帳號:guest(3.143.25.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王永順
作者(外文):Wang, Yung-Shun
論文名稱(中文):適用於蜂巢式與裝置間通訊系統之動態多天線傳輸技術設計
論文名稱(外文):Dynamic Multi-Antenna Techniques for Cellular and Device-to-Device Wireless Communication Systems
指導教授(中文):洪樂文
指導教授(外文):Hong, Yao-Win Peter
口試委員(中文):陳文村
魏宏宇
方凱田
蔡尚澕
學位類別:博士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064871
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:89
中文關鍵詞:合作式通訊傳輸預編碼裝置與裝置間通訊無人機基地台再生能源能量分配
外文關鍵詞:Cooperative communicationmultiuser precodingdevice-to-device communicationunmanned aerial vehiclerenewable energypower allocation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:456
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
下世代行動通訊系統將可提供更高傳輸速率、更低通訊延遲、高速移動使用者之通訊、高能量使用效率及高頻譜使用效率等。為達到這些通訊需求,網路架構將變得遠比傳統行動通訊架構複雜。而高速移動使用者的通訊環境及異質性網路架構,將使得通道環境變得更加複雜且不穩定。加上在基地台和裝置端使用再生能源,使得資源分配策略面臨額外的不確定性。為了提供穩定的無線傳輸品質,我們必須配合快速變化的環境設計動態通訊策略。在此論文中,我們將在三個情境下探討動態多天線傳輸機制的設計,分別為裝置與裝置間通訊系統,無人機通訊系統與可使用再生能源之通訊系統。
在裝置與裝置間通訊系統中,我們考慮可相互合作之多對裝置與裝置間通訊系統,並提出動態多天線傳輸機制。合作式裝置間通訊包含兩個傳輸階段:資料分享階段(階段一)和協同傳輸階段(階段二)。於階段一我們使用多播預編碼(multicast precoding)傳輸並於階段二使用區塊對角化預編碼(block-diagonalization precoding)傳輸。在考慮長期能量限制、長期傳輸率限制和即時之干擾上限後,我們協同設計所有預編碼矩陣以最大化裝置間通訊之長期效用,藉由Lyapunov最佳化方式,長期效用最大化問題將可被拆解為一系列短期權重傳輸率減能量懲罰最佳化問題,並由理論分析得到得到長期效用的傳輸率保證。
在無人機基地台系統中,我們考慮多架無人機基地台的使用,並提出可動態連結之系統。我們同時考慮波束成形訊號設計及能量分配,並搭配無人機飛行軌跡學習及群聚機制設計。在此系統中,我們假設無人機基地台可動態相互群聚連結,並透過實體連線形成同域天線陣列,且連結之無人機基地台可相互分享能量並協同傳輸波束成形訊號。群聚基地台依據總和訊號對干擾洩漏加雜訊比(SLNR)設計之波束成形向量及能量分配,我們提出交替最佳化(alternating optimization)技術疊代設計出波束成形向量及能量分配。依照各時槽之傳輸機制,我們進一步提出無人機飛行軌跡學習及群聚結合之策略,無人機位置和群聚將根據隨機梯度(stochastic gradient)調整以最大化期望之系統總和傳輸速率。
在使用再生能源的細胞通訊系統中,我們考慮多時槽的傳輸環境並設計動態波束成形傳輸矩陣及能量分配機制。我們考慮基地台同時使用再生能源及傳統電網作為能量來源,並設計區塊對角化預編碼(block-diagonalization precoding)傳輸矩陣及能量分配機制,以期望最大化於傳輸時間內之無線資料傳輸率。我們在設計時假設通道及能量來源已知,並設計預編碼矩陣以符合能量因果(energy causality)限制、電池上限(battery capacity)限制和電網消耗(grid energy cost)限制。其中能量因果限制確定傳輸當下需有足夠能量且不可使用未來知能量、電池上限限制以確保無會有能量浪費、電網消耗限制以限制傳統電網之能量消耗量。此問題可寫為一凸優化問題,並可推導最佳之傳輸條件,我們可證明最佳之預編碼矩陣及能量分配問題可以被拆解為獨立的兩子問題,並求得最佳之預編碼矩陣方向。而根據最佳化之條件,我們提出一個疊代式(iterative)能量分配演算法。
Next generation mobile communication systems are expected to support high mobility, high data rate, low latency, high spectral efficiency, and high energy efficiency. To support these service demands, the network structure is becoming significantly more complicated than that of conventional systems. The channel may be more unstable due to high user mobility and complex interference environments stemming from the heterogeneous network structure. The use of renewable energy at both cellular base-stations (BSs) and devices are also being considered to increase energy efficiency but introduces additional uncertainty in the resource allocation policy. To provide stable wireless services over time, dynamic transmission policies must be devised to adapt to rapidly varying environments. In this dissertation, we examine dynamic multi-antenna techniques for three scenarios, namely, device-to-device (D2D) communication systems, and unmanned aerial vehicle (UAV) communication systems and renewable energy empowered cellular systems.

