|
CH1 1. Tonouchi, M. “Cutting-edge terahertz technology” Nat. Photon. 1, 97–105 (2007). 2. B. Ferguson and X.-C. Zhang “Materials for terahertz science and technology” Nature Materials 1, 26–33 (2002). 3. Lee, Y. -S. Principles of Terahertz science and technology 108 (Springer, 2008). 4. Hafez, H. A. et al. “Intense terahertz radiation and their applications” Journal of Optics 18, 093004 (2016). 5. Vijayraghavan, K. et al. “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers” Nature Commun. 4, 2021 (2013). 6. Ko¨hler, R. et al. “Terahertz semiconductor heterostructure laser” Nat. Photon. 417, 156–159 (2002). 7. Williams, B. S. “Terahertz quantum-cascade lasers” Nat. Photon. 1, 517–525 (2007). 8. Belkin, M. A. et al. “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K” Opt. Express 16, 3242–3248 (2008). 9. Burghoff, D. et al. “Terahertz laser frequency combs” Nat. Photon. 8, 462–467 (2014). 10. Rösch, M., Scalari, G., Beck, M. and Faist, J. “Octave-spanning semiconductor laser” Nat. Photon. 9, 42–47 (2015). 11. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide,“Ultrabright continuously tunable terahertz-wave generation at room temperature”, Sci. Rep. 4, 5045 (2014). 12. S. Fathololoumi, et al., “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Optics Express 20, 3866 (2012). 13. G. N. Kulipanov, et al., “Research highlights from the novosibirsk 400 W average power THz FEL," Terahertz Science and Technology 1, 107 (2008). 14. M. Shalaby, and C. P. Hauri, "Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness," Nat. Commun. 6, 5976 (2015). 15. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, "Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3," Appl. Phys. Lett. 98, 091106 (2011). 16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
CH2 1. Sussman, S. S. (1970). Tunable light scattering from transverse optical modes in lithium niobate (No. SU-MLR-1851). STANFORD UNIV CA MICROWAVE LAB. 2. Schwarz UT, Maier M. "Frequency dependence of phonon-polariton damping in lithium niobate" Phys Rev B, 53, 5074 (1996). 3. Schwarz UT, Maier M. "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements", Phys Rev B, 58, 766 (1998). 4. Takida, Y. et al. "Terahertz-wave parametric gain of stimulated polariton scattering" Phys. Rev. A, 93, 043836 (2016). 5. T.D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21, 2452 (2013). 6. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. Kärtner ”Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range”, Opt. Express 23, 29729 (2015). 7. F. Seifert, V. Petrov, and F. Noack,” Sub-100-fs optical parametric generator pumped by a high-repetition-rate Ti:sapphire regenerative amplifier system” Opt. Lett. 19, 837 (1994). 8. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, and H. Vanherzeele,” Self-focusing and self-defocusing by cascaded second-order effects in KTP” Opt. Lett. 17, 28 (1992). 9. A. Fendt, W. kranitzky, A. Laubereau and W. Kaiser,” Efficient generation of tunable subpicosecond pulses in the infrared” Opt. Commun. 28, 142 (1979). 10. W. Kranitzky, K. Ding, A. Seilmeier, W. Kaiser,” Parametric generation of shortened, narrow-band picosecond pulses using a Yag-pump laser” Opt. Commun. 34, 483 (1980). 11. A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao,” Pulsed Optical Parametric Generation, Amplification, and Oscillation in Monolithic Periodically Poled 12. Lithium Niobate Crystals” IEEE J. Quantum Electron. 40, 791 (2004). 13. Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu and G. Y. Zhang,” OH absorption spectra of pure lithium niobate crystals” J. Phys.: Condens. Matter 11, 2139 (1999). 14. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y.H. Chen,” Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies” Opt. Lett. 30, 3392 (2005).
CH3 1.M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418 (1975). 2. Masayoshi Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97 (2007). 3. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014). 4. A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39, 442 (2014). 5. B. Sun, X. Bai, J. Liu, and J. Yao, “Investigation of a terahertz-wave parametric oscillator using LiTaO3 with the pump-wavelength tuning method,” Laser Physics, 24, 035402 (2014). 6. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO4 crystal,” Opt. Lett. 39, 3706 (2014). 7. J. Zang, Z. Cong, X. Chen, X. Zhang, Z. Qin, Z. Liu, J. Lu, D. Wu, Q. Fu, S. Jiang, and S. Zhang, “Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling,” Opt. Express 24, 7558 (2016). 8. M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24, 25964 (2016). 9. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15, 102 (1969). 10. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471 (2008). 11. Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express 24, 24577 (2011). 12. T.D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21, 2452 (2013). 13. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21, 27277 (2013). 14. S. Tripathi, Y. Taira, S. Hayashi, K. Nawata, K. Murate, H. Minamide, and K. Kawase, “Terahertz wave parametric amplifier,” Opt. Express 39, 1649 (2014). 15. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30, 3392 (2005). 16. K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,”Appl. Phys. Lett. 78, 2819 (2001). 17. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). 18. L. Pálfalvi, J. A. Fülöp, and J. Hebling, “Absorption-reduced waveguide structure for efficient terahertz generation,” Appl. Phys. Lett. 107, 233507 (2015). 19. U. T. Schwarz, and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B 58, 766 (1998). 20. K. Ravi, M. Hemmer, G. Cirmi, F. Reichert, D. N. Schimpf, O. D. Mücke, and F. X. Kärtner, “Cascaded parametric amplification for highly efficient terahertz generation,” Opt. Lett. 41, 3806 (2016). 21. D. Burghoff, T. Y. Kao, N. Han, C. W. Chan, X. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462 (2014). 22. K.Ravi, D.N.Schimpf, and F.X. Kärtner, “Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate,” Opt.Express 24, 25582 (2016). 23. M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2015). 24. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202 (1999). 25. P. Liu, W. Shi, D. Xu, X. Zhang, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-power high-brightness Terahertz source based on nonlinear optical crystal fiber,” IEEE Journal of Selected Topics in Quantum Electronics 22, 8500105 (2016).
CH4 1. Masayoshi Tonouchi. Cutting-edge terahertz technology. Nature Photonics 1, 97–105 (2007). 2. Shen, Y.-C. et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116 (2005). 3. Schmuttenmaer C. A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104, 1759–1780 (2004). 4. Kodo Kawase, Yuichi Ogawa and Yuuki Watanabe. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express. 11, 2549–2554 (2003). 5. Hayashi, S. et al. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited]. Opt. Express. 20, 2881–2886 (2012). 6. Chiang, A. C. et al. Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies. Opt. Lett. 30, 3392–3394 (2005). 7. Hebling, J. et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 78, 593–599 (2004) 8. Hebling, J. et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B, 25, B6–B19 (2008) 9. Hirori, H. et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 98, 091106 (2011). 10. Huang, Y.-C. et al. Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide. Opt. Express 19, 24577–24582 (2011). 11. Wang, T.-D. et al. Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain. Opt. Express 19, 2452–2462 (2013). 12. Minamide, Hiroaki. et al. Kilowatt-peak Terahertz-wave generation and Sub-femtojoule Terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature. J. Infrared Millim Terahertz Waves 35, 25–37 (2014). 13. K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,”Appl. Phys. Lett. 78, 2819 (2001). 14. S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J. -i. Shikata, H. Ito, C. Otani, and K. Kawase,” Output power enhancement of a palmtop terahertz-wave parametric generator,” Appl. Optics, 46, 117 (2007).
CH5 1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). 2. B. Ferguson and X. C. Zhang, "Materials for terahertz science and technology," Nat. Materials 1, 26-33 (2002). 3. H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, "Intense terahertz radiation and their applications," Journal of Optics 18, 093004 (2016). 4. D. H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284–286 (1984). 5. M. Shalaby, and C. P. Hauri, "Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness," Nat. Commun. 6, 5976 (2015). 6. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, "Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3," Appl. Phys. Lett. 98, 091106 (2011). 7. F. Blanchard, G. Sharma, X. Ropagnol, L. Razzari, R. Morandotti, and T. Ozaki, "Improved terahertz two-color plasma sources pumped by high intensity laser beam," Optics Express 17, 6044-6052 (2009). 8. M. Rösch, G. Scalari, M. Beck, and J. Faist, "Octave-spanning semiconductor laser," Nat. Photon. 9, 42–47 (2015). 9. G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, N. A. Vinokurov, M. A. Demyanenko, D. G.Esaev, E. V. Naumova, V. Y. Prinz, V. P. Fedin, A. M.Gonchar, S. E. Peltek, A. K. Petrov, L. A. Merzhievsky, and V. S. Cherkassky, "Research highlights from the novosibirsk 400 W average power THz FEL," Terahertz Science and Technology 1, 107–125 (2008). 10. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418–421 (1975). 11. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, "Terahertz parametric oscillator based on KTiOPO4 crystal," Opt. Lett. 39, 3706–3709 (2014). 12. M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, "Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalite, " Opt. Express 24, 25964–25973 (2016). 13. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y, Zhang, and Q. Lu, "THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal, " Opt. Express 22, 17092–17098 (2014). 14. J. Zang, Z. Cong, X. Chen, X. Zhang, Z. Qin, Z. Liu, J. Lu, D. Wu, Q. Fu, S. Jiang, and S. Zhang, "Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling," Opt. Express 24, 7558–7565 (2016). 15. Tiago A. Ortega, Helen M. Pask, David J. Spence, and Andrew J. Lee, " Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output," Opt. Express 24, 10254–10264 (2016). 16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007). 17. T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H Lee, Y. Y Lin, F. Y. Lin, and G. Kh. Kitaeva, "Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain," Opt. Express 21, 2452–2462 (2013). 18. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford Univ., 1970). 19. U. T. Schwarz, and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074–5077 (1996). 20. U. T. Schwarz, and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766–775 (1998). 21. Y. Takida, J. Shikata, K. Nawata, Y. Tokizane, Z. Han, M. Koyama, T. Notake, S. Hayashi, and H, Minamide, "Terahertz-wave parametric gain of stimulated polariton scattering," Phys. Rev. A 93, 043836 (2016). 22. Y. C. Huang, T. D. Wang, Y. H. Lin. C. H. Lee, M. Y. Chuang, Y. Y. Lin and F. Y. Lin, "Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide," Opt. Express 19, 24577–24582 (2011)
|