帳號:guest(18.191.42.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝孟潔
作者(外文):Hsieh, Mon-Hsieh
論文名稱(中文):共振腔尺寸與低電流注入區於808nm雷射二極體操作特性之研究
論文名稱(外文):Effect of optical cavity size and current blocking region in 808nm laser diode charateristics
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):吳孟奇
李奎毅
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063554
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:雷射二極體砷化鎵大光腔低電流注入區808
外文關鍵詞:laser diodeGaAslarge optical cavitycurrent blocking region808
相關次數:
  • 推薦推薦:0
  • 點閱點閱:580
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本論文以濕式蝕刻製作砷化鎵磷漸變折射率分開侷限異質量子井邊射型半導體雷射,藉由半導體結構低內部損耗以及加寬波導等特點,利用大光學共振腔以達到高功率輸出光源的目的,並改變共振腔的長寬比例已了解臨界電流的變化趨勢。我們設計了四種不同的電極寬度與五種共振腔長度以搭配,經過量測結果發現,元件的臨界電流密度值會隨著共振腔長度的倒數呈現正度相關性,並且臨界電流值會隨著共振腔長度增加而遞減;再者,臨界電流密度值會隨著電極面積寬度的變大而上升,但其漸增幅度由於光場侷限因子的緣故為越來越緩的,因此綜合以上結果我們可知為了達到高功率半導體雷射的需求,其共振腔結構設計應為加長並縮窄的,且較窄的共振腔的近光場也更優更利於耦合。接著,為了避免在高操作電流下在雷射鏡面積聚太多熱能,我們以溼式蝕刻掉鏡面前端的高濃度p型載子參雜層,藉此提高電流往鏡面端的電阻值,以降低鏡面溫度改善COD。我們設計了五種不同低電流注入區寬度的半導體雷射元件,並經過量測結果發現低電流注入區的設計只在共振腔長度為1 mm的元件下對臨界電流值有所影響。在共振腔長度1 mm的元件中,臨界電流值會隨著低電流注入區寬度的增加而上升,在注入區寬度為100 $\mu$m時的臨界電流值為688 mA。推論低電流注入區的設計在其他長度下的元件並沒看出顯著變化是因為本論文選擇的低電流注入區的寬度對其他元件的長度所佔的比例太小,因此無法在量測結果中找到其趨勢變化,未來應選擇更寬的低電流注入區來探討其變化。
The purpose of this thesis is to examine the characteristics of using different method in GaAs 808 nm laser diode. By utilizing Large Optical Cavity(LOC) within GaAs 808 nm laser diode structure, the active region can accommodate more photons and we expect to have higher output powers as the result. Besides, we also combine the other technology as building a Current Blocking Region near the facet mirror to low down the temperatures of the facet mirror to reach the better catastrophic optical damage level. The results show that threshold current have a perfectly positive relationship with the cavity length of the sample which have LOC design. And its threshold current densities also increase as the reciprocal cavity length increase which is identical to the basic laser theory. But the results focused on the relationship between the emitter width and threshold current densities show that due to the optical confinement factor won’t getting dramatically improvement with the wider emitter width sample, the trend of threshold current densities will getting slightly higher when increasing the emitter width of the laser diode. The last but not the least, we didn’t see a great influence of Current Blocking Region on samples with cavity length from 1.5 mm to 4 mm. It is believed that reason resulted from the width we designed for Current Blocking Region is too short compared to those cavity length. We only see the result that the Current Blocking Region effectively change the level of threshold current on samples with cavity length 1 mm and having a higher level of threshold current at wider Current Blocking Region.
目錄
Abstract.........................................................I
論文摘要..........................................................III
目錄..............................................................VII
第一章 序論..........................................................1
1.1 研究動機........................................................1
1.2 論文架構........................................................2
第二章 研究背景及基礎理論...................................3
2.1 半導體雷射發展與演進...................................3
2.2 半導體雷射基本要素.....................................5
2.3 半導體雷射材料.........................................6
2.3.1 直接能隙與間接能隙.................................6
2.3.2 半導體雷射發光波長.................................7
2.4 載子復合放光機制.......................................7
2.4.1 非輻射復合........................................7
2.4.2 輻射復合..........................................9
2.5 半導體雷射構造與種類...................................13
2.5.1 雷射二極體基本構造.................................13
2.5.1 半導體雷射種類.....................................15
2.6 半導體雷射特性參數.....................................20
2.6.1 雷射增益閾值條件...................................20
2.6.2 內部量子效率.......................................26
2.6.3 輸出功率..........................................27
2.6.4 斜率效率..........................................28
2.6.5 微分量子效率.......................................29
2.6.6 光電轉換效率.......................................31
2.6.7 電流-光輸出功率及電流-電壓特性曲線...................31
第三章 實驗設計............................................33
3.1 高功率雷射操作限制.....................................33
3.2 高功率雷射結構設計.....................................34
3.2.1 大光腔設計.........................................35
3.2.2 無鋁磊晶結構.......................................35
3.2.3 低電流注入區.......................................36
3.3 實驗設計...............................................37
3.3.1 實驗流程...........................................37
3.3.2 基板選擇...........................................39
3.4 雷射晶粒製程...........................................39
3.4.1 硬式罩幕製程.......................................39
3.4.2 黃光製程...........................................41
3.4.3 濕式蝕刻及去除光阻製程..............................41
3.4.4 磷酸蝕刻脊狀波導製程................................43
3.4.5 電極接觸窗製程.....................................43
3.4.6 P-side電極製程.....................................44
3.4.7 基板磨薄製程.......................................44
3.4.8 N-side電極製程.....................................45
3.4.9 劈晶條製程.........................................45
3.4.10 鏡面鍍膜製程......................................45
第四章 實驗結果............................................47
4.1 L-I-V量測系統..........................................47
4.2 閾值電流密度比較........................................48
4.3 試片#A雷射元件.........................................50
4.4 試片#B雷射元件.........................................60
第五章 結論與未來展望.......................................75
參考文獻...................................................77
[1] A.L.SchawlowandC.H.Townes,“Infraredandopticalmasers,”Phys.Rev., vol.112,pp.1940–1949,Dec1958.
[2] J.L.Bromberg,TheLaserinAmerica,1950-1970. TheMITPress,1991.
[3] T. H. Maiman, “Stimulated optical radiation in ruby,” nature, vol. 187, no.4736,pp.493–494,1960.
[4] R.N.Hall,G.E.Fenner,J.D.Kingsley,T.J.Soltys,andR.O.Carlson,“Coherent light emission from gaas junctions,” Phys. Rev. Lett., vol. 9, pp. 366– 368,Nov1962.
[5] T.M.Quist,R.H.Rediker,R.J.Keyes,W.E.Krag,B.Lax,A.L.McWhorter, andH.J.Zeigler,“SemiconductorMaserofGaAs,”AppliedPhysicsLetters, vol.1,pp.91–92,Dec.1962.
[6] N. Holonyak, Jr. and S. F. Bevacqua, “Coherent (visible) Light Emission fromGa(As1−xPx)Junctions,”AppliedPhysicsLetters,vol.1,pp.82–83,Dec. 1962.
[7] W. E. Howard, F. F. Fang, F. H. Dill, and M. I. Nathan, “Cw operation of a gaas injection laser,” IBM Journal of Research and Development, vol. 7, pp.74–75,Jan1963.
[8] Introduction to semiconductor lasers Introduction to Semiconductor Lasers (TraditionalChineseEdition). WuNan,2008.
[9] J. P. van der Ziel, R. Dingle, R. C. Miller, W. Wiegmann, and W. A. N. Jr., “Laseroscillationfromquantumstatesinverythingaas−al0.2ga0.8asmultilayerstructures,”AppliedPhysicsLetters,vol.26,no.8,pp.463–465,1975.
[10] R. D. Dupuis, P. D. Dapkus, N. H. Jr., E. A. Rezek, and R. Chin, “Roomtemperature laser operation of quantum‐well ga(1−x)alxas‐gaas laser diodes grownbymetalorganicchemicalvapordeposition,”AppliedPhysicsLetters, vol.32,no.5,pp.295–297,1978.
[11] Y.Arakawa,K.Vahala,andA.Yariv,“Quantumnoiseanddynamicsinquantum well and quantum wire lasers,” Applied Physics Letters, vol. 45, no. 9, pp.950–952,1984.
[12] M.Asada,Y.Miyamoto,andY.Suematsu,“Gainandthethresholdofthreedimensional quantum-box lasers,” IEEE Journal of Quantum Electronics, vol.22,pp.1915–1921,Sep1986.
[13] F. Koyama, S. Kinoshita, and K. Iga, “Room‐temperature continuous wave lasingcharacteristicsofagaasverticalcavitysurface‐emittinglaser,”Applied PhysicsLetters,vol.55,no.3,pp.221–222,1989.
[14] M.Lončar,T.Yoshie,A.Scherer,P.Gogna,andY.Qiu,“Low-thresholdphotonic crystal laser,” Applied Physics Letters, vol. 81, no. 15, pp. 2680–2682, 2002.
[15] G. Fasol, “Room-temperature blue gallium nitride laser diode,” Science, vol.272,no.5269,p.1751,1996.
[16] “Semiconductorlasersmarket-globalindustryanalysis,sizes,share,growth, trendsandforecast2014-2020,”p.86,2015.
[17] H.Abramczyk,IntroductiontoLaserSpectroscopy. ELSEVIERLTD,2005.
[18] E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes. Wiley OnlineLibrary,2005.
[19] O.Svelto,PrinciplesofLasers. Springer-VerlagGmbH,2010.
[20] N.N,HighPowerDiodeLasers. SpringerNewYork,2007.
[21] N. Holonyak, R. Kolbas, R. Dupuis, and P. Dapkus, “Quantum-well heterostructurelasers,”IEEEJournalofQuantumElectronics,vol.16,pp.170– 186,February1980.
[22] S.R.Chinn,P.S.Zory,andA.R.Reisinger,“Amodelforgrin-sch-sqwdiode lasers,” IEEE Journal of Quantum Electronics, vol.24, pp.2191–2214, Nov 1988.
[23] D. D. Sell, H. C. C. Jr., and K. W. Wecht, “Concentration dependence of the refractive index for n ‐ and p ‐type gaas between 1.2 and 1.8 ev,” Journal of AppliedPhysics,vol.45,no.6,pp.2650–2657,1974.
[24] T. Suhara, Semiconductor Laser Fundamentals (Optical Science and Engineering). CRCPress,2004.
[25] M. Fukuda, Optical Semiconductor Devices. JOHN WILEY & SONS INC, 1998.
[26] W.Tsang,“Heterostructuresemiconductorlaserspreparedbymolecularbeam epitaxy,”IEEEJournalofQuantumElectronics,vol.20,pp.1119–1132,October1984.
[27] M. Bass, C. DeCusatis, and J. Enoch, Handbook of optics, vol. 2. McGrawHillNewYork,2001.
[28] Quantum Well Lasers (Quantum Electronics–Principles and Applications). AcademicPress,2012.
[29] K. Petermann, Laser Diode Modulation and Noise. Springer Netherlands, 2012.
[30] E. Kapon, Semiconductor Lasers II: Materials and Structures (Optics and Photonics). AcademicPress,1999.
[31] High-PowerDiodeLasers: Fundamentals,Technology,Applications(Topics inAppliedPhysics). Springer,2003.
[32] T. Fujimoto, Y. Yamada, Y. Yamada, A. Okubo, Y. Oeda, and K. Muro, “High-power ingaas/algaas laser diodes with decoupled confinement heterostructure,”1999.
[33] D. Botez, “High-power al-free coherent and incoherent diode lasers,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE, vol.1,pp.274–275vol.1,Dec1998.
[34] U. Menzel, R. Puchert, A. Baerwolff, and A. Lau, “Heating of the front and rearfacetsofgaalas/gaasedgeemittinglaserdiodes,”1997.
[35] K.Hausler,B.Sumpf,G.Erbert,andG.Trankle,“Degradationanalysisof808 nm gaasp laser diodes,” in 2007 Conference on Lasers and Electro-Optics PacificRim,pp.1–2,Aug2007.
[36] M.Ott,“Capabilitiesandreliabilityofledsandlaserdiodes,”InternalNASA PartsandPackagingPublication,1996.
[37] Springer Handbook of Electronic and Photonic Materials. Springer-Verlag GmbH,2006.
[38] Y. Okano, H. Seto, H. Katahama, S. Nishine, I. Fujimoto, and T. Suzuki, “Characteristicsofheavilysi-dopedgaasgrownon(111)aorientedsubstrate bymolecularbeamepitaxyascomparedwith(100)growth,”JapaneseJournalofAppliedPhysics,vol.28,no.2A,p.L151,1989.
[39] H.Xiao,IntroductiontoSemiconductorManufacturingTechnology. Prentice Hall,2000.
[40] J.S.Osinski,K.M.Dzurko,S.G.Hummel,andP.D.Dapkus40,“Optimizationofstripewidthforlow‐thresholdoperationofquantumwelllaserdiodes,” AppliedPhysicsLetters,vol.56,no.25,pp.2487–2489,1990.
[41] D. P. Bour, M. Kneissl, L. T. Romano, R. M. Donaldson, C. J. Dunnrowicz, N.M.Johnson,andG.A.Evans,“Stripe-widthdependenceofthresholdcurrent for gain-guided algainn laser diodes,” Applied Physics Letters, vol. 74, no.3,pp.404–406,1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *