帳號:guest(52.15.196.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李子念
作者(外文):Lee, Tzu-Nien
論文名稱(中文):奈米線陣列通道離子感應場效應電晶體之研究
論文名稱(外文):A Study on Ion Sensitive Field Effect Transistors with Arrayed Nanowires Channel
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):黃瑞星
趙天生
陳建亨
黃義佑
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063810
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:117
中文關鍵詞:離子感應場效電晶體感測器奈米壓印奈米機電製程奈米線
外文關鍵詞:ISFETspH sensorNILNEMSNanowires
相關次數:
  • 推薦推薦:0
  • 點閱點閱:298
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用奈米壓印技術搭配奈米機電製程取代傳統奈米線製作方式,如電子束曝光搭配SOI晶圓的製作方式,製作出具奈米線陣列通道的離子感應場效應電晶體並研究其特性,相較於傳統矽奈米線,本研究之結構,最終會保留部分結構連接奈米線與矽基板,在研究中稱此部分為”頸”,藉由”頸”對奈米線提供物理性支撐的方式改善元件良率,並在元件電流輸出上,也會有一定程度的貢獻。經過一連串的製程所製作出的奈米陣列通道,其最終線寬約為90~200nm。奈米線陣列通道製作完成後,將利用掃描式電子顯微鏡與穿隧式電子顯微鏡觀察其通道剖面圖。
對於一些主要的元件特性其改善原因,來自於奈米陣列通道的特殊幾何結構;因為奈米線陣列通道提供了大量的邊角於元件通道內亦或是感測區域內,在邊角區域的半導體層將會存在較大電場,可以有效地改善元件基本電性,且若是應用在感測器上,也因為邊角效應的關係,能放大表面待測物對通道內電場的影響,換言之,通道內邊角的存在能增加了平帶電壓的偏移(感測度)。且具奈米線陣列通道的離子感應場效應電晶體相較於傳統式的離子感應場效應電晶體都展現出較好的元件特性,例如較低的臨界電壓、次臨界擺幅和較高的開關電流比。進一步而言,具備較高圖案密度的奈米線陣列通道離子感應場效應電晶體,因在通道內有更多的邊角存在,亦具備較好的感測特性。在文章中,結構對元件特性改善原因將被討論。
根據本研究結果,在未來利用奈米壓印技術可實現具高性能的生物感測器。
This work focuses on the characteristic of ion sensitive field effect transistors (A-ISFETs) pH sensors with nanowires channel manufactured by integrating nano imprint technology (NIL) and NEMS process, replacing the silicon on insulator wafer and electron beam lithography to fabricate the nanowires. Comparison of the conventional nanowires, the arrayed nanowires with the neck that provide the physical support to the nanowires and output current contribution, raising the yield and performance of devices. The arrayed nanowires, made of line at about ∼90–200nm, were fabricated by NIL; followed by the manufacturing of the ISFETs and investigated by scanning electron microscopy (SEM) and tunneling electron microscopy (TEM). The main properties is significant improved by the particular geometrical structure in the sensing area, due to the corner effect, there exist higher electrical field in the corner region of semiconductor layer under same gate bias.
The ISFETs sensors with arrayed nanowires, all exhibited better sensing properties than the single one did, due to the corner effect, enlarging the affect from the analyte which is bind on the surface of sensing membrane. In other words, there are a lot corners exist at the sensing area (channel) from the arrayed nanowires structure. Furthermore, the sensing properties of A-ISFETs with higher pattern density exhibited higher sensitivity, lower hysteresis, and lower drift properties than the one with lower pattern density did. The effects of arrayed nanowires structure would be investigated. As the research, using the NIL technique, the fabrication of sensor for high performance biochemical sensing applications can be realized in the future.
Acknowledgement
中文摘要 i
Abstract ii
Contents iii
List of Figures vi
List of tables xi
Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 Site-Binding Model 3
2.2 Electrolyte Insulator Semiconductor Capacitor 7
2.2.1 Metal Insulator Semiconductor 7
2.2.2 Electrolyte Insulator Semiconductor 17
2.3 Ion Sensitive Field Effect Transistor 19
2.3.1 Correlation between ISFETs and MOSFETs 19
2.3.2 Current Characteristic of ISFETs 21
2.4 Self-Assemble Monolayer 23
2.4.1 Introduction of Self Assembled Monolayer 23
2.4.2 Introduction of APTES 25
Chapter 3 Experimental Setup 30
3.1 ISFETs Fabrication 31
3.1.1 Process Flow of ISFETs with Arrayed Nanowires Channels 31
3.1.2 Mask Design 40
3.2 Mold for NIL 41
3.2.1 Silicon Mold 41
3.2.2 Release Layer 43
3.3 ISFETs with Arrayed Nanowires Channels Experimental 44
3.3.1 Nano Imprint Lithography 44
3.3.2 Residual Layer 45
3.3.3 Arrayed Nanowires Channels Manufactured 46
3.3.4 Definition of the Contact Hole 49
3.3.5 Definition of the Metal Pad 50
3.3.6 Definition of the Sensing Area 51
3.3.7 Devices Package 52
3.3.8 Monolayer Deposition 52
3.4 Electrical Properties 53
3.4.1 Basic Properties 53
3.4.2 Sensitivity 53
3.4.3 Hysteresis 54
3.4.4 Drift 56
Chapter 4 Results and Discussions 57
4.1 Silicon Mold 58
4.2 Results of Devices Fabrication 63
4.2.1 Nano Imprint Lithography 63
4.2.2 Arrayed Nanowires Channels 67
4.2.3 Self-Assemble Monolayers 75
4.3 Comparisons of EIS with/without Arrayed Nanowires Channel 80
4.3.1 Sensitivity of EIS 80
4.3.2 Hysteresis of EIS 86
4.3.3 Drift of EIS 88
4.4 Comparisons of Basic Electrical Properties 91
4.5 Comparisons of Sensing Properties 97
4.5.1 Sensitivity of ISFETs 97
4.5.2 Hysteresis of ISFETs with Arrayed Nanowires Channel 104
4.5.3 Drift of ISFETs with Arrayed Nanowires Channel 106
4.6 Summary 108
Chapter 5 Conclusions 109
5.1 Conclusions 109
5.2 Future Work 110
Reference 111

[1] L. Kergoat, B. Piro, M. Berggren, M. C. Pham, A. Yassar, and G. Horowitz, “DNA detection with a water-gated organic field-effect transistor,” Org. Electron., vol. 13, no. 1, pp. 1–6, 2012.
[2] J. Hahm and C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Lett., vol. 4, no. 1, pp 51-54, 2004.
[3] D. Gonçalves, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors,” Biosens. Bioelectron., vol. 24, no. 4, pp. 545–551, 2008.
[4] P. Georgiou and C. Toumazou, “Semiconductors for early detection and therapy,” Electron. Lett., vol. 47, no. 26, p. S4, 2011.
[5] T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid.,” Nature, vol. 446, no. 7139, pp. 1066–1069, 2007.
[6] U. Hashim, M. K. M. Arshad, and C. S. Fatt, “Silicon nitride gate ISFET fabrication based on four mask layers using standard MOSFET technology,” IEEE Int. Conf. Semicond. Electron. Proceedings, ICSE, pp. 626–628, 2008.
[7] E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method,” Solid State Sci., vol. 11, no. 2, pp. 456–460, 2009.
[8] Y. Ishige, M. Shimoda, and M. Kamahori, “Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode,” Biosens. Bioelectron., vol. 24, no. 5, pp. 1096–1102, 2009.
[9] P. Bergveld, “Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology.,” IEEE Trans. Biomed. Eng., vol. 19, no. 5, pp. 342–351, 1972.
[10] R. a. Rani and O. Sidek, “ISFET pH sensor characterization: towards biosensor microchip application,” 2004 IEEE Reg. 10 Conf. TENCON 2004., vol. D, pp. 660–663, 2004.
[11] K. -M. Chang, C. -T. Chang, K. -Y. Chao, and J. -L. Chen, “Development of FET-Type Reference Electrodes for pH-ISFET Applications,” J. Electrochem. Soc., vol. 157, no. 5, p. J143, 2010.
[12] M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier, and A. Errachid, “ISFET-based biosensor to monitor sugar metabolism in bacteria,” Mater. Sci. Eng. C, vol. 28, no. 5–6, pp. 680–685, 2008.
[13] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, and D. Wu, “A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis,” IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2224–2233, 2015.
[14] M. Spijkman, E. C. P. Smits, J. F. M. Cillessen, F. Biscarini, P. W. M. Blom, and D. M. DeLeeuw, “Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors,” Appl. Phys. Lett., vol. 98, no. 4, pp. 98–101, 2011.
[15] T. M. Pan, J. C. Lin, M. H. Wu, and C. S. Lai, “Study of high-k Er2O3 thin layers as ISFET sensitive insulator surface for pH detection,” Sensors Actuators, B Chem., vol. 138, no. 2, pp. 619–624, 2009.
[16] V. Jankovic and J. P. Chang, “HfO2 and ZrO2–Based Microchemical Ion Sensitive Field Effect Transistor (ISFET) Sensors: Simulation & Experiment,” J. Electrochem. Soc., vol. 158, no. 10, p. P115, 2011.
[17] P. Y. Hsu, J. J. Lin, Y. L.Wu, W. C. Hung, and A. G. Cullis, “Ultra-sensitive polysilicon wire glucose sensor using a 3-aminopropyltriethoxysilane and polydimethylsiloxane-treated hydrophobic fumed silica nanoparticle mixture as the sensing membrane,” Sensors Actuators, B Chem., vol. 142, no. 1, pp. 273–279, 2009.
[18] H. J. Jang, M. S. Kim, and W. J. Cho, “Development of engineered sensing membranes for field-effect ion-sensitive devices based on stacked high-k dielectric layers,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 973–975, 2011.
[19] T. N. T. Nguyen, Y. G. Seol, and N. E. Lee, “Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing,” Org. Electron. physics, Mater. Appl., vol. 12, no. 11, pp. 1815–1821, 2011.
[20] A. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5 -gate ISFETs,” Sensors and Actuators B., vol. 7, pp. 367–370, 1992.
[21] C. -Y. Chen, J. -C. Chou, and H. -T. Chou, “Characteristics of Cost-Effective Ultrathin HfTiOx Film as Sensitive Membrane in ISFET Fabricated by Anodization,” J. Electrochem. Soc., vol. 156, no. 4, p. H225, 2009.
[22] Y. -H. Y. Chang, Y. Y. -S. Lu, Y. Y. -L. Hong, S. Gwo, and J. A. Yeh, “Highly Sensitive pH Sensing Using an Indium Nitride Ion-Sensitive Field-Effect Transistor,” Sensors Journal, vol. 11, no. 5, pp. 1157–1161, 2011.
[23] C. H. Kao, H. Chen, L. T. Kuo, J. C. Wang, Y. T. Chen, Y. C. Chu, C. Y. Chen, C. S. Lai, S. W. Chang, and C. W. Chang, “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure,” Sensors Actuators, B Chem., vol. 194, pp. 419–426, 2014.
[24] L. -T. Y. L. -T. Yin, J. -C. C. J. -C. Chou, W. -Y. C. W. -Y. Chung, T. -P. S. T. -P. Sun, and S. -K. H. S. -K. Hsiung, “Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications,” IEEE Trans. Biomed. Eng., vol. 48, no. 3, pp. 340–344, 2001.
[25] T. F. Lu, J. C. Wang, C. M. Yang, C. P. Chang, K. I. Ho, C. F. Ai, and C. S. Lai, “Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte-insulator-semiconductor structure for pH-sensor application,” Microelectron. Reliab., vol. 50, no. 5, pp. 742–746, 2010.
[26] C. Lai, T. Wang, T. Lu, P. Lin, and C. Yang, “High pH sensitivity and low drift HfO2 membrane optimized by N2O plasma and RTA treatments,” pp. 3–4.
[27] T. -F. Lu, C. -M. Yang, J. -C. Wang, K. -I. Ho, C. -H. Chin, D. G. Pijanowska, B. Jaroszewicz, and C. -S. Lai, “Characterization of K+ and Na+-Sensitive Membrane Fabricated by CF4 Plasma Treatment on Hafnium Oxide Thin Films on ISFET,” J. Electrochem. Soc., vol. 158, no. 4, p. J91, 2011.
[28] T. N. Lee, H. J. H. Chen, and K. C. Hsieh, “Study on sensing properties of ion-sensitive field-effect-transistors fabricated with stack sensing membranes,” IEEE Electron Device Lett., vol. 37, no. 12, pp. 1642–1645, 2016.
[29] Y. Liang, J. Huang, P. Zang, J. Kim, and W. Hu, “Applied Surface Science Molecular layer deposition of APTES on silicon nanowire biosensors : Surface characterization , stability and pH response,” Appl. Surf. Sci., vol. 322, pp. 202–208, 2014.
[30] P. Zang, S. Member, Y. Liang, S. Member, L. Spurgin, W. Hu, and S. Member, “pH Sensing Comparison of Vapor and Solution APTES Coated Si Nanograting FETs, ” Proceedings of the 13th IEEE International Conference on Nanotechnology., pp. 301–304, 2013.
[31] H. J. H. Chen and C. Y. Chen, “Ion-sensitive field-effect transistors with periodic-groove channels fabricated using nanoimprint lithography,” IEEE Electron Device Lett., vol. 34, no. 4, pp. 541–543, 2013.
[32] T. Rim, S. Member, K. Kim, S. Kim, C. Baek, M. Meyyappan, Y. Jeong, and A. Ion-sensitive, “Improved Electrical Characteristics of Honeycomb Nanowire ISFETs,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 1059–1061, 2013.
[33] H. F. Fledderusa and F. Bijkerka, “Portable diagnostics for EUV light sources,” Proceedings of SPIE., vol. 4146, no. 2000, pp. 121–127, 2017.
[34] R. M. Y. Ng, T. Wang, F. Liu, X. Zuo, J. He, and M. Chan, “Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 520–522, 2009.
[35] L. J. Guo, “Recent progress in nanoimprint technology and its applications,” Journal of Physics D: Applied Physics., vol. 37, pp. 123–141, 2004.
[36] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science., vol. 272, no. 5258, pp. 85–87, 1996.
[37] W. M. Choi and O. O. Park, “A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectron. Eng., vol. 70, no. 1, pp. 131–136, 2003.
[38] C. Chang, S. Member, C. Deng, and H. Chang, “A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowire Channels,” IEEE Electron Device Lett., vol. 28, no. 11, pp. 993–995, 2007.
[39] H. Yin, W. Xianyu, A. Tikhonovsky, and Y. S. Park, “Scalable 3-D Fin-Like Poly-Si TFT and Its Nonvolatile Memory Application,” IEEE Trans. Electron Devices., vol. 55, no. 2, pp. 578–584, 2008.
[40] Y. Wu, T. Chang, P. Liu, C. Chen, C. Tu, H. Zan, Y. Tai, and C. Chang, “Effects of Channel Width on Electrical Characteristics of Polysilicon TFTs With Multiple Nanowire Channels,” IEEE Trans. Electron Devices., vol. 52, no. 10, pp. 2343–2346, 2005.
[41] H. J. H. Chen, J. Jhang, and C. Huang, “Study on Characteristics of Poly-Si TFTs With 3-D Finlike Channels Fabricated by Nanoimprint Technology,” IEEE Trans. Electron Devices., vol. 59, no. 9, pp. 2314–2320, 2012.
[42] D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. King, J. Bokor, and C. Hu, “FinFET - A Self-Aligned Double-Gate MOSFET,” IEEE Electron Device Lett., vol. 47, no. 12, p. 2320, 2000.
[43] P. Zheng, D. Connelly, F. Ding, and T. J. K. Liu, “FinFET Evolution Toward Stacked-Nanowire FET for CMOS Technology Scaling,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 3945–3950, 2015.
[44] T. Kang, T. Liao, C. Lin, H. Liu, F. Wang, and H. Cheng, “Gate-All-Around Poly-Si TFTs With Single-Crystal-Like Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1239–1241, 2011.
[45] W. Healy, “Site-binding Model of the Electrical Double Layer at the Oxide / Water Interface,” J. Chem. Soc., Faraday Trans., Issue. 0, pp. 1807-1808, 1973.
[46] C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. 33, no. 1, pp. 8–18, 1986.
[47] W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers. I. Films adsorbed from solution in non-polar liquids,” J. Colloid Sci., vol. 1, no. 6, pp. 513–538, 1946.
[48] R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” J. Am. Chem. Soc., vol. 105, no. 13, pp. 4481–4483, 1983.
[49] D. L. Allara, “Critical issues in applications of self-assembled monolayers,” Biosens. Bioelectron., vol. 10, no. 9–10, pp. 771–783, 1995.
[50] D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, “Self assembled monolayers on silicon for molecular electronics,” Anal. Chim. Acta, vol. 568, no. 1–2, pp. 84–108, 2006.
[51] A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev., vol. 96, no. 4, pp. 1533–1554, 1996.
[52] C. R. Kessel and S. Granick, “Formation and Characterization of a Highly Ordered and Well-Anchored Alkylsilane Monolayer on Mica by Self-Assembly,” Langmuir, vol. 7, no. 3, pp. 532–538, 1991.
[53] H. H. Kyaw, S. H. Al-Harthi, A. Sellai, and J. Dutta, “Self-organization of gold nanoparticles on silanated surfaces,” Beilstein J. Nanotechnol., vol. 6, no. 1, pp. 2345–2353, 2015.
[54] P. Zang, Y. Liang, and W. W. Hu, “Improved Hydrolytic Stability and Repeatability: PH sensing with APTES-coated silicon nanowire bio-FETs,” IEEE Nanotechnol. Mag., vol. 9, no. 4, pp. 19–28, 2015.
[55] D. Janssen, R. DePalma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films, vol. 515, no. 4, pp. 1433–1438, 2006.
[56] B. G. Insulators, D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, “Ion-Sensing Devices with Silicon Nitride and,” IEEE Trans. Electron Devices, vol. 34, no. 8, pp. 1700–1707, 1987.
[57] T. N. Lee, H. J. H. Chen, Y. C. Huang, and K. C. Hsieh, “Electrolyte-Insulator-Semiconductor pH Sensors with Arrayed Patterns Manufactured by Nano Imprint Technology,” J. Electrochem. Soc., vol. 165, no. 14, pp. B767–B772, 2018.
[58] K. Shoorideh and C. On Chui, “On the origin of enhanced sensitivity in nanoscale,” PNAS., vol. 111, no. 14, pp. 5111–5116, 2014.
[59] Guangshuo Cai, Lei Qiang, Peng Yang, Zimin Chen, Yi Zhuo, Ya Li, Yanli Pei, and Gang Wang, “High Sensitivity pH Sensor Based on Electrolyte-gated In2O3 TFT”, IEEE Electron Device Lett., Vol 39 , Issue 9 , 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *