|
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Comput. Netw., vol. 38, pp. 393–422, Mar. 2002. [2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Comput. Netw., vol. 52, no. 12, pp. 2292–2330, 2008. [3] V. Potdar, A. Sharif, and E. Chang, “Wireless sensor networks: A survey,” in Proc. Int. Conf. on Adv. Inf. Net. and Appl. Workshops, pp. 636–641, 2009. [4] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Netw., vol. 7, no. 3, pp. 537–568, 2009. [5] W. Sun, Z. Yang, X. Zhang, and Y. Liu, “Energy-efficient neighbor discovery in mobile ad hoc and wireless sensor networks: A survey,” IEEE Commun. Surv. Tutor., vol. 16, no. 3, pp. 1448–1459, 2014. [6] A. Kumar, M. Zhao, K.-J. Wong, Y. L. Guan, and P. H. J. Chong, “A comprehensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities,” IEEE Access, vol. 6, pp. 76228–76262, 2018. [7] K. S. Prabh and T. F. Abdelzaher, “Energy-conserving data cache placement in sensor networks,” ACM Trans. Sen. Netw., vol. 1, pp. 178–203, Nov. 2005. [8] S. Pant, N. Chauhan, and P. Kumar, “Effective cache based policies in wireless sensor networks: A survey,” Int. J. Comput. Appl., vol. 11, no. 10, pp. 0975–8887, 2010. [9] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “Caching in named data networking for the wireless internet of things,” in Proc. Int. Conf. on Rec. Adv. in Internet of Things (RIoT), pp. 1–6, 2015. [10] M. Albano, S. Chessa, F. Nidito, and S. Pelagatti, “Dealing with nonuniformity in data centric storage for wireless sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1398–1406, 2011. [11] S. Gupta and T. P. Sharma, “Cooperative data caching in manets and wsns: A survey,” in Proc. Int. Conf. on Int. Comput. Inst. and Cont. Tech. (ICICICT), pp. 1473–1479, 2017. [12] Liangzhong Yin and Guohong Cao, “Supporting cooperative caching in adhoc networks,” IEEE Trans. Mob. Comput., vol. 5, no. 1, pp. 77–89, 2006. [13] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled wireless heterogeneous networks,” IEEE Trans. Wirel. Commun., vol. 15, no. 1, pp. 131–145, 2016. [14] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting caching and multicast for 5g wireless networks,” IEEE Trans. Wirel. Commun., vol. 15, no. 4, pp. 2995–3007, 2016. [15] Z. Chen, J. Lee, T. Q. S. Quek, and M. Kountouris, “Cooperative caching and transmission design in cluster-centric small cell networks,” IEEE Trans. Wirel. Commun., vol. 16, no. 5, pp. 3401–3415, 2017. [16] M. Hajimirsadeghi, N. B. Mandayam, and A. Reznik, “Joint caching and pricing strategies for popular content in information centric networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 3, pp. 654–667, 2017. [17] T. Deng, G. Ahani, P. Fan, and D. Yuan, “Cost-optimal caching for d2d networks with user mobility: Modeling, analysis, and computational approaches,” IEEE Trans. Wirel. Commun., vol. 17, no. 5, pp. 3082–3094, 2018. [18] J. Ji, K. Zhu, D. Niyato, and R. Wang, “Joint cache placement, flight trajectory and transmission power optimization for multi-uav assisted wireless networks,” IEEE Trans. Wirel. Commun., 2020. [19] G. Ahmed, J. Zou, M. M. S. Fareed, and M. Zeeshan, “Sleep-awake energy efficient distributed clustering algorithm for wireless sensor networks,” Comput. Electr. Eng., vol. 56, pp. 385–398, 2016. [20] N. M. Shagari, M. Y. I. Idris, R. B. Salleh, I. Ahmedy, G. Murtaza, and H. A. Shehadeh, “Heterogeneous energy and traffic aware sleep-awake cluster-based routing protocol for wireless sensor network,” IEEE Access, vol. 8, pp. 12232–12252, 2020. [21] H. Ko, S. Pack, and V. C. M. Leung, “Spatiotemporal correlation-based environmental monitoring system in energy harvesting internet of things (IoT),” IEEE Trans. Industr Inform, vol. 15, no. 5, pp. 2958–2968, 2019. [22] H. Ko, H. Lee, T. Kim, and S. Pack, “Information freshness-guaranteed and energy-efficient data generation control system in energy harvesting internet of things,” IEEE Access, vol. 8, pp. 168711–168720, 2020. [23] N. Dimokas, D. Katsaros, L. Tassiulas, and Y. Manolopoulos, “High performance, low complexity cooperative caching for wireless sensor networks,” Wirel. Netw., vol. 17, no. 3, pp. 717–737, 2011. [24] N. Chand, “Cooperative data caching in WSN,” World acad. eng. technol., vol. 63, pp. 90–94, 2012. [25] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli, “In-network caching of internet-of-things data,” in Proc. IEEE Int. Commun. Conf. (ICC), pp. 3185–3190, 2014. [26] S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli, “Caching transient data in internet content routers,” IEEE ACM Trans. Netw., vol. 25, no. 2, pp. 1048–1061, 2017. [27] K. Mekki, W. Derigent, E. Rondeau, and A. Thomas, “In-network data storage protocols for wireless sensor networks: A state-of-the-art survey,” Int. J. Distrib. Sens. Netw., vol. 15, no. 4, p. 1550147719832487, 2019. [28] B. Sheng, Q. Li, andW. Mao, “Optimize storage placement in sensor networks,” IEEE Trans. Mob. Comput., vol. 9, no. 10, pp. 1437–1450, 2010. [29] Y. Yang, M. Jin, Y. Zhao, and H. Wu, “Distributed information storage and retrieval in 3-d sensor networks with general topologies,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1149– 1162, 2015. [30] W. Liu, H. Jiang, J. Liu, X. Liao, H. Lin, and T. Deng, “On the distance-sensitive and loadbalanced information storage and retrieval for 3d sensor networks,” IEEE ACM Trans. Netw., vol. 24, no. 6, pp. 3439–3449, 2016. [31] J.-J. Xiao and Z.-Q. Luo, “Decentralized estimation in an inhomogeneous sensing environment,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3564–3575, 2005. [32] J.-J. Xiao, A. Ribeiro, Z.-Q. Luo, and G. Giannakis, “Distributed compression-estimation using wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 27–41, 2006. [33] S. Cui, J.-J. Xiao, A. J. Goldsmith, Z.-Q. Luo, and H. V. Poor, “Estimation diversity and energy efficiency in distributed sensing,” IEEE Trans. Signal Process, vol. 55, no. 9, pp. 4683– 4695, 2007. [34] A. Ribeiro and G. Giannakis, “Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case,” IEEE Trans. Signal Process, vol. 54, no. 3, pp. 1131– 1143, 2006. [35] J. Li and G. AlRegib, “Rate-constrained distributed estimation in wireless sensor networks,” IEEE Trans. on Signal Process., vol. 55, no. 5, pp. 1634–1643, 2007. [36] A. Sani and A. Vosoughi, “Distributed vector estimation for power- and bandwidthconstrained wireless sensor networks,” IEEE Trans. Signal Process, vol. 64, no. 15, pp. 3879– 3894, 2016. [37] M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, “Estimation over fading channels with limited feedback using distributed sensing,” IEEE Trans. on Signal Process., vol. 58, no. 1, pp. 414–425, 2010. [38] A. Shirazinia, S. Dey, D. Ciuonzo, and P. Salvo Rossi, “Massive MIMO for decentralized estimation of a correlated source,” EEE Trans. Signal Process., vol. 64, no. 10, pp. 2499– 2512, 2016. [39] S. Khobahi, M. Soltanalian, F. Jiang, and A. L. Swindlehurst, “Optimized transmission for parameter estimation in wireless sensor networks,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 35–47, 2020. [40] J. Fang and H. Li, “Distributed adaptive quantization for wireless sensor networks: From delta modulation to maximum likelihood,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5246–5257, 2008. [41] J. Zhu, X. Lin, R. S. Blum, and Y. Gu, “Parameter estimation from quantized observations in multiplicative noise environments,” IEEE Trans. Signal Process., vol. 63, no. 15, pp. 4037– 4050, 2015. [42] H. Senol and C. Tepedelenlioglu, “Performance of distributed estimation over unknown parallel fading channels,” IEEE Trans. Signal Process., vol. 56, no. 12, pp. 6057–6068, 2008. [43] S. Zhu, Y. C. Soh, and L. Xie, “Distributed inference for relay-assisted sensor networks with intermittent measurements over fading channels,” IEEE Trans. Signal Process., vol. 64, no. 3, pp. 742–756, 2016. [44] S. Liu, S. Kar, M. Fardad, and P. K. Varshney, “Optimized sensor collaboration for estimation of temporally correlated parameters,” IEEE Trans. Signal Process., vol. 64, no. 24, pp. 6613– 6626, 2016. [45] A. Ozcelikkale, T. McKelvey, and M. Viberg, “Remote estimation of correlated sources under energy harvesting constraints,” IEEE Trans. Wirel. Commun., vol. 17, no. 8, pp. 5300–5313, 2018. [46] K. P. Rajput, M. F. Ahmed, N. K. D. Venkategowda, A. K. Jagannatham, G. Sharma, and L. Hanzo, “Robust decentralized and distributed estimation of a correlated parameter vector in MIMO-OFDM wireless sensor networks,” IEEE Trans. Commun. (Early Access), 2021. [47] P. Chennakesavula, Y.-W. P. Hong, and A. Scaglione, “Caching for distributed parameter estimation in wireless sensor networks,” in Proc. IEEE Int. Conf. on Commun. (ICC), pp. 1– 6, 2017. [48] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126– 1153, 2013. [49] Y. Yang and T. Song, “Energy-efficient cooperative caching for information-centric wireless sensor networking,” IEEE Internet Things J. (Early Access), 2021. [50] B. Chen, L. Liu, Z. Zhang, W. Yang, and H. Ma, “BRR-CVR: A collaborative caching strategy for information-centric wireless sensor networks,” in Proc. IEEE Int. Conf. on Mob. Ad-Hoc and Sens. Netw. (MSN), pp. 31–38, 2016. [51] C. Xu, X. Wang, H. H. Yang, H. Sun, and T. Q. S. Quek, “AoI and energy consumption oriented dynamic status updating in caching enabled IoT networks,” in Proc. IEEE Conf. on Comp. Commun. Workshops (INFOCOM WKSHPS), pp. 710–715, 2020. [52] X. Wu, X. Li, J. Li, P. C. Ching, V. C. M. Leung, and H. V. Poor, “Caching transient content for IoT sensing: Multi-agent soft actor-critic,” IEEE Trans. on Commun. (Early Access), 2021. [53] J. Yao and N. Ansari, “Joint content placement and storage allocation in C-RANs for IoT sensing service,” IEEE Internet Things J., vol. 6, no. 1, pp. 1060–1067, 2019. [54] Y. Zhang, B. Feng, W. Quan, A. Tian, K. Sood, Y. Lin, and H. Zhang, “Cooperative edge caching: A multi-agent deep learning based approach,” IEEE Access, vol. 8, pp. 133212– 133224, 2020. [55] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and H. Mathkour, “Least fresh first cache replacement policy for NDN-based IoT networks,” Pervasive Mob. Comput., vol. 52, pp. 60–70, 2019. [56] D. Niyato, D. I. Kim, P. Wang, and L. Song, “A novel caching mechanism for internet of things (IoT) sensing service with energy harvesting,” in Proc. IEEE Int. Commun. Conf. (ICC), pp. 1–6, 2016. [57] C. Zhao, S. Yang, P. Yan, Q. Yang, X. Yang, and J. McCann, “Data quality guarantee for credible caching device selection in mobile crowdsensing systems,” IEEE Wirel. Commun., vol. 25, no. 3, pp. 58–64, 2018. [58] H. Li, T. Li, W. Wang, and Y. Wang, “Dynamic participant selection for large-scale mobile crowd sensing,” IEEE Trans. Mob. Comput., vol. 18, no. 12, pp. 2842–2855, 2019. [59] Y. Guan and X. Ge, “Distributed secure estimation over wireless sensor networks against random multichannel jamming attacks,” IEEE Access, vol. 5, pp. 10858–10870, 2017. [60] C. Battiloro, P. Di Lorenzo, P. Banelli, and S. Barbarossa, “Dynamic resource optimization for decentralized estimation in energy harvesting IoT networks,” IEEE Internet Things J., vol. 8, no. 10, pp. 8530–8542, 2021. [61] C. Zhan, Y. Zeng, and R. Zhang, “Trajectory design for distributed estimation in UAVenabled wireless sensor network,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10155– 10159, 2018. [62] Y. Sung, L. Tong, and H. V. Poor, “Neyman-Pearson detection of Gauss-Markov signals in noise: closed-form error exponentand properties,” IEEE Trans. Inf. Theory, vol. 52, pp. 1354– 1365, Apr. 2006. [63] Y. Sung, X. Zhang, L. Tong, and H. V. Poor, “Sensor configuration and activation for field detection in large sensor arrays,” IEEE Trans. Signal Process., vol. 56, pp. 447–463, Feb. 2008. [64] Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for minimizing age of information in wireless broadcast networks with random arrivals,” IEEE Trans. on Mob. Comput., vol. 19, no. 12, pp. 2903–2915, 2020. [65] X. Wu, X. Li, J. Li, P. C. Ching, and H. V. Poor, “Deep reinforcement learning for IoT networks: Age of information and energy cost tradeoff,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 1–6, 2020. [66] R. Fry and S. McManus, “Smooth bump functions and the geometry of banach spaces: a brief survey,” Expo. Math., vol. 20, no. 2, pp. 143–183, 2002. [67] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77, 2015. [68] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014. [69] M. C. Vuran and I. F. Akyildiz, “Spatial correlation-based collaborative medium access control in wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 316–329, Apr. 2006. [70] Y. Lan, X. Wang, D. Wang, Z. Liu, and Y. Zhang, “Task caching, offloading, and resource allocation in D2D-aided fog computing networks,” IEEE Access, vol. 7, pp. 104876–104891, 2019. |