For D2D systems, we consider a multi-pair cooperative D2D system and propose a dynamic MIMO transmission policy. The cooperative transmission consists of two phases: a data-sharing phase (i.e., phase 1) and a joint transmission phase (i.e, phase 2), where multicast precoders are used in phase 1 and coordinated block-diagonalization precoders are considered in phase 2. The precoders are jointly designed to maximize the long-term utility of the D2D users subject to long-term individual power and rate-gain constraints, and an instantaneous interference constraint at the BS. By adopting the Lyapunov optimization framework , the long-term optimization problem can be decoupled into a series of short-term weighted-rate-minus-energy-penalty (WRMEP) maximization problems that can be solved efficiently, and theoretical performance guarantees are derived.

For UAV-BS systems, a multi-UAV system is studied and we examine joint beamforming and power allocation schemes as well as trajectory learning and clustering mechanisms for dynamically connectable UAV-BSs. Here, UAV-BSs are allowed to join together dynamically and form physically-connected collocated antenna arrays that enable joint transmission and cooperative energy sharing among the connected UAVs. A joint design of the transmit powers and beamformers in each time slot is proposed based on the maximization of the sum signal-to-leakage-plus-noise-ratio (SLNR) of all users. Based on the per-time-slot design, a dynamic UAV trajectory learning and clustering policy is proposed where the expected sum rate of the system is maximized while adapting to changes in the users’ locations and environment.

For renewable energy enabled cellular systems, we propose a dynamic precoding and power allocation scheme for multiple time slot transmission. By considering BSs that are supported by both renewable energy and grid energy, we aim to find the optimal design of the block diagonalization (BD) precoders and the energy allocation policy. The main objective is maximizing the sum throughput within a transmission period. The precoders are derived subject to energy causality and grid energy cost constraints, i.e., the constraint that energy cannot be used before it arrives and the constraint that limits the amount of the grid energy usage. The problem can be formulated as a convex problem and optimality conditions are derived. According to the optimality conditions, we propose an iterative algorithm and demonstrate the performance of the algorithm through numerical simulations.
中文摘要
Abstract . . . i
Contents . . . iii
1 Introduction . . . 1
2 Related Works . . . 8
3 Dynamic MIMO Transmission Policies for Cooperative Device-to-Device Communication . . . 13
4 Dynamical MIMO Technique for Connectable UAV Base-Stations with
Cooperative Energy Sharing . . . 44
5 Dynamic Precoding and Power Allocation for Renewable Energy Empowered Base-Station . . . 59
6 Conclusion . . . 71
Appendices . . . 74
A Proof of Theorem 1 . . . 75
B Proof of Theorem 2 . . . 79
C Proof of Lemma 1 . . . 80
[1] Q. C. Li, H. Niu, A. T. Papathanassiou, and G.Wu, "5g network capacity: Key elements and technologies," IEEE Vehicular Technology Magazine, vol. 9, no. 1, pp. 71-78, 2014, ISSN: 1556-6072. doi: 10.1109/MVT.2013.2295070.
[2] J. Guey, P. Liao, Y. Chen, A. Hsu, C. Hwang, and G. Lin, "On 5g radio access architecture and technology [industry perspectives]," IEEE Wireless Communications, vol. 22, no. 5, pp. 2-5, 2015, ISSN: 1536-1284. doi: 10.1109/MWC.2015.7306369
[3] M. Agiwal, A. Roy, and N. Saxena, "Next generation 5g wireless networks: A comprehensive survey," IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016, ISSN: 1553-877X. doi: 10.1109/COMST.2016.2532458.
[4] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, "5g wireless network slicing for embb, urllc, and mmtc: A communication-theoretic view," CoRR, vol. abs/1804.05057, 2018. arXiv: 1804.05057. [Online]. Available: http://arxiv.org/abs/1804.05057.
[5] J. Rodriguez, "Small cells for 5g mobile networks," in Fundamentals of 5G Mobile Networks. Wiley, 2014, ISBN: 9781118867464. doi: 10. 1002 /9781118867464. ch3. [Online]. Available: https://ieeexplore.ieee.org/document/8043585.
[6] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfrojd, and T. Svensson, "The role of small cells, coordinated multipoint, and massive MIMO in 5g," IEEE Communications Magazine, vol. 52, no. 5, pp. 44-51, 2014, ISSN: 0163-6804. doi: 10.1109/MCOM.2014.6815892.
[7] R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani, S. Mumtaz, J. Rodriguez, and J. J. P. C. Rodrigues, "5g d2d networks: Techniques, challenges, and future prospects," IEEE Systems Journal, vol. 12, no. 4, pp. 3970-3984, 2018, ISSN: 1932-8184. doi: 10.1109/JSYST.2017.2773633.
[8] S. Sekander, H. Tabassum, and E. Hossain, "Multi-tier drone architecture for 5G/B5G cellular networks: Challenges, trends, and prospects," IEEE Communications Magazine, vol. 56, no. 3, pp. 96-103, 2018, ISSN: 0163-6804. doi: 10.1109/MCOM.2018. 1700666.
[9] A. Asadi, Q. Wang, and V. Mancuso, "A survey on device-to-device communication in cellular networks," IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1801-1819, 2014, ISSN: 1553-877X. doi: 10.1109/COMST.2014.2319555.
[10] K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, "Device-to-device communication as an underlay to LTE-advanced networks," IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, 2009, ISSN: 0163-6804. doi: 10.1109/MCOM.2009.5350367.
[11] A. Sendonaris, E. Erkip, and B. Aazhang, "User cooperation diversity. part i. system description," IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, 2003, ISSN: 0090-6778. doi: 10.1109/TCOMM.2003.818096.
[12] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, 2004, ISSN: 0018-9448. doi: 10.1109/TIT.2004.838089.
[13] A. Scaglione and Y.-W. Hong, "Opportunistic large arrays: Cooperative transmission in wireless multihop ad hoc networks to reach far distances," IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2082-2092, 2003, ISSN: 1053-587X. doi: 10.1109/TSP.2003.814519.
[14] Z. Gao, H. Lai, and K. J. R. Liu, "Differential space-time network coding for multisource cooperative communications," IEEE Trans. Commun., vol. 59, no. 11, pp. 3146-3157, 2011, ISSN: 0090-6778. doi: 10.1109/TCOMM.2011.082111.100694.
[15] G. S. Rajan and B. S. Rajan, "A non-orthogonal cooperative multiple access (NCMA) protocol and low ML decoding complexity codes," in Proc. of IEEE WCNC, 2007, pp. 885-890. doi: 10.1109/WCNC.2007.168.
[16] S. Fazeli-Dehkordy, S. Shahbazpanahi, and S. Gazor, "Multiple peer-to-peer communications using a network of relays," IEEE Trans. Sig. Process., vol. 57, no. 8, pp. 3053-3062, 2009, ISSN: 1053-587X. doi: 10.1109/TSP.2009.2020002.
[17] Y. Cheng and M. Pesavento, "Joint optimization of source power allocation and distributed relay beamforming in multiuser peer-to-peer relay networks," IEEE Trans. Sig. Process., vol. 60, no. 6, pp. 2962-2973, 2012, ISSN: 1053-587X. doi: 10.1109/TSP.2012.2189388.
[18] A. Ramezani-Kebrya, M. Dong, B. Liang, G. Boudreau, and R. Casselman, "Per-relay power minimization for multi-user multi-channel cooperative relay beamforming," IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3187-3198, 2016, ISSN: 1536-1276. doi: 10.1109/TWC.2016.2517629.
[19] Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, 2016, ISSN: 0163-6804. doi: 10.1109/MCOM.2016.7470933.
[20] I. Bor-Yaliniz and H. Yanikomeroglu, "The new frontier in RAN heterogeneity: Multitier drone-cells," IEEE Communications Magazine, vol. 54, no. 11, pp. 48-55, 2016, ISSN: 0163-6804. doi: 10.1109/MCOM.2016.1600178CM.
[21] N. H. Motlagh, T. Taleb, and O. Arouk, "Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives," IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899-922, 2016, ISSN: 2327-4662. doi: 10.1109/JIOT.2016.2612119.
[22] H. Hellaoui, O. Bekkouche, M. Bagaa, and T. Taleb, "Aerial control system for spectrum efficiency in UAV-to-cellular communications," IEEE Communications Magazine, vol. 56, no. 10, pp. 108-113, 2018, ISSN: 0163-6804. doi: 10.1109/MCOM.2018.1800078.
[23] Y. Zeng, R. Zhang, and T. J. Lim, "Throughput maximization for UAV-enabled mobile relaying systems," IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983-4996, 2016, ISSN: 0090-6778. doi: 10.1109/TCOMM.2016.2611512.
[24] Y. Zeng and R. Zhang, "Energy-efficient UAV communication with trajectory optimization," IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747-3760, 2017, ISSN: 1536-1276. doi: 10.1109/TWC.2017.2688328.
[25] Y. Zeng, X. Xu, and R. Zhang, "Trajectory design for completion time minimization in UAV-enabled multicasting," IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2233-2246, 2018, ISSN: 1536-1276. doi: 10.1109/TWC.2018.2790401.
[26] A. Al-Hourani, S. Kandeepan, and S. Lardner, "Optimal LAP altitude for maximum coverage," IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569-572, 2014, ISSN: 2162-2337. doi: 10.1109/LWC.2014.2342736.
[27] M. Moza ari, W. Saad, M. Bennis, and M. Debbah, "Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications," IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574-7589, 2017, ISSN: 1536-1276. doi: 10.1109/TWC.2017.2751045.
[28] R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, "Efficient 3-D placement of an aerial base station in next generation cellular networks," in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1-5. doi: 10.1109/ICC.2016.7510820.
[29] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, "3-D placement of an unmanned aerial vehicle base station (UAV-bs) for energy-efficient maximal coverage," IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434-437, 2017, ISSN: 2162-2337. doi: 10.1109/LWC.2017.2700840.
[30] Q. Wu, Y. Zeng, and R. Zhang, "Joint trajectory and communication design for multi-UAV enabled wireless networks," IEEE Transactions on Wireless Communications, vol. PP, no. 99, pp. 1-1, 2018, ISSN: 1536-1276. doi: 10.1109/TWC.2017.2789293.
[31] D. Eckstein, "Method and apparatus for temporarily interconnecting an unmanned aerial vehicle," pat. US5906336A, Nov. 1997.
[32] F. G. Jr., J. L. Junkins, and J. L. Valasek, "Method and apparatus for the hookup of unmanned/manned ("hum") multi purpose vehicles with each other," pat. US7152828B1, Nov. 2002.
[33] J. Small, F. Davidson, and C. Garcia, "Method and system for in flight refueling of unmanned aerial vehicles," pat. US7798449B2, Aug. 2007.
[34] H. Smaoui, C. Nespoulous, B. Rechain, E. Joubert, and D. Esteyne, "In-flight refuelling device for electric storage system and aircraft equipped with such a device," pat. US20150336677A1, Dec. 2012.
[35] M. Mammarella, G. Campa, M. R. Napolitano, M. L. Fravolini, Y. Gu, and M. G. Perhinschi, "Machine vision/GPS integration using ekf for the UAV aerial refueling problem," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 6, pp. 791-801, 2008, ISSN: 1094-6977. doi: 10.1109/TSMCC.2008.2001693.
[36] H. Duan and Q. Zhang, "Visual measurement in simulation environment for vision-based UAV autonomous aerial refueling," IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 9, pp. 2468-2480, 2015, ISSN: 0018-9456. doi: 10.1109/TIM.2014.2343392.
[37] Y. Yin, X.Wang, D. Xu, F. Liu, Y.Wang, and W.Wu, "Robust visual detection-learning-tracking framework for autonomous aerial refueling of UAVs," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 3, pp. 510-521, 2016, ISSN: 0018-9456. doi: 10.1109/TIM.2015.2509318.
[38] G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nol , "Selforganized coordinated motion in groups of physically connected robots," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 1, pp. 224-239, 2007, issn: 1083-4419. doi: 10.1109/TSMCB.2006.881299.
[39] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, "Femtocell networks: A survey," IEEE Communications Magazine, vol. 46, no. 9, pp. 59-67, 2008, ISSN: 0163-6804. doi: 10.1109/MCOM.2008.4623708.
[40] A. P. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, "A survey of green networking research," IEEE Communications Surveys Tutorials, vol. 14, no. 1, pp. 3-20, 2012, ISSN: 1553-877X. doi: 10.1109/SURV.2011.113010.00106.
[41] M. J. Neely, Stochastic network optimization with application to communication and queueing systems. Morgan and Claypool, 2010.
[42] L. Georgiadis, M. J. Neely, and L. Tassiulas, "Resource allocation and cross-layer control in wireless networks," Found. Trends Netw., vol. 1, no. 1, pp. 1-144, Apr. 2006, ISSN: 1554-057X. doi: 10.1561/1300000001. [Online]. Available: http://dx.doi.org/10.1561/1300000001.
[43] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, "Transmission with energy harvesting nodes in fading wireless channels: Optimal policies," IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1732-1743, 2011, ISSN: 0733-8716. doi: 10.1109/JSAC.2011.110921.
[44] Y. Wang, Y. P. Hong, and W. Chen, "Downlink multiuser beamforming and power control for base stations empowered by renewable energy," in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 1056-1060. doi: 10.1109/PIMRC.2013.6666294.
[45] P. Janis, V. Koivunen, C. B. Ribeiro, K. Doppler, and K. Hugl, "Interference-avoiding MIMO schemes for device-to-device radio underlaying cellular networks," in Proc. of IEEE PIMRC, 2009, pp. 2385-2389. doi: 10.1109/PIMRC.2009.5450284.
[46] H. Min, J. Lee, S. Park, and D. Hong, "Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks," IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 3995-4000, 2011, ISSN: 1536-1276. doi: 10.1109/TWC.2011.100611.101684.
[47] C. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, "Resource sharing optimization for device-to-device communication underlaying cellular networks," IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2752-2763, 2011, ISSN: 1536-1276. doi: 10.1109/TWC. 2011.060811.102120.
[48] A. Ramezani-Kebrya, M. Dong, B. Liang, G. Boudreau, and S. H. Seyedmehdi, "Joint power optimization for device-to-device communication in cellular networks with interference control," IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5131-5146, 2017, ISSN: 1536-1276. doi: 10.1109/TWC.2017.2706259.
[49] G. Yu, L. Xu, D. Feng, R. Yin, G. Y. Li, and Y. Jiang, "Joint mode selection and resource allocation for device-to-device communications," IEEE Trans. Commun., vol. 62, no. 11, pp. 3814-3824, 2014, ISSN: 0090-6778. doi: 10.1109/TCOMM.2014.2363092.
[50] Y. Huang, A. A. Nasir, S. Durrani, and X. Zhou, "Mode selection, resource allocation, and power control for D2D-enabled two-tier cellular network," IEEE Trans. Commun., vol. 64, no. 8, pp. 3534-3547, 2016, ISSN: 0090-6778. doi: 10.1109/TCOMM.2016.2580153.
[51] S. Shalmashi, G. Miao, and S. B. Slimane, "Interference management for multiple device-to-device communications underlaying cellular networks," in Proc. of IEEE PIMRC, 2013, pp. 223-227. doi: 10.1109/PIMRC.2013.6666135.
[52] S. Shalmashi, G. Miao, Z. Han, and S. B. Slimane, "Interference constrained device-to-device communications," in Proc. of IEEE ICC, 2014, pp. 5245-5250. doi: 10.1109/ ICC.2014.6884154.
[53] C. Yang, J. Li, P. Semasinghe, E. Hossain, S. M. Perlaza, and Z. Han, "Distributed interference and energy-aware power control for ultra-dense D2D networks: a mean eld game," IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1205-1217, 2017, ISSN: 1536-1276. doi: 10.1109/TWC.2016.2641959.
[54] Y.-W. P. Hong, W.-J. Huang, and C.-C. J. Kuo, Cooperative communications and networking: technologies and system design. Springer US, 2010.
[55] N. Bornhorst, M. Pesavento, and A. B. Gershman, "Distributed beamforming for multigroup multicasting relay networks," IEEE Trans. Sig. Process., vol. 60, no. 1, pp. 221-232, 2012, ISSN: 1053-587X. doi: 10.1109/TSP.2011.2167618.
[56] L.Wei, G.Wu, and R. Q. Hu, "Multi-pair device-to-device communications with spacetime analog network coding," in Proc. of IEEE WCNC, 2015, pp. 920-925. doi: 10.1109/WCNC.2015.7127592.
[57] W. Xing, C. Wang, P. Wang, and F. Liu, "Energy efficiency in multi-source network-coded device-to-device cooperative communications," in Proc. of IEEE ICUWB, 2016,
pp. 1-4. doi: 10.1109/ICUWB.2016.7790380.
[58] A. Ribeiro, R.Wang, and G. B. Giannakis, "Multi-source cooperation with full-diversity spectral-efficiency and controllable-complexity," IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 415-425, 2007, ISSN: 0733-8716. doi: 10.1109/JSAC.2007.070216.
[59] L. Wang, T. Peng, Y. Yang, and W. Wang, "Interference constrained relay selection of D2D communication for relay purpose underlaying cellular networks," in Proc. of WiCOM, 2012, pp. 1-5. doi: 10.1109/WiCOM.2012.6478550.
[60] Y. Cao, T. Jiang, and C. Wang, "Cooperative device-to-device communications in cellular networks," IEEE Wireless Commun., vol. 22, no. 3, pp. 124-129, 2015, ISSN: 1536-1284. doi: 10.1109/MWC.2015.7143335.
[61] Q. Sun, L. Tian, Y. Zhou, J. Shi, and X. Wang, "Energy efficient incentive resource allocation in D2D cooperative communications," in Proc. of IEEE ICC, 2015, pp. 2632-2637. doi: 10.1109/ICC.2015.7248722.
[62] C. Karakus and S. Diggavi, "Enhancing multiuser MIMO through opportunistic D2D cooperation," IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5616-5629, 2017, ISSN: 1536-1276. doi: 10.1109/TWC.2017.2712649.
[63] B. Zhou, H. Hu, S. Huang, and H. Chen, "Intracluster device-to-device relay algorithm with optimal resource utilization," IEEE Trans. Veh. Technol., vol. 62, no. 5, pp. 2315-2326, 2013, ISSN: 0018-9545. doi: 10.1109/TVT.2012.2237557.
[64] J. Gong, S. Zhou, and Z. Niu, "Optimal power allocation for energy harvesting and power grid coexisting wireless communication systems," IEEE Transactions on Communications, vol. 61, no. 7, pp. 3040-3049, 2013, ISSN: 0090-6778. doi: 10.1109/TCOMM.2013.05301313.120705.
[65] C. K. Ho and R. Zhang, "Optimal energy allocation for wireless communications with energy harvesting constraints," IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4808-4818, 2012, ISSN: 1053-587X. doi: 10.1109/TSP.2012.2199984.
[66] Y. Cui, V. K. N. Lau, and F. Zhang, "Grid power-delay tradeoff for energy harvesting wireless communication systems with finite renewable energy storage," IEEE Journal on Selected Areas in Communications, vol. 33, no. 8, pp. 1651-1666, 2015, ISSN: 0733-8716. doi: 10.1109/JSAC.2015.2391836.
[67] Y. Wang, Y. P. Hong, and W. Chen, "Sum-rate maximization and energy-cost minimization for renewable energy empowered base-stations using zero-forcing beamforming," in 2013 Asia-Paci c Signal and Information Processing Association Annual Summit and Conference, 2013, pp. 1-9. doi: 10.1109/APSIPA.2013.6694303.
[68] P. He, L. Zhao, S. Zhou, and Z. Niu, "Optimal recursive power allocation for energy harvesting system with multiple antennas," IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4525-4536, 2015, ISSN: 0018-9545. doi: 10.1109/TVT.2014. 2366560.
[69] W. Zeng, Y. R. Zheng, and R. Schober, "Online resource allocation for energy harvesting downlink multiuser systems: Precoding with modulation, coding rate, and subchannel selection," IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5780-5794, 2015, ISSN: 1536-1276. doi: 10.1109/TWC.2015.2442987.
[70] R. Gangula, D. Gesbert, and D. Gunduz, "Optimization of energy harvesting miso communication system with feedback," IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 396-406, 2015, ISSN: 0733-8716. doi: 10.1109/JSAC.2015.2391591.
[71] Y.-S. Wang, Y.-W. P. Hong, and W.-T. Chen, "Dynamic transmission policy for multipair cooperative device-to-device communication with block-diagonalization precoding," IEEE Trans. Wireless Commun., vol. accepted, 2019.
[72] R. Zhang, "Cooperative multi-cell block diagonalization with per-base-station power constraints," IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1435-1445, 2010, ISSN: 0733-8716. doi: 10.1109/JSAC.2010.101205.
[73] H. Shirani-Mehr, G. Caire, and M. J. Neely, "MIMO downlink scheduling with nonperfect channel state knowledge," IEEE Trans. Commun., vol. 58, no. 7, pp. 2055-2066, 2010, ISSN: 0090-6778. doi: 10.1109/TCOMM.2010.07.090377.
[74] S. Shim, J. S. Kwak, R. W. Heath, and J. G. Andrews, "Block diagonalization for multiuser MIMO with other-cell interference," IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2671-2681, 2008, ISSN: 1536-1276. doi: 10.1109/TWC.2008.070093.
[75] J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R. W. Heath, "Networked MIMO with clustered linear precoding," IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1910-1921, 2009, ISSN: 1536-1276. doi: 10.1109/TWC.2009.080180.
[76] S. Kim and G. B. Giannakis, "Optimal resource allocation for MIMO ad hoc cognitive radio networks," IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3117-3131, 2011, ISSN: 0018-9448. doi: 10.1109/TIT.2011.2120270.
[77] I. CVX Research. (2012). CVX: Matlab software for disciplined convex programming, version 2.0 beta., [Online]. Available: http://cvxr.com/cvx.
[78] N. Jindal and Z. Luo, "Capacity limits of multiple antenna multicast," in Proc. of IEEE ISIT, 2006, pp. 1841-1845. doi: 10.1109/ISIT.2006.261753.
[79] G. R. Wood, "The bisection method in higher dimensions," Math. Program., vol. 55, no. 3, pp. 319-337, 1992, ISSN: 0025-5610. doi: 10.1007/BF01581205. [Online]. Available: http://dx.doi.org/10.1007/BF01581205.
[80] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
[81] E. Telatar, "Capacity of multi-antenna Gaussian channels," Eur. Trans. Telecommun.,
vol. 10, no. 6, pp. 585-595, doi: 10.1002/ett.4460100604. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4460100604. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460100604.
[82] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge University Press, 2005.
[83] M. Kobayashi, N. Jindal, and G. Caire, "Training and feedback optimization for multiuser MIMO downlink," IEEE Trans. Commun., vol. 59, no. 8, pp. 2228-2240, 2011, ISSN: 0090-6778. doi: 10.1109/TCOMM.2011.051711.090752.
[84] B. Hassibi and B. M. Hochwald, "How much training is needed in multiple-antenna wireless links?" IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951-963, 2003, ISSN: 0018-9448. doi: 10.1109/TIT.2003.809594.
[85] T. Yoo and A. Goldsmith, "Capacity and power allocation for fading MIMO channels with channel estimation error," IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203-2214, 2006, ISSN: 0018-9448. doi: 10.1109/TIT.2006.872984.
[86] A. Adhikary, H. S. Dhillon, and G. Caire, "Massive-MIMO meets HetNet: Interference coordination through spatial blanking," IEEE J. Sel. Areas Commun., vol. 33, no. 6, pp. 1171-1186, 2015, ISSN: 0733-8716. doi: 10.1109/JSAC.2015.2416986.
[87] I. A. Hemadeh, M. El-Hajjar, S. Won, and L. Hanzo, "Layered multi-group steered space-time shift-keying for millimeter-wave communications," IEEE Access, vol. 4, pp. 3708-3718, 2016, ISSN: 2169-3536. doi: 10.1109/ACCESS.2016.2552078.
[88] Z. Chang, Y. Hu, Y. Chen, and B. Zeng, "Cluster-oriented device-to-device multimedia communications: Joint power, bandwidth, and link selection optimization," IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1570-1581, 2018, ISSN: 0018-9545. doi: 10.1109/TVT.2017.2762745.
[89] A. Simonsson and A. Furuskar, "Uplink power control in LTE-overview and performance, subtitle: Principles and bene ts of utilizing rather than compensating for SINRvariations," in Proc. of IEEE VTC, 2008, pp. 1-5. doi: 10.1109/VETECF.2008.317.
[90] Y. Wang, Y. P. Hong, and W. Chen, "Dynamically connectable UAV base stations with cooperative energy sharing," in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1-6. doi: 10.1109/GLOCOM.2018.8647398.
[91] M. Sadek, A. Tarighat, and A. H. Sayed, "A leakage-based precoding scheme for downlink multi-user MIMO channels," IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp. 1711-1721, 2007.
[92] J. Xu and R. Zhang, "CoMP meets smart grid: A new communication and energy cooperation paradigm," IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp. 2476-2488, 2015.
[93] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004, ISBN: 0521833787.
[94] M. Moza ari, W. Saad, M. Bennis, and M. Debbah, "Performance optimization for UAV-enabled wireless communications under flight time constraints," in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-6. doi: 10.1109/GLOCOM.2017.8254660.
[95] S. Luo, R. Zhang, and T. J. Lim, "Optimal save-then-transmit protocol for energy harvesting wireless transmitters," IEEE Transactions on Wireless Communications, vol. 12, no. 3, pp. 1196-1207, 2013, issn: 1536-1276. doi: 10.1109/TWC.2013.012413.120488.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *