帳號:guest(3.144.232.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):杰羅姆
作者(外文):Panibe, Jerome Peñaflor
論文名稱(中文):台中在來 1 號⽔稻基因體的組裝和註釋有助於了解其性狀
論文名稱(外文):Assembly and annotation of the Taichung Native 1 rice genome give insights into its characteristics
指導教授(中文):李文雄
指導教授(外文):Li, Wen-Hsiung
口試委員(中文):陳良築
董致韡
施明哲
王強生
呂美曄
口試委員(外文):Chen, Liang-Jwu
Tung, Chih-Wei
Shih, Ming-Che
Wang, Chansen
Lu, Mei-Yeh Jade
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080456
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:112
中文關鍵詞:台中在來 1 號
外文關鍵詞:TN1 rice genomeTN1 rice
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
台中在來 1 號(TN1)是IR8 “奇蹟稻” 的姊妹品種,它開啟了水稻綠色革命(GR)。 TN1 和 IR8 均為低腳烏尖 (Dee-geo-woo-gen, DGWG) 栽培種的直系子代。因此,我們對 TN1 的基因體進行了測序和組裝。它由 PacBio 和 Illumina 二個平台組合測序。基因體主要由 Canu 使用 PacBio 長讀序資料重新組裝。以 R498為參考的基因體,參考RaGOO引導組裝方法輸出染色體水平的組裝,N50 為 33.1 Mb,基因體大小為 409.5 Mb。然後,使用 Illumina 讀值來改善組裝的基因體,包括校正測序錯誤。 TN1 基因體中共預測了 37,526 個基因,其中 24,102 個基因被 Blast2GO鑑定了功能。這種高品質的組裝和註釋與 IR8、MH63 和 IR64 的組裝和註釋,一起用於建立具有 16,999 個核心直向同源組的綠色革命水稻的泛基因體。通過 GR 泛基因體,我們能夠解開 TN1 和 IR8澱粉合成基因的差異,這可能與它們的穀粒產量差異有關。我們還研究了它們的開花基因,以闡明它們對光週期不敏感的基因體基礎。對 TN1 和 IR8 的 sd1(半矮性)基因的分析更正了382 bp 片段的缺失,並通過 Sanger 測序進行驗證。 sd1 基因的外顯子-內含子結構在 TN1和 IR8 之間也不同;前者俱有與日本晴相關的缺失模式,其中外顯子 1 的後半部分至第二外顯子的一部分丟失。但是,在 IR8 sd1 的註釋中並非如此。我們還研究了為什麼 TN1 易受稻熱病影響。以抗稻熱病 Tetep 品種的基因為參考,我們發現 R 基因 Pi-ta 發生突變,使 Pi54 缺失。來自 3,000 水稻基因體測序的栽培品種的單倍型分析,也支持我們的結論。由這兩個基因的解序,我們懷疑 Pi54 的缺失是 TN1 對稻熱病高感性的部分原因。 TN1 的基因體分析提供了對綠色革命早期歷史的瞭解,並可能為提高糧食產量和抗病能力提供線索。
Taichung Native 1 (TN1) served as a prototype in the development of its sister cultivar, the IR8 “miracle rice”, which started the Green Revolution (GR). Both TN1 and IR8 were derived from the Dee-geo-woo-gen cultivar. We therefore sequenced and assembled the genome of TN1. It was sequenced by a combination of PacBio and Illumina platforms. The genome was de novo assembled primarily by Canu using PacBio long reads. The RaGOO reference-guided assembler with the R498 genome as the reference outputted a chromosomal-level assembly, with an N50 of 33.1 Mb and a genome size of 409.5 Mb. The Illumina reads were then used to polish the assembled genome, including correction of sequencing errors. A total of 37,526 genes were predicted in the TN1 genome, in which 24,102 genes were assigned functions by Blast2GO. This high-quality assembly and annotation together with those of IR8, MH63 and IR64 were used to create a GR pangenome that has 16,999 core orthologue groups. Through the GR pangenome, we were able to unravel the difference in the starch synthesis genes of TN1 and IR8, which could be related to the difference in their grain yield. We also studied their flowering genes to elucidate the genetic basis of their photoperiod insensitivity. Analysis of the sd1 (semi-dwarf) gene of TN1 and IR8 revealed a 382-bp deletion, which was validated by Sanger sequencing. The exon-intron structure of the sd1 gene differs between TN1 and IR8. The former has the deletion pattern with respect to Nipponbare, in which the second half of exon 1 is lost up to a portion of the second exon. However, this is not the case in the annotation of IR8 sd1. We also investigated why TN1 is susceptible to the blast disease. Using the genes of the blast resistant Tetep cultivar as the reference, we found that the R gene Pi-ta is mutated and Pi54 is missing. Haplotype analysis of cultivars from the 3,000 Rice Genome Sequencing Project supported our results. Of the two genes, we suspect the loss of Pi54 to be the part of the reason for TN1’s high susceptibility to blast. The TN1 genome provides insights into the early history of the Green Revolution and may provide clues for improving grain yield and resistance against diseases.
Abstract (Chinese)............................................................................................................i
Abstract (English).............................................................................................................ii
Acknowledgement..........................................................................................................iii
Table of Contents.............................................................................................................iv
Publications.......................................................................................................................vi
List of figures.....................................................................................................................vii
List of tables ........................................................................................................................x
List of abbreviations.........................................................................................................xi
Chapter 1 – General Introduction...............................................................................1
1.1 Origin, history and important characteristics of TN1...................................1
1.2 Rice reference genomes..........................................................................................3
1.3 De novo assembly methods...................................................................................6
1.4 Reference-guided assembly...................................................................................8
1.5 Genome annotation...................................................................................................9
1.6 Goals and Specific Aims..........................................................................................10
Chapter 2 – Genome assembly and annotation of the Taichung Native 1 (TN1) genome.................................................................................................................................12
2.1 Abstract..........................................................................................................................12
2.2 Introduction..................................................................................................................12
2.3 Materials and Methods............................................................................................13
2.4 Results.............................................................................................................................19
2.5 Conclusion......................................................................................................................43
2.6 Data availability.............................................................................................................43
2.7 Publication......................................................................................................................43
Chapter 3 – Redefining the genomic deletion in sd1 among semidwarf cultivars and TN1’s blast susceptibility.....................................................................44
3.1 Abstract ...........................................................................................................................44
3.2 Introduction....................................................................................................................44
3.3 Materials and Methods..............................................................................................45
3.4 Results...............................................................................................................................48
3.5 Discussion....................................................................................................................... 59
3.6 Conclusion.......................................................................................................................60
3.7 Publication.......................................................................................................................61
References...............................................................................................................................62
Appendix..................................................................................................................................73
Appendix figures...................................................................................................................73
Appendix tables..................................................................................................................108
Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 2019: 20:224.

Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020; 21:30.

Barman SR, Gowda M, Venu RC, Chattoo BB. Identification of a major blast resistance gene in the rice cultivar ‘Tetep’. Plant Breed. 2004; 123:300-302.

Brass PR. The Political Uses of Crisis: The Bihar Famine of 1966-1967. J. of Asian Stud. 1986; 45, 245-267.

Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015; 6:11.

Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS–LRR proteins and their partners Curr. Opin. Plant Biol. 2004; 7:391-399.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114-2120.

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011; 27:578-579.

Bushnell B. BBMap. 2021; [accessed on 4 February 2021].
https://sourceforge.net/projects/bbmap/.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421.

Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008 18:188-196.

Chaisson MJ and Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics. 2012; 13:238.

Chandler RF Jr. An Adventure in Applied Science: A History of the International Rice Research Institute. International Rice Research Institute, Los Baños, Philippines, 1992; pp 51 and 116.

Coombe L, Zhang J, Vandervalk BP, Chu J, Jackman SD, Birol I, Warren RL. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers. BMC Bioinformatics. 2018; 19:234.

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods. 2013; 10:563-569.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012; 6:80-92.

Cross JM, Clancy M, Shaw JR, Boehlein SK, Greene TW, Schmidt RR, Okita TW, Hannah LC. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits. Plant J. 2005; 41:501-511.

Dai JB, Liu Y, Ray WJ Jr, Konno M. The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. J. Biol. Chem. 1992; 267:6322-6337.

Dalrymple D. Development and spread of semi-dwarf varieties of wheat and rice in the United States: an international perspective. US Department of Agriculture, Office of International Cooperation and Development 1980.

Deen R, Ramesh K, Padmavathi G, Viraktamath BC, Ram T. Mapping of brown planthopper [Nilaparvata lugens (Stål)] resistance gene (bph5) in rice (Oryza sativa L.). Euphytica. 2017; 213:35.

Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004; 18:926-936.

Du A, Tian W, Wei M, Yan W, He H, Zhou D, Huang X, Li S, Ouyang X. The DTH8-Hd1 Module Mediates Day-Length-Dependent Regulation of Rice Flowering. Mol. Plant. 2017a; 10:948-961.

Du H, Yu Y, Ma Y, Gao Q, Cao Y, Chen Z, Ma B, Qi M, Li Y, Zhao X, Wang J, Liu K, Qin P, Yang X, Zhu L, Li S, Liang C. Sequencing and de novo assembly of a near complete indica rice genome. Nat. Commun. 2017b; 8:15324.

Eddy SR. Profile hidden Markov models. Bioinformatics. 1998; 14:755-63.

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. The Pfam protein families database in 2019. Nucleic Acids Res. 2019; 47:D427-D432.

Emms DM and Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019; 20:238.

English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One. 2012; 7:e47768.

Garg OK and Singh BP. Physiological significance of ascorbic acid in relation to drought resistance in rice (Oryza sativa L.). Plant Soil. 1971; 34:219-223.

Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008; 36:3420-3435.

Hargrove TR, Coffmann WR, Cabanilla VL. Genetic interrelationships of improved rice varieties in Asia. IRRI Research Paper Series 1979; No. 23.

Hargrove TR, Coffman WR, Cabanilla VL. Genetic interrelationships of improved rice varieties in Asia. International Rice Research Institute, Manila, Philippines 1979; pp 2 and 10.

Hammesfahr B, Odronitz F, Mühlhausen S, Waack S, Kollmar M. GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures. BMC Bioinformatics. 2013; 14:77.

Hsieh, S.-C. Studies on Physicochemical Aspect of Eating Quality and Grading of Rice. 臺中區農業改良場研究彙報 1991; 31:1-11.

Huang J, Li J, Zhou J, Wang L, Yang S, Hurst LD, Li WH, Tian D. Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Proc. Natl. Acad. Sci. USA. 2018; 115:E7559-E7567.

Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, Smit AF, Wheeler TJ. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016; 44:D81-D89.

International Rice Genome Sequencing Project and Sasaki T. The map-based sequence of the rice genome. Nature. 2005; 436:793-800.

International Rice Research Institute (IRRI) Standard Evaluation System for Rice 5th edition. International Rice Research Institute, Manila 2013; pp 2 and 18.

Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M. Modification of Rice Plant Height by Suppressing the Height-Controlling Gene, D18. Rice. Breed. Sci. 2002; 52:215-218.

Jackman SD, Coombe L, Chu J, Warren RL, Vandervalk BP, Yeo S, Xue Z, Mohamadi H, Bohlmann J, Jones SJM, Birol I. Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinformatics. 2018; 19:393.

Jia X, Yu L, Tang M, Tian D, Yang S, Zhang X, Traw MB. Pleiotropic changes revealed by in situ recovery of the semi-dwarf gene sd1 in rice. J. Plant. Physiol. 2020; 248:153141.

Jia Y, Bryan GT, Farrall L, Valent B. Natural Variation at the Pi-ta Rice Blast Resistance Locus. Phytopathology. 2003; 93:1452-1459.

Jiao WB, Schneeberger K. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 2017; 36:64-70.

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 2010 42:541-544.

Kanehisa M and Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27-30.

Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013; 6:4.

Kajitani R, Yoshimura D, Okuno M, Minakuchi Y, Kagoshima H, Fujiyama A, Kubokawa K, Kohara Y, Toyoda A, Itoh T. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat. Commun. 2019; 10:1702.

Kim B, Kim DG, Lee G, Seo J, Choi IY, Choi BS, Yang TJ, Kim KS, Lee J, Chin JH, Koh HJ. Defining the genome structure of 'Tongil' rice, an important cultivar in the Korean "Green Revolution". Rice. 2014; 7:22.

Khush GS and Virk PS. IR varieties and their impact. International Rice Research Institute 2005.

Kolmogorov M, Raney B, Paten B, Pham S. Ragout-a reference-assisted assembly tool for bacterial genomes. Bioinformatics. 2014; 30:i302-i309.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017; 27:722-736.

Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004; 5:59.

Kumar PN, Sujatha K, Laha GS, Rao KS, Mishra B, Viraktamath BC, Hari Y, Reddy CS, Balachandran SM, Ram T, Madhav MS, Rani NS, Neeraja CN, Reddy GA, Shaik H, Sundaram RM. Identification and Fine-Mapping of Xa33, a Novel Gene for Resistance to Xanthomonas oryzae pv. oryzae. Phytopathology. 2012; 102:222-228.

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013; [accessed on 7 May 2021]. https://arxiv.org/abs/1303.3997.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078-2079.

Li X, Wu L, Wang J, Sun J, Xia X, Geng X, Wang X, Xu Z, Xu Q. Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol. 2018; 16:102.

Lin H, Wu Y, Hour A, Ho S, Wei F, Hsing Y, Lin Y. Genetic diversity of rice germplasm used in Taiwan breeding programs. Bot. Stud. 2012; 53:363-376.

Liu H, Zhou X, Li Q, Wang L, Xing Y. CCT domain-containing genes in cereal crops: flowering time and beyond. Theor. Appl. Genet. 2020; 133:1385-1396.

Liu X, Li J, Xu L, Wang Q, Lou Y. Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. Int. J. Mol. Sci. 2018; 19:1182.

Lu S, Cik T-T, Lii C, Lai P and Chen H-H. Effect of amylose content on structure, texture and α-amylase reactivity of cooked rice. LWT. 2013; 54:224-228.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012; 1:18.

Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J. Pi64, Encoding a Novel CC-NBS-LRR Protein, Confers Resistance to Leaf and Neck Blast in Rice. Mol. Plant Microbe Interact. 2015a; 28:558-568.

Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell. 2015b; 160:1209-1221.

Mahesh HB, Shirke MD, Singh S, Rajamani A, Hittalmani S, Wang GL, Gowda M. Indica rice genome assembly, annotation and mining of blast disease resistance genes. BMC Genomics. 2016; 17:242.

Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM, Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A, Dubchak I, Solovyev V, Wing RA, Hamilton RS, Mauleon R, McNally KL, Alexandrov N. Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res. 2017; 45:D1075-D1081.

Mao D, Xin Y, Tan Y, Hu X, Bai J, Liu ZY, Yu Y, Li L, Peng C, Fan T, Zhu Y, Guo YL, Wang S, Lu D, Xing Y, Yuan L, Chen C. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc. Natl. Acad. Sci. USA. 2019; 116:3494-3501.

Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018; 14:e1005944.

Marçais G and Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011; 27:764-770.

McHale L, Tan X, Koehl P, Michelmore RW. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006; 7:212.

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021; 49:D412-D419.

Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional Cloning of Rice Semidwarfing Gene, sd-1: Rice “Green Revolution Gene” Encodes a Mutant Enzyme Involved in Gibberellin Synthesis. DNA Res. 2002; 9:11-17.

Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics. 2012;13:S8.

Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor. Appl. Genet. 2005; 110:778-786.

Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. Genealogy of the “Green Revolution” gene in rice. Genes Genet. Syst. 2005; 80:351-356.

Nguyen SH, Cao MD, Coin LJM. Real-time resolution of short-read assembly graph using ONT long reads. PLoS Comput. Biol. 2021; 17:e1008586.

nr database. Protein [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] - [cited [2020] Jan 11]. Available from: https://www.ncbi.nlm.nih.gov/protein/

O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics. 2015; 31:2035-2037.

Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol. Gen. Genet. 2000; 263:388-394.

Panibe JP, Wang L, Li J, Li M-Y, Lee Y-C, Wang C-S, Ku MSB, Lu M-YJ, Li W-H. Chromosomal-level genome assembly of the semi-dwarf rice Taichung Native 1, an initiator of Green Revolution. Genomics. 2021a; 113:2656-2674.

Panibe, JP, Lee, Y-C, Wang, C-S, Li W-H. Identifying mutations in sd1, Pi54 and Pi-ta, and positively selected genes of TN1, the first semidwarf rice in Green Revolution. Bot. Stud. 2021b; In Revision. doi: https://doi.org/10.1101/2021.12.23.474023 [Preprint available at bioRxiv].

Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007; 23:1061-1067.

Peng H, Wang K, Chen Z, Cao Y, Gao Q, Li Y, Li X, Lu H, Du H, Lu M, Yang X, Liang C. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res. 2020; 48:D1085-D1092.

Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. F1000Res. 2020; 9:304.

Peterson DG, Tomkins JP, Frisch DA, Wing RA and Paterson AH. Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. J. Agric. Genomics. 2000; 5.

Piro VC, Faoro H, Weiss VA, Steffens MB, Pedrosa FO, Souza EM, Raittz RT. FGAP: an automated gap closing tool. BMC Res. Notes. 2014; 7:371.

Purwestri YA, Susanto FA and Tsuji H. Hd3a Florigen Recruits Different Proteins to Reveal Its Function in Plant Growth and Development. In Plant Engineering (InTech). 2017.

Read AC, Moscou MJ, Zimin AV, Pertea G, Meyer RS, Purugganan MD, Leach JE, Triplett LR, Salzberg SL, Bogdanove AJ. Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genet. 2020; 16:e1008571.

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP Integrative genomics viewer. Nat. Biotechnol. 2011; 29:24-26.

Sabbu S, Pandey MK, Reddy B, Shaik H, Kumar SV, Kousik MBVN, Bhadana VP, Madhav MS, Kota S, SubbaRao LV, Kumaraswamy M,Giri A, Narasu BL, Rani NS, Sundaram, RM. Introgression of major bacterial blight and blast resistant genes into Vallabh Basmati 22 an elite Basmati variety. Int. J. Dev. Res. 2016; 6:8366-8370.

Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, Funk K, Ketter A, Kim S, Kimchi A, Kitts PA, Kuznetsov A, Lathrop S, Lu Z, McGarvey K, Madden TL, Murphy TD, O'Leary N, Phan L, Schneider VA, Thibaud-Nissen F, Trawick BW, Pruitt KD, Ostell J. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020; 48:D9-D16.

Salamov AA and Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000; 10:516-522.

Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 2003; 133:1111-1121.

Seppey M, Manni M. and Zdobnov EM. Gene Prediction. Methods in Molecular Biology (ed Kollmar M.). Springer New York. Chapter 14, BUSCO: Assessing Genome Assembly and Annotation Completeness. 2019; pp 227-245.

Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol. Genet. Genomics 2005; 274:569-578.

Shimoyanagi R, Abo M, Shiotsu F. Higher Temperatures during Grain Filling Affect Grain Chalkiness and Rice Nutrient Contents. Agronomy 2021; 11:1360.

Smit, A.F.A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org/. 2013-2015.

Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA. 2002; 99:9043-9048.

Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL, Wei S, Wang J, Liao Y, Wang M, Jacquemin J, Becker C, Kudrna D, Zhang J, Londono CEM, Song X, Lee S, Sanchez P, Zuccolo A, Ammiraju JSS, Talag J, Danowitz A, Rivera LF, Gschwend AR, Noutsos C, Wu CC, Kao S-M, Zeng J-W, Wei F-J, Zhao Q, Feng Q, El Baidouri M, Carpentier M-C, Lasserre E, Cooke R, da Rosa Farias D, da Maia LC, Dos Santos RS, Nyberg KG, McNally KL, Mauleon R, Alexandrov N, Schmutz J, Flowers D, Fan C, Weigel D, Jena KK, Wicker T, Chen M, Han B, Henry R, Hsing Y-IC, Kurata N, de Oliveira AC, Panaud O, Jackson SA, Machado CA, Sanderson MJ, Long M, Ware D, Wing RA. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 2018; 50:285-296.

Steuernagel B, Jupe F, Witek K, Jones JDG, Wulff BBH. NLR-parser: rapid annotation of plant NLR complements. Bioinformatics. 2015; 31:1665-1667.

Streb S, Eicke S, Zeeman SC. The simultaneous abolition of three starch hydrolases blocks transient starch breakdown in Arabidopsis. J. Biol. Chem. 2012; 287:41745-41756.

Song JM, Lei Y, Shu CC, Ding Y, Xing F, Liu H, Wang J, Xie W, Zhang J, Chen LL. Rice Information GateWay: A Comprehensive Bioinformatics Platform for Indica Rice Genomes. Mol. Plant. 2018; 11:505-507.

Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008; 24:637-644.

Sun H, Ding J, Piednoël M, Schneeberger K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018; 34:550-557.

Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS One. 6:e21800.

Takken FLW and Joosten MHAJ (2000) Plant Resistance Genes: Their Structure, Function and Evolution. Eur. J. Plant Pathol. 106:699-713.

Tanaka T, Nishijima R, Teramoto S, Kitomi Y, Hayashi T, Uga Y, Kawakatsu T. De novo Genome Assembly of the indica Rice Variety IR64 Using Linked-Read Sequencing and Nanopore Sequencing. G3. 2020; 10:1495-1501.

Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K. Structure and function of florigen and the receptor complex. Trends Plant Sci. 2013; 18:287-294.

Thakur S, Singh PK, Das A, Rathour R, Variar M, Prashanthi SK, Singh AK, Singh UD, Chand D, Singh NK, Sharma TR. Extensive sequence variation in rice blast resistance gene Pi54 makes it broad spectrum in nature. Front. Plant Sci. 2015; 6:345.

Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita TW, Hwang SK, Satoh H. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiol. 2014; 55:1169-1183.

Vergara BS, Chang TT. The flowering response of the rice plant to photoperiod: a review of the literature 4th ed. International Rice Research Institute, Los Baños, Philippines, 1985; pp. 5 and 35.

Xing Y and Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol. 2010; 61:421-42.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9:e112963.

Warren, RL. RAILS and Cobbler: Scaffolding and automated finishing of draft genomes using long DNA sequences. J. Open Source Softw. 2016; 1:116.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS One. 2014; 9:e112963.

Wang L, Zhao L, Zhang X, Zhang Q, Jia Y, Wang G, Li S, Tian D, Li W-H, Yang S. Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proc. Natl. Acad. Sci. USA. 2019; 116:18479-18487.
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J-C, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 2018; 557:43-49.

Wang X, Jia Y, Shu QY, Wu D. Haplotype Diversity at the Pi-ta Locus in Cultivated Rice and Its Wild Relatives. Phytopathology. 2008; 98:1305-1311.

Wang X, Lee S, Wang J, Ma J, Bianco T, Jia Y. Current Advances on Genetic Resistance to Rice Blast Disease. In: Yan W, Bao J (eds) Rice - Germplasm, Genetics and Improvement, IntechOpen 2014.

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25:1189-1191.

Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017; 27:757-767.

Williams, S. translator. "Tracing the Roots of Taiwanese Rice". by Teng, C. Ministry of Foreign Affairs, Republic of China (Taiwan), Taiwan Panorama, July 2016, Taipei, https://www.taiwanpanorama.com.tw/en/Articles/Details?Guid=cf723995-adf6-4202-8532-1e5714c49fc0

Wu B, Hu W, Ayaad M, Liu H & Xing Y (2017) Intragenic recombination between two non-functional semi-dwarf 1 alleles produced a functional SD1 allele in a tall recombinant inbred line in rice. PLoS ONE 12:e0190116.

Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics. 2010; 11:267.

Yao W, Li G, Yu Y, Ouyang Y. funRiceGenes dataset for comprehensive understanding and application of rice functional genes. Gigascience. 2018; 7:1-9.

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell. 2000; 12:2473-2484.

Yoshida S (1981) Fundamental of Rice Crop Science. International Rice Research Institute, Los Baños, Philippines, p 215.

Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science. 2002; 296:79-92.

Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S, Gu M, Liu Q. Wxlv, the Ancestral Allele of Rice Waxy Gene. Mol. Plant. 2019; 12:1157-1166.

Zhang J, Chen LL, Xing F, Kudrna DA, Yao W, Copetti D, Mu T, Li W, Song JM, Xie W, Lee S, Talag J, Shao L, An Y, Zhang CL, Ouyang Y, Sun S, Jiao WB, Lv F, Du B, Luo M, Maldonado CE, Goicoechea JL, Xiong L, Wu C, Xing Y, Zhou DX, Yu S, Zhao Y, Wang G, Yu Y, Luo Y, Zhou ZW, Hurtado BE, Danowitz A, Wing RA, Zhang Q. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc. Natl. Acad. Sci. USA. 2016; 113:E5163- E5171.

10x Genomics. Source code for: Long Ranger. 2019; https://support.10xgenomics.com/genome-exome/software/downloads/latest.

Zerbino DR and Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; 18:821-829.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *