帳號:guest(3.145.12.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):帕 迪
作者(外文):Pradeep Chennakesavula
論文名稱(中文):應用於無線感測網路之分散式參數估計的暫存策略
論文名稱(外文):Caching Policies for Distributed Parameter Estimation in Wireless Sensor Networks
指導教授(中文):洪樂文
指導教授(外文):Hong, Yao-Win Peter
口試委員(中文):趙啟超
劉光浩
蔡尚澕
李明峻
口試委員(外文):Chao, Chi-chao
Liu, Kuang-Hao
Tsai, Shang-Ho
Lee, Ming-Chun
學位類別:博士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:102064421
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:59
中文關鍵詞:分散式估計暫存感測器選擇無線感測網路
外文關鍵詞:Distributed estimationCachingSensor SelectionWireless sensor networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:384
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
無線感測網路 (WSN)中的暫存器可以通過減少網路範圍的傳輸來節省可用資源。 對感測器收集的數據進行暫存有助於用戶訪問訊息並減少網路流量,但當數據大小隨著時間快速增長或暫存容量有限時可能會面臨些挑戰。然而,在無線感測網路中,感測器節點經常被部署來實現一個共同的目標,例如環境監測中的溫度估計或入侵檢測。在這種情況下,暫存器不需要存取感測器收集的原始數據,而是可以只存與底層應用程序相關的訊息。在本論文中,為了在無線感測網路中進行分散式估計,我們提出了一種跨層暫存策略。
具體而言,在無線感測網路的分散式參數估計應用中,感測器首先收集有關常見現象的訊息,然後將訊息轉傳到計算最終估計的融合中心。通過假設參數具有時間相關性,融合中心的估計品質可以通過結合現在和過去的訊息來提高,而過去訊息可以從暫存器中的數據獲得。另一方面,在網路中,隨著時間的推移不斷產生大量數據,暫存所有來自於感測器的收集數據可能成本很高。選擇最佳感測器是克服這種過度的網路內資源消耗的關鍵思想之一。與傳統的暫存問題不同,在本論文中,我們的目標是重建感測器的觀察結果且我們的暫存策略旨在通過最佳化選擇必要的感測器和暫存資訊來最小化最終估計的長期平均均方誤差 (MSE)。具體來說,我們提出了一種貪婪的單步提前 (OSA)暫存策略,其只會最小化下一個時段中的預期MSE。首先,考慮單一暫存器和單一伺服器系統,然後通過使用交替優化 (AO)方法優化訪問係數和暫存策略來解決由此產生的OSA MSE最小化問題。此外,我們考慮了具有訪問和存儲成本的多個暫存和多個伺服器系統,研究了這些成本對選擇最佳感測器的影響,以及由此產生的最小化問題屬於具有成本約束的非凸優化問題,其中涉及可以使用交替優化和逐次凸逼近 (SCA)方法有效求解的指標函數。最後,通過模擬證明了所提出方案的有效性。

關鍵字 - 分散式估計、暫存、感測器選擇、無線感測網路
Caching in wireless sensor networks (WSNs) enables in conserving the available resources by reducing the network-wide transmissions. The caching of the data gathered by the sensors facilitates users' access to the information and reduces network traffic, but can be challenging when the data size grows too rapidly over time or when the cache size is limited. However, in WSNs, sensor nodes are often deployed to achieve a common objective, such as the estimation of temperature in environmental monitoring or the intrusion detection. In this case, the cache need not contain the raw data gathered by the sensors, but can instead contain only information that is relevant to the underlying application. In this dissertation, a cross-layered caching policies are examined for the purpose of distributed estimation in WSNs.

Specifically, in distributed parameter estimation applications of WSNs, sensors first gather information about a common phenomenon and then forward the information to a fusion center where the final estimate is computed. By assuming that the parameters are correlated over time, the estimation quality at the fusion center can be improved by combining both present and past information, where the latter can be obtained from cached data. On the other hand, in WSNs, large amounts of data are produced continuously over time, and caching all the data collected from the sensors can be costly. Optimal sensor selection is one of the key ideas to overcome this excess in-network resource-draining. Different from conventional caching problems, in this dissertation, our goal is to reconstruct the sensors’ observations and our caching strategy is designed to minimize the long-term average mean-square error (MSE) of the final estimate by optimally selecting necessary sensors and cached information. Specifically, we propose a greedy one-step-ahead (OSA) caching strategy, which only minimizes the expected MSE in the next time slot. At first, a single-cache and a single-server system are considered and the resultant OSA MSE minimization problem is then solved by using the alternating optimization (AO) method for optimal accessing coefficients and caching strategies. Furthermore, we consider multi-cache and multi-server systems with accessing and storage costs. The impact of these costs in the selection of optimal sensors is studied and the resultant minimization problem falls under the non-convex optimization problem with cost constraints involving indicator functions that can be solved efficiently using alternating optimization and successive convex approximation (SCA) methods. The effectiveness of the proposed scheme is demonstrated through numerical simulations.

Keywords - Distributed estimation, caching, sensor selection, wireless sensor networks
Contents
Abstract i
Contents iii
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Works 6
2.1 Caching for Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . .6
2.2 Distributed Parameter Estimation in Wireless Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Optimized Caching and Data Access Strategies for Single-Cache and Single-Server System 13
3.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 One-Step-Ahead MSE-Minimization Problem for Caching and Data Access in a Single-Cache and Single-Server System . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Optimized Data Access and Caching Strategies for Multi-Cache and Multi-Server System with Cost Constraints 22
4.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 OSA MSE-Minimization for Caching and Data Access Problem in a Multi-Cache and Multi-Server System with Cost Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Numerical Simulations 31
5.1 MSE Performance Comparisons of Single-Cache and Single-Server System with Numerical Simulations . . . . . . . . . . . . . . . . . . . . . .. . . . . . 32
5.2 MSE Performance Comparisons of Multi-Cache and Multi-Server System with Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
6 Conclusion 43
Appendices 45
A Derivation of (3.19) 46
B Derivation of (4.11) 48
Bibliography 51
iv

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A
survey,” Comput. Netw., vol. 38, pp. 393–422, Mar. 2002.
[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Comput. Netw.,
vol. 52, no. 12, pp. 2292–2330, 2008.
[3] V. Potdar, A. Sharif, and E. Chang, “Wireless sensor networks: A survey,” in Proc. Int. Conf.
on Adv. Inf. Net. and Appl. Workshops, pp. 636–641, 2009.
[4] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless
sensor networks: A survey,” Ad Hoc Netw., vol. 7, no. 3, pp. 537–568, 2009.
[5] W. Sun, Z. Yang, X. Zhang, and Y. Liu, “Energy-efficient neighbor discovery in mobile ad
hoc and wireless sensor networks: A survey,” IEEE Commun. Surv. Tutor., vol. 16, no. 3,
pp. 1448–1459, 2014.
[6] A. Kumar, M. Zhao, K.-J. Wong, Y. L. Guan, and P. H. J. Chong, “A comprehensive study of
IoT and WSN MAC protocols: Research issues, challenges and opportunities,” IEEE Access,
vol. 6, pp. 76228–76262, 2018.
[7] K. S. Prabh and T. F. Abdelzaher, “Energy-conserving data cache placement in sensor networks,”
ACM Trans. Sen. Netw., vol. 1, pp. 178–203, Nov. 2005.
[8] S. Pant, N. Chauhan, and P. Kumar, “Effective cache based policies in wireless sensor networks:
A survey,” Int. J. Comput. Appl., vol. 11, no. 10, pp. 0975–8887, 2010.
[9] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “Caching in named data networking for
the wireless internet of things,” in Proc. Int. Conf. on Rec. Adv. in Internet of Things (RIoT),
pp. 1–6, 2015.
[10] M. Albano, S. Chessa, F. Nidito, and S. Pelagatti, “Dealing with nonuniformity in data centric
storage for wireless sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8,
pp. 1398–1406, 2011.
[11] S. Gupta and T. P. Sharma, “Cooperative data caching in manets and wsns: A survey,” in
Proc. Int. Conf. on Int. Comput. Inst. and Cont. Tech. (ICICICT), pp. 1473–1479, 2017.
[12] Liangzhong Yin and Guohong Cao, “Supporting cooperative caching in adhoc networks,”
IEEE Trans. Mob. Comput., vol. 5, no. 1, pp. 77–89, 2006.
[13] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled wireless heterogeneous
networks,” IEEE Trans. Wirel. Commun., vol. 15, no. 1, pp. 131–145, 2016.
[14] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting caching and multicast
for 5g wireless networks,” IEEE Trans. Wirel. Commun., vol. 15, no. 4, pp. 2995–3007, 2016.
[15] Z. Chen, J. Lee, T. Q. S. Quek, and M. Kountouris, “Cooperative caching and transmission
design in cluster-centric small cell networks,” IEEE Trans. Wirel. Commun., vol. 16, no. 5,
pp. 3401–3415, 2017.
[16] M. Hajimirsadeghi, N. B. Mandayam, and A. Reznik, “Joint caching and pricing strategies
for popular content in information centric networks,” IEEE J. Sel. Areas Commun., vol. 35,
no. 3, pp. 654–667, 2017.
[17] T. Deng, G. Ahani, P. Fan, and D. Yuan, “Cost-optimal caching for d2d networks with user
mobility: Modeling, analysis, and computational approaches,” IEEE Trans. Wirel. Commun.,
vol. 17, no. 5, pp. 3082–3094, 2018.
[18] J. Ji, K. Zhu, D. Niyato, and R. Wang, “Joint cache placement, flight trajectory and transmission
power optimization for multi-uav assisted wireless networks,” IEEE Trans. Wirel.
Commun., 2020.
[19] G. Ahmed, J. Zou, M. M. S. Fareed, and M. Zeeshan, “Sleep-awake energy efficient distributed
clustering algorithm for wireless sensor networks,” Comput. Electr. Eng., vol. 56,
pp. 385–398, 2016.
[20] N. M. Shagari, M. Y. I. Idris, R. B. Salleh, I. Ahmedy, G. Murtaza, and H. A. Shehadeh, “Heterogeneous
energy and traffic aware sleep-awake cluster-based routing protocol for wireless
sensor network,” IEEE Access, vol. 8, pp. 12232–12252, 2020.
[21] H. Ko, S. Pack, and V. C. M. Leung, “Spatiotemporal correlation-based environmental monitoring
system in energy harvesting internet of things (IoT),” IEEE Trans. Industr Inform,
vol. 15, no. 5, pp. 2958–2968, 2019.
[22] H. Ko, H. Lee, T. Kim, and S. Pack, “Information freshness-guaranteed and energy-efficient
data generation control system in energy harvesting internet of things,” IEEE Access, vol. 8,
pp. 168711–168720, 2020.
[23] N. Dimokas, D. Katsaros, L. Tassiulas, and Y. Manolopoulos, “High performance, low
complexity cooperative caching for wireless sensor networks,” Wirel. Netw., vol. 17, no. 3,
pp. 717–737, 2011.
[24] N. Chand, “Cooperative data caching in WSN,” World acad. eng. technol., vol. 63, pp. 90–94,
2012.
[25] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli, “In-network caching
of internet-of-things data,” in Proc. IEEE Int. Commun. Conf. (ICC), pp. 3185–3190, 2014.
[26] S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli, “Caching transient data in internet content
routers,” IEEE ACM Trans. Netw., vol. 25, no. 2, pp. 1048–1061, 2017.
[27] K. Mekki, W. Derigent, E. Rondeau, and A. Thomas, “In-network data storage protocols for
wireless sensor networks: A state-of-the-art survey,” Int. J. Distrib. Sens. Netw., vol. 15, no. 4,
p. 1550147719832487, 2019.
[28] B. Sheng, Q. Li, andW. Mao, “Optimize storage placement in sensor networks,” IEEE Trans.
Mob. Comput., vol. 9, no. 10, pp. 1437–1450, 2010.
[29] Y. Yang, M. Jin, Y. Zhao, and H. Wu, “Distributed information storage and retrieval in 3-d
sensor networks with general topologies,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1149–
1162, 2015.
[30] W. Liu, H. Jiang, J. Liu, X. Liao, H. Lin, and T. Deng, “On the distance-sensitive and loadbalanced
information storage and retrieval for 3d sensor networks,” IEEE ACM Trans. Netw.,
vol. 24, no. 6, pp. 3439–3449, 2016.
[31] J.-J. Xiao and Z.-Q. Luo, “Decentralized estimation in an inhomogeneous sensing environment,”
IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3564–3575, 2005.
[32] J.-J. Xiao, A. Ribeiro, Z.-Q. Luo, and G. Giannakis, “Distributed compression-estimation
using wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 27–41, 2006.
