帳號:guest(18.223.203.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林俊延
作者(外文):Lin, Chun-Yan
論文名稱(中文):非線性色散及彎曲位能上的波局域化
論文名稱(外文):Nonlinear dispersion and curved potential on wave localizations
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray-Kuang
口試委員(中文):張仁煦
鄭建宗
盧廷昌
李政誼
李柏璁
口試委員(外文):Chang, Jen-Hsu
Jeng, Chien-Chung
Lu, Tien-Chang
Lee, Jeng Yi
Lee, Po-Tsung
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066809
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:56
中文關鍵詞:非線性色散拓撲弦波侷域化孤子準晶體
外文關鍵詞:nonlinear dispersiontopological stringwave localizationsolitonquasicrystal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:129
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
在這論文裡我們研究了多種情況下的波局域性。主要著重在兩種不同系統上,第一種是我們能在非線性色散的系統中找到孤子解,是以贗勢找到的近似解析解,以及牛頓法和傳播一個高斯波函數得到的數值解。第二種為了要做彎曲空間的研究,對於多種曲線我們推導了相對應的等效位能以及曲線長度用來做為彎曲空間座標, 像是拋物線,雙曲線,S形的,正弦曲線,橢圓形,螺旋形,玫瑰形,心形,進而得到對於各種曲線的相關的局域態,同時也將此作法運用於許多拋物線組合成的三維拓撲弦,同時使拓撲弦的等效位能對應於Andre-Aubry-Harper的位能。同時如同預期的我們也能在此系統中找到局域態,非局域態,邊界態。另外使用逆參與率找到了局域-非局域的過度邊界。
In this thesis, we study the wave localizations in several cases. There are two main parts of the system. First is that we obtain the solitary solution in the system with nonlinear dispersion, approach analytical solution by pseudo-potential method, also obtain the numerical solution by Newton’s method and propagate an initial Gaussian state. Second, in order to research on the curved space, for assorted curves we derived corresponding effective potential and arc length as the curved coordinate, such as parabola, hyperbola, S-shape, sinusoidal, ellipse, spiral, rose and cardioid curves, to obtain the related localized state on those curves. And we have the application on the three-dimensional topological string by many parabolas be connected, makes the effective potential present as Andre-Aubry-Harper model. And in the meanwhile, we found localized states, delocalized states and edge states as expected in this system. In addition, find the localization-delocalization transition for the system, by inverse participation ratio.
ABSTRACT-----------------------------------------v

Chapter 1 Introduction...........................1
1.1 1D soliton...............................1
1.2 2D soliton...............................2
1.3 2D dipolar BEC...........................3
1.4 X-wave...................................4
Chapter 2 Soliton in nonlinear dispersion system.6
2.1 introduction..........................6
2.2 pseudo-potential method and asymptotic analysis.........................................7
2.3 Numerical solution...................10
2.4 Conserved density convergence........12
2.5 Phase diagram........................13
2.6 Evolution with an initial Gaussian…..14
2.7 Summary..................................15
Chapter 3 Wave localization in curved potentials17
3.1 Introduction.........................17
3.2 Parabola.............................21
3.3 Hyperbola............................23
3.4 S-shape..............................24
3.5 Sinusoidal...........................28
3.6 Ellipse..............................31
3.7 Spiral...............................34
3.8 Rose.................................35
3.9 Cardioid.............................36
3.10 Summary….............................37
Chapter 4 Wave localization in curved potentials in AAH model...........................................38
4.1 introduce the model..................38
4.2 Result...............................44
4.3 Summary..............................48
Chapter 5 Conclusion............................49
Appendix A......................................51
Reference.......................................55
[1] R. Z. Zhang, Y. X. Fan, J. M. Kundu, J. Tao, B. Y. Ma, C. G. Tong, and Z. Y. Tao, “Obervation of water surface wave localization in a trough with periodic sidewalls,” AIP Adv. 8, 085308 (2018).
[2] E. Guazzelli, E. Guyon, B. Souillard, “On the localization of shallow water waves by a random bottom,” J. Phys. Lett. 44, 837-841 (1983).
[3] S. John, “Localization of light,” Phys. Today 32 (1991).
[4] E. Yablonovitch, K. M. LEUNG, “Hope for photonic bandgaps,” Nature 351, 278 (1991).
[5] R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman & S. L. McCall, “Microwave localization by two-dimensional random scattering,” Nature 354, 53-55 (1991)
[6] J. S. Russel ”14th meeting of the British Association Reports”, York (1844).
[7] V. E. Zakharov, S. V. Manakov, “On the complete integrability of a nonlinear Schrödinger equation,” Theor Math Phys 19, 551 (1974).
[8] X. Y. Chen, Y. L Chuang, C. Y Lin, C. M Wu, Y. Y. Li, B. A. Malomed, and R. K. Lee, “A magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions,” Phys. Rev. A 96, 043631 (2017).
[9] C. Conti, “X-wave-mediated instability of plane waves in Kerr media,” Phys. Rev. E 68, 016606 (2003).
[10] C. Conti, and S. Trillo, “Nonspreading Wave Packets in Three Dimensions Formed by an Ultracold Bose Gas in an Optical Lattice,” Phys. Rev. Lett. 92 120404 (2004)
[11] L. E. Ballentine and J. P. Zibin, “Classical state sensitivity from quantum mechanics,” Phys Rev. A 54, 3813 (1996)
[12] G. B. Whitham, “A general approach to linear and nonlinear dispersive waves using a Lagrangian,” L. Fluid Mech. 22, 273-283 (1965).
[13] G. B. Whitham, “Linear and Nonlinear Waves,” (John Wiley & Sons 1999).
[14] A. A. Koser, P. K. Sen, and P. Sen, “Effect of intensity dependent higher-order dispersion on femtosecond pulse propagation in quantum well waveguides” J. Mod. Opt. 56, 1812-1818 (2009).
[15] V. E. Gusev, W. Lauriks, and J. Thoen, “Dispersion of nonlinearity, nonlinear dispersion, and absorption of sound in micro- inhomogeneous materials,” J. Acous. Soc. Am. 103, 3216 (1998).
[16] A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[17] C. Y. Lin, J. H. Chang, G. Kurizki, and R. K. Lee, “Solitons supported by intensity-dependent dispersion,” Opt. Lett. 45 1471 (2020).
[18] P. J. Olver, “Applications of Lie Groups to Differential Equations,” Second Edition, (Springer Verlag, 1993).
[19] M. J. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transform,” (SIAM Philadelphia, 1981).
[20] R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, 1972).
[21] Do. Carmo, M. P., “Differential Geometry of Curves and Surfaces,” (2016).
[22] R. C. T. da Costa, “Quantum mechanics of a constrained particle,” Phys. Rev. A 23, 1982 (1981).
[23] C. Conti, “Localization and shock waves in curved manifolds,” Sci. Bull. 61, 570 (2016)
[24] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, “Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping,” Phys. Rev. A 59, 620 (1999).
[25] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, ”Classical Bifurcation at the Transition from Rabi to Josephson Dynamics,” Phys. Rev. Lett. 105, 204101 (2010).
[26] Y. V. Kartashov, A. Szameit, R. Keil, V. A. Vysloukh, and Lluis Torner, “Solitons in geometric potentials,”Opt. Lett. 36, 3470 (2011).
[27] K. B. Hong, C. Y. Lin, T. C. Chang, W. H. Liang, Y. Y. Lai, C. M. Wu, Y. L. Chuang, T. C. Lu, C. Conti, and R. K. Lee, “Lasing on nonlinear localized waves in curved geometry,” Opt. Exp. 25, 29068 (2017).
[28] K. H. Kuo, Y. Lin, and R. K. Lee, “Thresholdless crescent waves in an elliptical ring,” Opt. Lett. 38 1077 (2013).
[29] S. Aubry and G. Andre ́, ”Analyticity breaking and andersion localization in incommensurate lattices,” Ann. Isr. Phys. Soc. 3, 133 (1980).
[30] L. J. Lang, X. Cai, and S. Chen, “Edge States and Topological Phases in One-Dimensional Optical Superlattices,” Phys. Rev. Lett. 108, 220401 (2012).
[31] Y. E. Kraus, Y. Lahini, Zohar Ringel, M. Verbin, and O. Zilberberg, “Topological States and Adiabatic Pumping in Quasicrystals,” Phys. Rev. Lett. 109, 106402 (2012).
[32] M. L. Sun, G. Wang, N. B. Li and T. Nakayama, “Localization-delocalization transition in self-dual quasi-periodic lattices,” Epl. 110, 5 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *