & Klenk, H. D. (2004). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A, 101(13), 4620-4624. doi:10.1073/pnas.0308001101 44. Meng, S., Liu, Z., Xu, L., Li, L., Mei, S., Bao, L., . . . Zhang, L. (2011). Intranasal immunization with recombinant HA and mast cell activator C48/80 elicits protective immunity against 2009 pandemic H1N1 influenza in mice. PLoS One, 6(5), e19863. doi:10.1371/journal.pone.0019863 45. Milpied, P. J., & McHeyzer-Williams, M. G. (2013). High-affinity IgA needs TH17 cell functional plasticity. Nat Immunol, 14(4), 313-315. doi:10.1038/ni.2567 46. Mitsdoerffer, M., Lee, Y., Jager, A., Kim, H. J., Korn, T., Kolls, J. K., . . . Kuchroo, V. K. (2010). Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci U S A, 107(32), 14292-14297. doi:10.1073/pnas.1009234107 47. Moyle, P. M. (2017). Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv, 35(3), 375-389. doi:10.1016/j.biotechadv.2017.03.005 48. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's immunobiology (8th ed.). New York: Garland Science. 49. Mutsch, M., Zhou, W., Rhodes, P., Bopp, M., Chen, R. T., Linder, T., . . . Steffen, R. (2004). Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med, 350(9), 896-903. doi:10.1056/NEJMoa030595 50. Nefkens, I., Garcia, J. M., Ling, C. S., Lagarde, N., Nicholls, J., Tang, D. J., . . . Altmeyer, R. (2007). Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J Clin Virol, 39(1), 27-33. doi:10.1016/j.jcv.2007.02.005 51. Neumann, G., Noda, T., & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(7249), 931-939. doi:10.1038/nature08157 52. Norton, E. B., Lawson, L. B., Mahdi, Z., Freytag, L. C., & Clements, J. D. (2012). The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect Immun, 80(7), 2426-2435. doi:10.1128/IAI.00181-12 53. Pavot, V., Rochereau, N., Genin, C., Verrier, B., & Paul, S. (2012). New insights in mucosal vaccine development. Vaccine, 30(2), 142-154. doi:10.1016/j.vaccine.2011.11.003 54. Peppoloni, S., Ruggiero, P., Contorni, M., Morandi, M., Pizza, M., Rappuoli, R., . . . Del Giudice, G. (2003). Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Rev Vaccines, 2(2), 285-293. doi:10.1586/14760584.2.2.285 55. Pizza, M., Giuliani, M. M., Fontana, M. R., Monaci, E., Douce, G., Dougan, G., . . . Del Giudice, G. (2001). Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine, 19(17-19), 2534-2541. doi:10.1016/s0264-410x(00)00553-3 56. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., . . . Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2(4), 361-367. doi:10.1038/86373 57. Rockman, S., & Brown, L. (2010). Pre-pandemic and pandemic influenza vaccines. Hum Vaccin, 6(10), 792-801. doi:10.4161/hv.6.10.12915 58. Rubino, S. J., Geddes, K., & Girardin, S. E. (2012). Innate IL-17 and IL-22 responses to enteric bacterial pathogens. Trends Immunol, 33(3), 112-118. doi:10.1016/j.it.2012.01.003 59. Skehel, J. J., & Wiley, D. C. (2000). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 69, 531-569. doi:10.1146/annurev.biochem.69.1.531 60. Soema, P. C., Kompier, R., Amorij, J. P., & Kersten, G. F. (2015). Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm, 94, 251-263. doi:10.1016/j.ejpb.2015.05.023 61. Stevens, J., Blixt, O., Paulson, J. C., & Wilson, I. A. (2006). Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol, 4(11), 857-864. doi:10.1038/nrmicro1530 62. Subbarao, K., & Joseph, T. (2007). Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol, 7(4), 267-278. doi:10.1038/nri2054 63. Taylor, D. N., Treanor, J. J., Strout, C., Johnson, C., Fitzgerald, T., Kavita, U., . . . Shaw, A. (2011). Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine, 29(31), 4897-4902. doi:10.1016/j.vaccine.2011.05.001 64. Tran, T. H., Nguyen, T. L., Nguyen, T. D., Luong, T. S., Pham, P. M., Nguyen v, V., . . . World Health Organization International Avian Influenza Investigative, T. (2004). Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med, 350(12), 1179-1188. doi:10.1056/NEJMoa040419 65. Tregoning, J. S., Russell, R. F., & Kinnear, E. (2018). Adjuvanted influenza vaccines. Hum Vaccin Immunother, 14(3), 550-564. doi:10.1080/21645515.2017.1415684 66. Tunis, M. C., Dawod, B., Carson, K. R., Veinotte, L. L., & Marshall, J. S. (2015). Toll-like receptor 2 activators modulate oral tolerance in mice. Clin Exp Allergy, 45(11), 1690-1702. doi:10.1111/cea.12605 67. Tunis, M. C., & Marshall, J. S. (2014). Toll-like receptor 2 as a regulator of oral tolerance in the gastrointestinal tract. Mediators Inflamm, 2014, 606383. doi:10.1155/2014/606383 68. Turley, C. B., Rupp, R. E., Johnson, C., Taylor, D. N., Wolfson, J., Tussey, L., . . . Shaw, A. (2011). Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine, 29(32), 5145-5152. doi:10.1016/j.vaccine.2011.05.041 69. van Riel, D., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D., & Kuiken, T. (2006). H5N1 Virus Attachment to Lower Respiratory Tract. Science, 312(5772), 399. doi:10.1126/science.1125548 70. Veazey, R. S., Siddiqui, A., Klein, K., Buffa, V., Fischetti, L., Doyle-Meyers, L., . . . Shattock, R. J. (2015). Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques. Hum Vaccin Immunother, 11(12), 2913-2922. doi:10.1080/21645515.2015.1070998 71. Wang, C. C., Chen, J. R., Tseng, Y. C., Hsu, C. H., Hung, Y. F., Chen, S. W., . . . Wong, C. H. (2009). Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A, 106(43), 18137-18142. doi:10.1073/pnas.0909696106 72. Wang, H., Feng, Z., Shu, Y., Yu, H., Zhou, L., Zu, R., . . . Wang, Y. (2008). Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet, 371(9622), 1427-1434. doi:10.1016/S0140-6736(08)60493-6 73. Wang, X., Fan, X., Bi, S., Li, N., & Wang, B. (2017). Toll-like Receptors 2 and 4-Mediated Reciprocal Th17 and Antibody Responses to Group A Streptococcus Infection. J Infect Dis, 215(4), 644-652. doi:10.1093/infdis/jiw598 74. Wang, X., Ma, K., Chen, M., Ko, K. H., Zheng, B. J., & Lu, L. (2016). IL-17A Promotes Pulmonary B-1a Cell Differentiation via Induction of Blimp-1 Expression during Influenza Virus Infection. PLoS Pathog, 12(1), e1005367. doi:10.1371/journal.ppat.1005367 75. Watanabe, Y., Ibrahim, M. S., Ellakany, H. F., Kawashita, N., Daidoji, T., Takagi, T., . . . Ikuta, K. (2012). Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt. J Gen Virol, 93(Pt 10), 2215-2226. doi:10.1099/vir.0.044032-0 76. Woodrow, K. A., Bennett, K. M., & Lo, D. D. (2012). Mucosal vaccine design and delivery. Annu Rev Biomed Eng, 14, 17-46. doi:10.1146/annurev-bioeng-071811-150054 |