[33] S. Cui, J.-J. Xiao, A. J. Goldsmith, Z.-Q. Luo, and H. V. Poor, “Estimation diversity and energy
efficiency in distributed sensing,” IEEE Trans. Signal Process, vol. 55, no. 9, pp. 4683–
4695, 2007.
[34] A. Ribeiro and G. Giannakis, “Bandwidth-constrained distributed estimation for wireless sensor
networks-part I: Gaussian case,” IEEE Trans. Signal Process, vol. 54, no. 3, pp. 1131–
1143, 2006.
[35] J. Li and G. AlRegib, “Rate-constrained distributed estimation in wireless sensor networks,”
IEEE Trans. on Signal Process., vol. 55, no. 5, pp. 1634–1643, 2007.
[36] A. Sani and A. Vosoughi, “Distributed vector estimation for power- and bandwidthconstrained
wireless sensor networks,” IEEE Trans. Signal Process, vol. 64, no. 15, pp. 3879–
3894, 2016.
[37] M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, “Estimation over fading channels with
limited feedback using distributed sensing,” IEEE Trans. on Signal Process., vol. 58, no. 1,
pp. 414–425, 2010.
[38] A. Shirazinia, S. Dey, D. Ciuonzo, and P. Salvo Rossi, “Massive MIMO for decentralized
estimation of a correlated source,” EEE Trans. Signal Process., vol. 64, no. 10, pp. 2499–
2512, 2016.
[39] S. Khobahi, M. Soltanalian, F. Jiang, and A. L. Swindlehurst, “Optimized transmission for
parameter estimation in wireless sensor networks,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 6, pp. 35–47, 2020.
[40] J. Fang and H. Li, “Distributed adaptive quantization for wireless sensor networks: From
delta modulation to maximum likelihood,” IEEE Trans. Signal Process., vol. 56, no. 10,
pp. 5246–5257, 2008.
[41] J. Zhu, X. Lin, R. S. Blum, and Y. Gu, “Parameter estimation from quantized observations in
multiplicative noise environments,” IEEE Trans. Signal Process., vol. 63, no. 15, pp. 4037–
4050, 2015.
[42] H. Senol and C. Tepedelenlioglu, “Performance of distributed estimation over unknown parallel
fading channels,” IEEE Trans. Signal Process., vol. 56, no. 12, pp. 6057–6068, 2008.
[43] S. Zhu, Y. C. Soh, and L. Xie, “Distributed inference for relay-assisted sensor networks with
intermittent measurements over fading channels,” IEEE Trans. Signal Process., vol. 64, no. 3,
pp. 742–756, 2016.
[44] S. Liu, S. Kar, M. Fardad, and P. K. Varshney, “Optimized sensor collaboration for estimation
of temporally correlated parameters,” IEEE Trans. Signal Process., vol. 64, no. 24, pp. 6613–
6626, 2016.
[45] A. Ozcelikkale, T. McKelvey, and M. Viberg, “Remote estimation of correlated sources under
energy harvesting constraints,” IEEE Trans. Wirel. Commun., vol. 17, no. 8, pp. 5300–5313,
2018.
[46] K. P. Rajput, M. F. Ahmed, N. K. D. Venkategowda, A. K. Jagannatham, G. Sharma, and
L. Hanzo, “Robust decentralized and distributed estimation of a correlated parameter vector
in MIMO-OFDM wireless sensor networks,” IEEE Trans. Commun. (Early Access), 2021.
[47] P. Chennakesavula, Y.-W. P. Hong, and A. Scaglione, “Caching for distributed parameter
estimation in wireless sensor networks,” in Proc. IEEE Int. Conf. on Commun. (ICC), pp. 1–
6, 2017.
[48] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive
minimization methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–
1153, 2013.
[49] Y. Yang and T. Song, “Energy-efficient cooperative caching for information-centric wireless
sensor networking,” IEEE Internet Things J. (Early Access), 2021.
[50] B. Chen, L. Liu, Z. Zhang, W. Yang, and H. Ma, “BRR-CVR: A collaborative caching strategy
for information-centric wireless sensor networks,” in Proc. IEEE Int. Conf. on Mob.
Ad-Hoc and Sens. Netw. (MSN), pp. 31–38, 2016.
[51] C. Xu, X. Wang, H. H. Yang, H. Sun, and T. Q. S. Quek, “AoI and energy consumption
oriented dynamic status updating in caching enabled IoT networks,” in Proc. IEEE Conf. on
Comp. Commun. Workshops (INFOCOM WKSHPS), pp. 710–715, 2020.
[52] X. Wu, X. Li, J. Li, P. C. Ching, V. C. M. Leung, and H. V. Poor, “Caching transient content
for IoT sensing: Multi-agent soft actor-critic,” IEEE Trans. on Commun. (Early Access),
2021.
[53] J. Yao and N. Ansari, “Joint content placement and storage allocation in C-RANs for IoT
sensing service,” IEEE Internet Things J., vol. 6, no. 1, pp. 1060–1067, 2019.
[54] Y. Zhang, B. Feng, W. Quan, A. Tian, K. Sood, Y. Lin, and H. Zhang, “Cooperative edge
caching: A multi-agent deep learning based approach,” IEEE Access, vol. 8, pp. 133212–
133224, 2020.
[55] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and H. Mathkour, “Least fresh first
cache replacement policy for NDN-based IoT networks,” Pervasive Mob. Comput., vol. 52,
pp. 60–70, 2019.
[56] D. Niyato, D. I. Kim, P. Wang, and L. Song, “A novel caching mechanism for internet of
things (IoT) sensing service with energy harvesting,” in Proc. IEEE Int. Commun. Conf.
(ICC), pp. 1–6, 2016.
[57] C. Zhao, S. Yang, P. Yan, Q. Yang, X. Yang, and J. McCann, “Data quality guarantee for
credible caching device selection in mobile crowdsensing systems,” IEEE Wirel. Commun.,
vol. 25, no. 3, pp. 58–64, 2018.
[58] H. Li, T. Li, W. Wang, and Y. Wang, “Dynamic participant selection for large-scale mobile
crowd sensing,” IEEE Trans. Mob. Comput., vol. 18, no. 12, pp. 2842–2855, 2019.
[59] Y. Guan and X. Ge, “Distributed secure estimation over wireless sensor networks against
random multichannel jamming attacks,” IEEE Access, vol. 5, pp. 10858–10870, 2017.
[60] C. Battiloro, P. Di Lorenzo, P. Banelli, and S. Barbarossa, “Dynamic resource optimization
for decentralized estimation in energy harvesting IoT networks,” IEEE Internet Things J.,
vol. 8, no. 10, pp. 8530–8542, 2021.
[61] C. Zhan, Y. Zeng, and R. Zhang, “Trajectory design for distributed estimation in UAVenabled
wireless sensor network,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10155–
10159, 2018.
[62] Y. Sung, L. Tong, and H. V. Poor, “Neyman-Pearson detection of Gauss-Markov signals in
noise: closed-form error exponentand properties,” IEEE Trans. Inf. Theory, vol. 52, pp. 1354–
1365, Apr. 2006.
[63] Y. Sung, X. Zhang, L. Tong, and H. V. Poor, “Sensor configuration and activation for field
detection in large sensor arrays,” IEEE Trans. Signal Process., vol. 56, pp. 447–463, Feb.
2008.
[64] Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for minimizing age of information
in wireless broadcast networks with random arrivals,” IEEE Trans. on Mob. Comput.,
vol. 19, no. 12, pp. 2903–2915, 2020.
[65] X. Wu, X. Li, J. Li, P. C. Ching, and H. V. Poor, “Deep reinforcement learning for IoT
networks: Age of information and energy cost tradeoff,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), pp. 1–6, 2020.
[66] R. Fry and S. McManus, “Smooth bump functions and the geometry of banach spaces: a brief
survey,” Expo. Math., vol. 20, no. 2, pp. 143–183, 2002.
[67] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic framework for
block-structured optimization involving big data: With applications in machine learning and
signal processing,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77, 2015.
[68] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version
2.1.” http://cvxr.com/cvx, Mar. 2014.
[69] M. C. Vuran and I. F. Akyildiz, “Spatial correlation-based collaborative medium access control
in wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 316–329, Apr. 2006.
[70] Y. Lan, X. Wang, D. Wang, Z. Liu, and Y. Zhang, “Task caching, offloading, and resource
allocation in D2D-aided fog computing networks,” IEEE Access, vol. 7, pp. 104876–104891,
2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *