帳號:guest(3.135.212.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡嘉倫
作者(外文):Tsai, Chia-Lun
論文名稱(中文):高能量光參啁啾放大器的搭建及其應用
論文名稱(外文):High-energy Optical Parametric Chirped Pulse Amplifiers and Their Applications
指導教授(中文):楊尚達
指導教授(外文):Yang, Shang-Da
口試委員(中文):陳明彰
林明緯
許佳振
朱旭新
項維巍
賈世璿
口試委員(外文):Chen, Ming-Chang
Lin, Ming-Wei
Hsu, Chia-Chen
Chu, Hsu-Hsin
Hsiang, Wei-Wei
Chia, Shih-Hsuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:102066805
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:101
中文關鍵詞:非線性光學超快光學雷射放大器光參放大器脈衝壓縮
外文關鍵詞:nonlinear opticsultrafast opticslaser amplifieroptical parametric amplifierpulse compression
相關次數:
  • 推薦推薦:0
  • 點閱點閱:217
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
整篇文章的作者為博士班學生蔡嘉倫,他就讀於國立清華大學光電工程研究所,就學期間(2013~2020)搭建了兩種中心波長的光參啁啾放大器(OPCPA),還有兩種不同波長的非線性雷射脈衝壓縮器。
作者在就學及研究期間,搭建了兩種光參啁啾放大器,可以放大近紅外波長雷射,以及產生中紅外光雷射。他們分別由不同的源頭雷射驅動:(1)以商用鈦藍寶石雷射放大器當作源頭幫浦雷射,自組建的光參啁啾放大器可以產生雷射脈衝1千赫茲、0.5毫焦耳、368飛秒(1.36吉瓦尖峰功率)、1.9微米中心波長。至於後級放大部分,則由摻釹釔鋁石榴石(Nd:YAG)雷射放大器作為幫浦雷射。(2)以摻鐿鎢酸釓鉀(Yb:KGW)商用雷射放大器當作源頭幫浦雷射,中心波長1.55微米的光參啁啾放大器可以產生雷射脈衝1千赫茲、3.3毫焦耳、80飛秒(41.25吉瓦尖峰功率)。這樣的光源是個強大的工具,其可應用於電子加速產生兆電子伏特動能,或是高次諧波產生極紫外光。
至於非線性雷射脈衝壓縮器,作者根據不同的雷射中心波長以及輸入脈衝能量,搭建了兩套多薄片展頻(MPC)架構去探索脈衝壓縮效果:(1)多薄片展頻架構一級,包含了9片200微米厚度的石英薄片,使得原本1.55微米中心波長的光參啁啾放大器,頻寬變成原本4倍。此頻寬經歷過脈衝壓縮之後,脈衝寬度從原本的80飛秒,壓縮變成20飛秒。(2) 多薄片展頻架構一級操作在中心波長1.03微米。光源部分來自一台自行搭建的碟片雷射震盪器,加上一套多次穿透共振腔。此光源由德國的波鴻魯爾大學提供,可產生脈衝寬90飛秒、13.4兆赫茲,以及大約10微焦耳的脈衝能量。作者協助搭建了一套多薄片展頻架構,使得雷射脈衝寬度從原本的88飛秒,壓縮變成27飛秒,轉換效率為超過90百分比。此架構建立了一個里程碑,其輸入脈衝能量小於10微焦耳,脈衝重覆率高於1兆赫茲。此架構對於未來更高脈衝能量提供了可能性,其方法為選用更為寬鬆的聚焦條件,以及色散補償反射鏡。此一短脈衝光源提供了產生軟X光源產生的條件,未來預計可以應用在無標籤的生物樣本觀察。
In this thesis, author (Chia-Lun Tsai) focuses on introducing what he has done during his Ph. D program (2013~2020) in Institute of Photonics and Technologies, National Tsing Hua University (NTHU IPT) concerning to experimentally building two optical parametric chirped pulse amplifiers (OPCPA) and two nonlinear pulse compressors.
Two OPCPAs emitting intense near-infrared (NIR) and mid-infrared (MIR) pulses are driven by different front-end laser amplifiers: (1) With a commercial Ti:Sapphire laser amplifier as a front-end source, our first home-built OPCPA produces 1 kHz, 0.5 mJ, 368 fs pulses (1.36 GW peak power) at 1.9 µm central wavelength. A Nd:YAG laser amplifier is also used as pump laser in the rear stages. (2) With a commercial Yb:KGW laser amplifier as a front-end source, the 1.55 µm home-built OPCPA delivers 1 kHz, 3.3 mJ, 80 fs pulses (41.25 GW peak power). Such long-wavelength laser systems are powerful tools in accelerating electrons up to Mega-eV or producing coherent soft X-ray by high-harmonic generation (HHG) due to the high pondermotive force.
In terms of compression, two multiple-plate-continuum (MPC) based setups are built to explore the performances: (1) A stage of MPC consisting of 9 pieces, 200-µm-thick quartz plates broaden spectrum of 1.55 µm OPCPA pulses by four folds. After spectral phase compensation, pulse duration is compressed from 80 fs to 20 fs. (2) An MPC-based nonlinear compressor is exploit at 1.03 µm central wavelength. A home-built setup combines a thin-disk oscillator and a Multi-pass cell, provided by Ruhr-Universitat Bochum (RUB), that produces 90 fs pulse duration with 13.4 MHz repetition rate and ~10 µJ pulse energy. Author helps in MPC setup which make pulse duration from 90 fs to 27 fs with conversion efficiency >90%. The realization of low pulse energy (< 10 µJ) and high repetition rate (>1 MHz) makes a milestone on the MPC based nonlinear compressor. Energy up-scaling can be realized by using looser focusing and chirp mirrors. Such intense light source paves the way to generation of soft x-ray laser at water window for label-free bio-imaging.
Abstract ……………………………………………………….…………..I
Acknowledgement ...…………………………………………………....III
List of publications …...……………………………………………….…V
List of figures ...…………………………………………………………XI
1. Introduction: why are high-energy, high-power OPCPA and nonlinear compression important? ………………………………………………….1
1.1. Why do we need high pulse energy lasers? ……………………..1
1.2. Near-infrared OPCPA at 1.5 µm ………………………………..3
1.3. Nonlinear pulse compression …………………………………...4
2. Generation of ultrafast laser pulses by OPCPA pumped by a Ti:Sa femtosecond amplifier and a Nd:YAG picosecond amplifier …………….6
2.1. Introduction …………………………………………………….6
2.2. One-stage OPA producing 3 µm wavelength …………………...6
2.3. Three-stage OPA producing 1.3 µm wavelength ………………..9
2.4. High energy OPCPA at 1.9 µm ………………………………..14
2.5. Application on optogenetic control of fly behaviors …………..20
3. Generation of ultrafast laser pulses by OPCPA pumped by an Yb:KGW femtosecond amplifier and a Nd:YAG picosecond amplifier …………...25
3.1. Introduction …………………………………………………...25
3.2. Front-end femtosecond lasers …………………………………25
3.3. A two-stage OPA for µJ-level pulses at 1.55 µm ………………27
3.4. A two-stage OPCPA for mJ-level pulses at 1.55 µm …………...31
3.4.1. Grating-based stretcher and compressor ……………….32
3.4.2. Pump laser used in OPCPA …………………………….34
3.4.3. Temporal overlap and energy amplify in OPCPA ………34
3.5. Active power stabilization of OPCPA …………………………39
4. Ultrafast nonlinear pulse compression by multiple plate continuum …42
4.1. Introduction …………………………………………………...42
4.2. Nonlinear pulse compression of OPCPA at 1.55 µm …………..42
4.3. Nonlinear pulse compression of thin-disk laser at 1 µm ……….48
5. Summary, conclusions and future perspectives ………………………53
References ………………………………………………………………57
Appendix
A. Simulation codes to support experimental results ………………63
B. Determination on choosing nonlinear crystals ………………….73
C. OPCPA pump beam profile: Gaussian vs. flat-top profile ………77
D. Strategy of signal and pump beam size in two-stage OPCPA …...79
E. Carrier-envelope phase fluctuation from grating-based setup …..82
F. Voltage-to-phase calibration of spatial light modulator …………84
G. Impact of small group delays on dielectric mirrors ……………..87
H. Beam spatial filtering of picosecond Nd:YAG amplifier ……….88
I. Beam pointing effects on the final output of OPCPA power ……..90
J. Full chart of 1.55 µm OPCPA and nonlinear pulse compressor ….92
K. Total expenses of building a high-energy OPCPA at home ……..95
L. Laser machining: fused silica plates cut by 100 W laser ………...96
M. Seeding preparation for CEP-stable multi-stage OPA ………….97
N. M-square value of Ti:Sapphire pumped multi-stage OPA ………98
O. Operation region of laser pulses in multiple plate continuum …..99
P. Power fluctuations in front-end laser, OPA and OPCPA ………..101
[1] D. Strickland, and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm., vol. 56, no. 3, pp. 219-221, Dec. 1985.
[2] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompr´e, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B, At. Mol. Opt. Phys., vol. 21, no. 3, pp. L31-L35, 1988.
[3] S. R. Leone, C.W.McCurdy, J. Burgdoerfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z. H. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, “What will it take to observe processes in ‘real time’?” Nat. Photon., vol. 8, pp. 162-166, Mar. 2014.
[4] J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica, vol. 3, no. 10, pp. 1075-1078, Oct. 2016.
[5] K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express, vol. 15, no. 8, pp. 4577-4584, Apr. 2007.
[6] L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50W, 50 μJ, sub-picosecond fiber laser system,” Opt. Express, vol. 14, no. 25, pp. 12546-12551, Dec. 2006.
[7] Y. Chu, Z. Gan, X. Liang, L. Yu, X. Lu, C. Wang, X. Wang, L. Xu, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses,” Opt. Lett., vol. 40, no. 21, pp. 5011-5014, Nov. 2015.
[8] E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express, vol. 24, no. 25, pp. 28915-28922, Dec. 2016.
[9] F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, “Spatiotemporal isolation of attosecond soft X-ray pulses in the water window,” Nat. Comm., vol. 6, no. 6611, pp. 1-6, Mar. 2015.
[10] M. Qin, and X. Zhu, “Molecular orbital imaging for partially aligned molecules,” Opt. Laser Technol., vol. 87, pp. 79-86, Jan. 2017.
[11] D. F. Gardner, M. Tanksalvala, E. R. Shanblatt, X. Zhang, B. R. Galloway, C. L. Porter, R. K. Jr, C. Bevis, D. E. Adams, H. C. Kapteyn, M. M. Murnane, and G. F. Mancini, “Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source,” Nat. Photon., vol. 11, pp. 259-263, Mar. 2017.
[12] P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett., vol. 71, no. 13, pp. 1994-1997, Sep. 1993.
[13] T. Popmintchev, M. C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photon., vol. 4, pp. 822-832, Nov. 2010.
[14] T. Popmintchev, M. C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum,” Proc. Natl. Acad. Sci. USA, vol. 106, no. 26, pp. 10516-10521, Jun. 2009.
[15] T. Balčiūnas, G. Fan, A. Pugžlys, T. Kanai, B. E. Schmidt, V. Cardin, F. Légaré, V. Pervak, and A. Baltuška, “Efficient 170 eV source directly driven by an Yb laser amplifier,” The European Conference on Lasers and Electro-Optics, Munich, Germany, Jun. 25-29, 2017.
[16] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. H. García, L. Plaja, A. Becker, A. J. Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science, vol. 336, no. 6086, pp. 1287-1291, Jun. 2012.
[17] M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source,” Phys. Rev. Lett., vol. 105, no. 17, pp. 173901-173904, Oct. 2010.
[18] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses,” Nat. Comm., vol. 5, no. 4331, pp. 1-6, Feb. 2014.
[19] S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Biegert, “0.5-keV Soft X-ray attosecond continua,” Nat. Comm., vol. 7, no. 11493, pp. 1-6, May 2016.
[20] P. Wachulak, A. Torrisi, M. Ayele, J. Czwartos, A. Bartnik, L. Wegrzyński, T. Fok, T. Parkman, S. Salačová, J. Turňová, M. Odstrčil, and H. Fiedorowicz, “Bioimaging Using Full Field and Contact EUV and SXR Microscopes with Nanometer Spatial Resolution,” Appl. Sci. vol. 7, no. 6, pp. 548-560, May 2017.
[21] J. A. Giordmaine, and R. C. Miller. “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett., vol. 14, no. 24, pp. 973-976, Jun. 1965.
[22] F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, "Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm." Appl. Phys. Lett. vol. 78, no. 18, pp. 2623-2625, Apr. 2001.
[23] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier.” Opt. Lett. vol. 37, no. 20, pp. 4182-4184, Oct. 2012.
[24] C. Li, D. Wang, L. Song, J. Liu, P. Liu, C. Xu, Y. Leng, R. Li, and Z. Xu, “Generation of carrier-envelope phase stabilized intense 1.5 cycle pulses at 1.75 μm,” Opt. Express, vol. 19, no. 7, pp. 6783-6789, Mar. 2011.
[25] A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere” Sci. Rep. vol. 5, no. 8368, pp. 1-6, Feb. 2015.
[26] O. D. Mücke, S. Ališauskas, A. J. Verhoef, A. Pugžlys, A. Baltuška, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, “Self-compression of millijoule 1.5 𝜇m pulses,” Opt. Lett., vol. 34, no. 16, pp. 2498-2500, Aug. 2009.
[27] P. Rigaud, A. V. Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, “Supercontinuum-seeded few-cycle mid-infrared OPCPA system,” Opt. Express, vol. 24, no. 23, pp. 26494-26502, Nov. 2016.
[28] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys., vol. 78, no. 4, pp. 1135-1184, Oct. 2006.
[29] J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol., vol. 18, no. 5, pp. 327-344, Sep. 2012.
[30] B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett., vol. 28, no. 20, pp. 1987-1989, Oct. 2003.
[31] A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media” Lith J. Phys., vol.57, no.3, pp. 113-157, Jun. 2017.
[32] M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O. Pronin, “All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses,” Opt. Express, vol. 24, no. 9, pp. 9412-9428, Apr. 2016.
[33] M. Hanna, X. Délen, L. Lavenu, F. Guichard, Y. Zaouter, F. Druon, and P. Georges, “Nonlinear temporal compression in multipass cells: theory,” J. Opt. Soc. Am. B, vol. 34, no. 7, pp. 1340-1347, Jun. 2017.
[34] C. H. Lu, Y. J. Tsou, H. Y. Chen, B. H. Chen, Y. C. Cheng, S. D. Yang, M. C. Chen, C. C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica, vol. 1, no. 6, pp. 400-406, Dec. 2014.
[35] D. Mayer, C. T. Matthaei, A. Heuer, and M. Gühr, "Kagome-fiber prism compressor combination for Yb:KGW laser pulse compression to sub-40 fs," J. Opt. 21, vol. 2, pp. 1-6, Jan. 2019.
[36] J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H. D. Hoffmann, T. Udem, P. Russbuldt, and T. W. Hansch, "Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power," Opt. Express, vol. 25, no. 17, pp. 20502-20510, Aug. 2017.
[37] K. Fritsch, M. Poetzlberger, V. Pervak, J. Brons, and O. Pronin, "All-solid-state multipass spectral broadening to sub-20 fs," Opti. Lett., vol. 43, no. 19, pp. 4643-4646, Oct. 2018.
[38] L. Lavenu, M. Natile, F. Guichard, X. Délen, M. Hanna, Y. Zaouter, and P. Georges, "High-power two-cycle ultrafast source based on hybrid nonlinear compression," Opt. Express, vol. 27, no.3, pp. 1958-1967, Feb. 2019.
[39] P. C. Huang, C. Hernandez-Garcia, J. T. Huang, P. Y. Huang, C. H. Lu, L. Rego, D. D. Hickstein, J. L. Ellis, A. Jaron-Becker, A. Becker, S. D. Yang, C. G. Durfee, L. Plaja, H. C. Kapteyn, M. M. Murnane, A. H. Kung, and M. C. Chen, "Polarization control of isolated high-harmonic pulses," Nat. Photon., vol. 12, pp. 349-354, Jun. 2018.
[40] C. H. Lu, W. H. Wu, S. H. Kuo, J. Y. Guo, M. C. Chen, S. D. Yang, and A. H. Kung, "Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration," Opt. Express, vol. 27, no. 11, pp. 15638-15648, May 2019.
[41] C. L. Tsai, F. Meyer, A. Omar, Y. Wang, A. Y. Liang, C. H. Lu, M. Hoffmann, S. D. Yang, and C. J. Saraceno, "Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power," Opt. Lett., vol. 44, no. 17, pp. 4115-4118, Sep. 2019.
[42] C. L. Tsai, Y. H. Tseng, A. Y. Liang, M. W. Lin, S. D. Yang, M. C. Chen, "Nonlinear compression of intense optical pulses at 1.55 µm by multiple plate continuum generation," J. of Light. Tech., vol. 37, no. 19, pp. 5100-5107, Oct. 2019.
[43] A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers,” Phys. Rev. Lett. vol. 88, no. 13, pp. 133901-1-4, Mar. 2002.
[44] D. Kraemer, R. Hua, M. L. Cowan, K. Franjic, and R. J. Dwayne Miller, “Ultrafast noncollinear optical parametric chirped pulse amplification in KTiOAsO4,” Opt. Lett., vol. 31, no. 7, pp. 981-983, Apr. 2006.
[45] D. Kraemer, M. L. Cowan, R. Hua K. Franjic, and R. J. D. Miller, "High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification," J. Opt. Soc. Am. B, vol. 24, no. 4, pp. 813-818, Mar. 2007.
[46] H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, S. H. Zhao, "Phase matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals," Opt. Comm., vol. 197, no. 4, pp. 507-514, Oct. 2001.
[47] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, "Channelrhodopsin-2, a directly light-gated cation-selective membrane channel," Proc. Natl. Acad. Sci. USA, vol. 100, no. 24, pp. 13940-13945, Nov. 2003.
[48] C. Schroll, T. Riemensperger, D. Bucher, J. Ehmer, T. Voller, K. Erbguth, B. Gerber, T. Hendel, G. Nagel, E. Buchner, and A. Fiala, "Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae," Curr. Biol., vol. 16, no. 17, pp. 1741-1747, Sep. 2006.
[49] M. C. Wu, L. A. Chu, P. Y. Hsiao, Y. Y. Lin, C. C. Chi, T. H. Liu, C. C. Fu, and A. S. Chiang, "Optogenetic control of selective neural activity in multiple freely moving Drosophila adults," Proc. Natl. Acad. Sci. USA, vol. 111, no. 14, pp. 5367-5372, Apr. 2014.
[50] H. K. Inagaki, Y. Jung, E. D. Hoopfer, A. M. Wong, N. Mishra, J. Y. Lin, R. Y. Tsien, and D. J. Anderson, "Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship," Nat. Methods, vol. 11, no. 3, pp. 325-335, Mar. 2014.
[51] J. Y. Lin, P. M. Knutsen, A. Muller, D. Kleinfeld, and R. Y. Tsien, "ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation," Nat. Neuro., vol. 16, no. 10, pp. 1499-1508, Sep. 2013.
[52] T. D. Tayler, D. A. Pacheco, A. C. Hergarden, M. Murthy, and D. J. Anderson, "A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila," Proc. Natl. Acad. Sci. USA, vol. 109, no. 50, pp. 20697-20702, Dec. 2012.
[53] Z. Wang, A. Singhvi, P. Kong, and K. Scott, “Taste representations in the Drosophila brain,” Cell, vol. 117, no. 7, pp. 981–991, Jun. 2004.
[54] W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett., vol. 10, No. 9, pp. 457-459, Jun. 1985.
[55] G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instru., vol. 74, no. 1, pp. 1-18, Jan. 2003.
[56] K. Kato, "Second-harmonic generation to 2048 Å in b-Ba2O4," IEEE jour. of quan. elec., vol. 22, no. 7, pp. 1013-1014, Jul. 1986.
[57] K. Kato, and T. Eiko, "Sellmeier and thermo-optic dispersion formulas for KTP," Appl. Opt., vol. 41, no. 24, pp. 5040-5044, Aug. 2002.
[58] H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg. "Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4," Appl. Opt., vol. 27, no .16, pp. 3314-3316, Aug. 1988.
[59] E. Shestaev, D. Hoff, A. M. Sayler, A. Klenke, S. Hadrich, F. Just, T. Eidam, P. Jojart, Z. Varallyay, K. Osvay, G. G. Paulus, A. Tunnermann, and J. Limpert, “High-power ytterbium-doped fiber laser delivering few-cycle, carrier-envelope phase-stable 100 µJ pulses at 100 kHz,” Opt. Lett., vol. 45, No. 1, pp. 97-100, Jan. 2020.
[60] M. Natile, A. Golinelli, L. Lavenu, F. Guichard, M. Hanna, Y. Zaouter, R. Chiche, X. Chen, J. F. Hergott, W. Boutu, H. Merdji, and P. Georges, “CEP-stable high-energy ytterbium-doped fiber amplifier,” Opt. Lett., vol. 44, No. 16, pp. 3909-3912, Aug. 2019.
[61] F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, "Carrier-envelope-offset dynamics and stabilization of femtosecond pulses," Appl. Phys. B, vol. 74, pp. S35-S42, Jun. 2002.
[62] I. Thomann, E. Gagnon, R. J. Jones, A. S. Sandhu, A. Lytle, R. Anderson, J. Ye, M. Murnane, and H. Kapteyn, "Investigation of a grating-based stretcher/compressor for carrier-envelope phase stabilized fs pulses," Opt. Express, vol. 12, No. 15, pp. 3493-3499, Jul. 2004.
[63] C. Li, E. Moon, and Z. Chang, "Carrier-envelope phase shift caused by variation of grating separation," Opt. Lett., vol. 31, no. 21, pp. 3113-3115, Jul. 2006.
[64] T. Nagy, S. Hädrich, P. Simon, A. Blumenstein, N. Walther, R. Klas, J. Buldt, H. Stark, S. Breitkopf, P. Jójárt, I. Seres, Z. Várallyay, T. Eidam, and J. Limpert, "Generation of three-cycle multi-millijoule laser pulses at 318 W average power," Optica, vol. 6, No. 11, pp. 1423-1424, Nov. 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *