|
[1] L. Kergoat, B. Piro, M. Berggren, M. C. Pham, A. Yassar, and G. Horowitz, “DNA detection with a water-gated organic field-effect transistor,” Org. Electron., vol. 13, no. 1, pp. 1–6, 2012. [2] J. Hahm and C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Lett., vol. 4, no. 1, pp 51-54, 2004. [3] D. Gonçalves, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors,” Biosens. Bioelectron., vol. 24, no. 4, pp. 545–551, 2008. [4] P. Georgiou and C. Toumazou, “Semiconductors for early detection and therapy,” Electron. Lett., vol. 47, no. 26, p. S4, 2011. [5] T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid.,” Nature, vol. 446, no. 7139, pp. 1066–1069, 2007. [6] U. Hashim, M. K. M. Arshad, and C. S. Fatt, “Silicon nitride gate ISFET fabrication based on four mask layers using standard MOSFET technology,” IEEE Int. Conf. Semicond. Electron. Proceedings, ICSE, pp. 626–628, 2008. [7] E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method,” Solid State Sci., vol. 11, no. 2, pp. 456–460, 2009. [8] Y. Ishige, M. Shimoda, and M. Kamahori, “Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode,” Biosens. Bioelectron., vol. 24, no. 5, pp. 1096–1102, 2009. [9] P. Bergveld, “Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology.,” IEEE Trans. Biomed. Eng., vol. 19, no. 5, pp. 342–351, 1972. [10] R. a. Rani and O. Sidek, “ISFET pH sensor characterization: towards biosensor microchip application,” 2004 IEEE Reg. 10 Conf. TENCON 2004., vol. D, pp. 660–663, 2004. [11] K. -M. Chang, C. -T. Chang, K. -Y. Chao, and J. -L. Chen, “Development of FET-Type Reference Electrodes for pH-ISFET Applications,” J. Electrochem. Soc., vol. 157, no. 5, p. J143, 2010. [12] M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier, and A. Errachid, “ISFET-based biosensor to monitor sugar metabolism in bacteria,” Mater. Sci. Eng. C, vol. 28, no. 5–6, pp. 680–685, 2008. [13] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, and D. Wu, “A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis,” IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2224–2233, 2015. [14] M. Spijkman, E. C. P. Smits, J. F. M. Cillessen, F. Biscarini, P. W. M. Blom, and D. M. DeLeeuw, “Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors,” Appl. Phys. Lett., vol. 98, no. 4, pp. 98–101, 2011. [15] T. M. Pan, J. C. Lin, M. H. Wu, and C. S. Lai, “Study of high-k Er2O3 thin layers as ISFET sensitive insulator surface for pH detection,” Sensors Actuators, B Chem., vol. 138, no. 2, pp. 619–624, 2009. [16] V. Jankovic and J. P. Chang, “HfO2 and ZrO2–Based Microchemical Ion Sensitive Field Effect Transistor (ISFET) Sensors: Simulation & Experiment,” J. Electrochem. Soc., vol. 158, no. 10, p. P115, 2011. [17] P. Y. Hsu, J. J. Lin, Y. L.Wu, W. C. Hung, and A. G. Cullis, “Ultra-sensitive polysilicon wire glucose sensor using a 3-aminopropyltriethoxysilane and polydimethylsiloxane-treated hydrophobic fumed silica nanoparticle mixture as the sensing membrane,” Sensors Actuators, B Chem., vol. 142, no. 1, pp. 273–279, 2009. [18] H. J. Jang, M. S. Kim, and W. J. Cho, “Development of engineered sensing membranes for field-effect ion-sensitive devices based on stacked high-k dielectric layers,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 973–975, 2011. [19] T. N. T. Nguyen, Y. G. Seol, and N. E. Lee, “Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing,” Org. Electron. physics, Mater. Appl., vol. 12, no. 11, pp. 1815–1821, 2011. [20] A. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5 -gate ISFETs,” Sensors and Actuators B., vol. 7, pp. 367–370, 1992. [21] C. -Y. Chen, J. -C. Chou, and H. -T. Chou, “Characteristics of Cost-Effective Ultrathin HfTiOx Film as Sensitive Membrane in ISFET Fabricated by Anodization,” J. Electrochem. Soc., vol. 156, no. 4, p. H225, 2009. [22] Y. -H. Y. Chang, Y. Y. -S. Lu, Y. Y. -L. Hong, S. Gwo, and J. A. Yeh, “Highly Sensitive pH Sensing Using an Indium Nitride Ion-Sensitive Field-Effect Transistor,” Sensors Journal, vol. 11, no. 5, pp. 1157–1161, 2011. [23] C. H. Kao, H. Chen, L. T. Kuo, J. C. Wang, Y. T. Chen, Y. C. Chu, C. Y. Chen, C. S. Lai, S. W. Chang, and C. W. Chang, “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure,” Sensors Actuators, B Chem., vol. 194, pp. 419–426, 2014. [24] L. -T. Y. L. -T. Yin, J. -C. C. J. -C. Chou, W. -Y. C. W. -Y. Chung, T. -P. S. T. -P. Sun, and S. -K. H. S. -K. Hsiung, “Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications,” IEEE Trans. Biomed. Eng., vol. 48, no. 3, pp. 340–344, 2001. [25] T. F. Lu, J. C. Wang, C. M. Yang, C. P. Chang, K. I. Ho, C. F. Ai, and C. S. Lai, “Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte-insulator-semiconductor structure for pH-sensor application,” Microelectron. Reliab., vol. 50, no. 5, pp. 742–746, 2010. [26] C. Lai, T. Wang, T. Lu, P. Lin, and C. Yang, “High pH sensitivity and low drift HfO2 membrane optimized by N2O plasma and RTA treatments,” pp. 3–4. [27] T. -F. Lu, C. -M. Yang, J. -C. Wang, K. -I. Ho, C. -H. Chin, D. G. Pijanowska, B. Jaroszewicz, and C. -S. Lai, “Characterization of K+ and Na+-Sensitive Membrane Fabricated by CF4 Plasma Treatment on Hafnium Oxide Thin Films on ISFET,” J. Electrochem. Soc., vol. 158, no. 4, p. J91, 2011. [28] T. N. Lee, H. J. H. Chen, and K. C. Hsieh, “Study on sensing properties of ion-sensitive field-effect-transistors fabricated with stack sensing membranes,” IEEE Electron Device Lett., vol. 37, no. 12, pp. 1642–1645, 2016. [29] Y. Liang, J. Huang, P. Zang, J. Kim, and W. Hu, “Applied Surface Science Molecular layer deposition of APTES on silicon nanowire biosensors : Surface characterization , stability and pH response,” Appl. Surf. Sci., vol. 322, pp. 202–208, 2014. [30] P. Zang, S. Member, Y. Liang, S. Member, L. Spurgin, W. Hu, and S. Member, “pH Sensing Comparison of Vapor and Solution APTES Coated Si Nanograting FETs, ” Proceedings of the 13th IEEE International Conference on Nanotechnology., pp. 301–304, 2013. [31] H. J. H. Chen and C. Y. Chen, “Ion-sensitive field-effect transistors with periodic-groove channels fabricated using nanoimprint lithography,” IEEE Electron Device Lett., vol. 34, no. 4, pp. 541–543, 2013. [32] T. Rim, S. Member, K. Kim, S. Kim, C. Baek, M. Meyyappan, Y. Jeong, and A. Ion-sensitive, “Improved Electrical Characteristics of Honeycomb Nanowire ISFETs,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 1059–1061, 2013. [33] H. F. Fledderusa and F. Bijkerka, “Portable diagnostics for EUV light sources,” Proceedings of SPIE., vol. 4146, no. 2000, pp. 121–127, 2017. [34] R. M. Y. Ng, T. Wang, F. Liu, X. Zuo, J. He, and M. Chan, “Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 520–522, 2009. [35] L. J. Guo, “Recent progress in nanoimprint technology and its applications,” Journal of Physics D: Applied Physics., vol. 37, pp. 123–141, 2004. [36] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science., vol. 272, no. 5258, pp. 85–87, 1996. [37] W. M. Choi and O. O. Park, “A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectron. Eng., vol. 70, no. 1, pp. 131–136, 2003. [38] C. Chang, S. Member, C. Deng, and H. Chang, “A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowire Channels,” IEEE Electron Device Lett., vol. 28, no. 11, pp. 993–995, 2007. [39] H. Yin, W. Xianyu, A. Tikhonovsky, and Y. S. Park, “Scalable 3-D Fin-Like Poly-Si TFT and Its Nonvolatile Memory Application,” IEEE Trans. Electron Devices., vol. 55, no. 2, pp. 578–584, 2008. [40] Y. Wu, T. Chang, P. Liu, C. Chen, C. Tu, H. Zan, Y. Tai, and C. Chang, “Effects of Channel Width on Electrical Characteristics of Polysilicon TFTs With Multiple Nanowire Channels,” IEEE Trans. Electron Devices., vol. 52, no. 10, pp. 2343–2346, 2005. [41] H. J. H. Chen, J. Jhang, and C. Huang, “Study on Characteristics of Poly-Si TFTs With 3-D Finlike Channels Fabricated by Nanoimprint Technology,” IEEE Trans. Electron Devices., vol. 59, no. 9, pp. 2314–2320, 2012. [42] D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. King, J. Bokor, and C. Hu, “FinFET - A Self-Aligned Double-Gate MOSFET,” IEEE Electron Device Lett., vol. 47, no. 12, p. 2320, 2000. [43] P. Zheng, D. Connelly, F. Ding, and T. J. K. Liu, “FinFET Evolution Toward Stacked-Nanowire FET for CMOS Technology Scaling,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 3945–3950, 2015. [44] T. Kang, T. Liao, C. Lin, H. Liu, F. Wang, and H. Cheng, “Gate-All-Around Poly-Si TFTs With Single-Crystal-Like Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1239–1241, 2011. [45] W. Healy, “Site-binding Model of the Electrical Double Layer at the Oxide / Water Interface,” J. Chem. Soc., Faraday Trans., Issue. 0, pp. 1807-1808, 1973. [46] C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. 33, no. 1, pp. 8–18, 1986. [47] W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers. I. Films adsorbed from solution in non-polar liquids,” J. Colloid Sci., vol. 1, no. 6, pp. 513–538, 1946. [48] R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” J. Am. Chem. Soc., vol. 105, no. 13, pp. 4481–4483, 1983. [49] D. L. Allara, “Critical issues in applications of self-assembled monolayers,” Biosens. Bioelectron., vol. 10, no. 9–10, pp. 771–783, 1995. [50] D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, “Self assembled monolayers on silicon for molecular electronics,” Anal. Chim. Acta, vol. 568, no. 1–2, pp. 84–108, 2006. [51] A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev., vol. 96, no. 4, pp. 1533–1554, 1996. [52] C. R. Kessel and S. Granick, “Formation and Characterization of a Highly Ordered and Well-Anchored Alkylsilane Monolayer on Mica by Self-Assembly,” Langmuir, vol. 7, no. 3, pp. 532–538, 1991. [53] H. H. Kyaw, S. H. Al-Harthi, A. Sellai, and J. Dutta, “Self-organization of gold nanoparticles on silanated surfaces,” Beilstein J. Nanotechnol., vol. 6, no. 1, pp. 2345–2353, 2015. [54] P. Zang, Y. Liang, and W. W. Hu, “Improved Hydrolytic Stability and Repeatability: PH sensing with APTES-coated silicon nanowire bio-FETs,” IEEE Nanotechnol. Mag., vol. 9, no. 4, pp. 19–28, 2015. [55] D. Janssen, R. DePalma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films, vol. 515, no. 4, pp. 1433–1438, 2006. [56] B. G. Insulators, D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, “Ion-Sensing Devices with Silicon Nitride and,” IEEE Trans. Electron Devices, vol. 34, no. 8, pp. 1700–1707, 1987. [57] T. N. Lee, H. J. H. Chen, Y. C. Huang, and K. C. Hsieh, “Electrolyte-Insulator-Semiconductor pH Sensors with Arrayed Patterns Manufactured by Nano Imprint Technology,” J. Electrochem. Soc., vol. 165, no. 14, pp. B767–B772, 2018. [58] K. Shoorideh and C. On Chui, “On the origin of enhanced sensitivity in nanoscale,” PNAS., vol. 111, no. 14, pp. 5111–5116, 2014. [59] Guangshuo Cai, Lei Qiang, Peng Yang, Zimin Chen, Yi Zhuo, Ya Li, Yanli Pei, and Gang Wang, “High Sensitivity pH Sensor Based on Electrolyte-gated In2O3 TFT”, IEEE Electron Device Lett., Vol 39 , Issue 9 , 2018.
|