帳號:guest(3.21.244.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):嘉帝
作者(外文):Bhat, Jagadeesha R
論文名稱(中文):在D2D網路中群播和激勵機制的利潤最大化演算法
論文名稱(外文):Profit Maximization Algorithms for Multicast and Incentive-Based D2D Networks
指導教授(中文):許健平
指導教授(外文):Sheu, Jang-Ping
口試委員(中文):蔡明哲
韓永楷
張志勇
陳裕賢
口試委員(外文):Tsai, Ming-Jer
Hon, Wing-Kai
Chang, Chih-Yung
Chen, Yuh-Shyan
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:102062881
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:99
中文關鍵詞:設備到設備通信利潤最大化演算法激勵機制轉傳演算法
外文關鍵詞:D2D CommunicationMulticastProfit maximizationApproximation algorithmResource allocation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:667
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在設備到設備(Device-to-Device, D2D)通訊中,在小區域內行動設備不用通過基地台(evolved Node B, eNB)來進行路由及傳輸。在本論文中,我們考慮D2D兩個主要方面的研究。首先我們考慮在D2D群播環境下進行一次轉傳的情境,D2D使用者(DUs)與蜂巢網路使用者(CUs)具有不同需求的傳輸速率及信道質量指標(Channel Quality Indicator, CQI)。我們提出以下三個問題:
第一個問題是最大化符合用戶滿意的吞吐量。我們提出了一個近似演算法來解決這個問題,近似比為2 max(N_C,N_D). 在此N_C及N_D分別為CU和DU的數量。第二個問題我們假設當用戶需求的傳輸速率被滿足時,會提供基地台報酬。因此,我們的目標是最大化基地台的收入。首先我們證明此問題是NP-hardness的問題,並提出了一個啟發式和兩個近似演算法,近似演算法的近似比分別為2和2g,其中g是我們在群播中利用CQI來分組的組數量。我們另外針對可以滿足最群使用者數量的問題,提出一個啟發式演算法。在第三個問題,我們將問題轉成一個基於預算最大化覆蓋的問題,並增加須滿足使用者需求的限制。針對此問題,我們提出兩種近似演算法來最大化基地台的收益,近似比分別為1-1/√e和1-1/e ,其中e表示自然對數的基數。
在本論文的第二部分,我們研究基於激勵機制的D2D轉傳問題。內容供應商尋求基地台在網路中轉為傳播訊息。基地台利用提供報酬的機制來激勵DU轉傳訊息。當訊息到達訂閱用戶時,內容供應商會提共報酬給基地台。我們目標是將基地台從內容供應商得到的報酬最大化。然而,基地台的報酬不能超過每筆訊息供應商設定的預算,並且轉傳的DU也會有傳輸能力的限制。我們提出兩個演算法解決以上的問題。第一個演算法利用動態規劃將存在DU的訊息,傳輸給鄰近的DUs,並考慮DU傳輸能力和每筆訊息預算的限制。第二種演算法基於最大流量與線性鬆弛技術解決此問題。實驗結果顯示,我們所提的演算法的效能優於其它方法。
In Device-to-Device (D2D) Communication, mobile devices in a small geographical region communicate directly without the need of routing the traffic through base station (eNB). In this dissertation, we consider two main aspects of D2D research.
First, we consider a two-hop underlay D2D multicast scenario, where cellular users (CUs) and D2D users (DUs) have different data request rates and channel quality indicator (CQI) values. We address three problems. Our first problem is to maximize the user’s satisfied throughput. We propose an approximation algorithm to solve this problem, with an approximation ratio of 2 max(N_C,N_D). Here N_C and N_D is the number of CUs and DUs respectively. In the second problem, we assume that when a user’s data request is satisfied, it offers a unique revenue to the eNB. Here, our objective is to maximize the revenue of the eNB. We prove its NP-hardness and propose a heuristic and two approximation algorithms that have approximation ratio of 2 and 2g respectively, where g is the number of CQI groups we use in multicast. Additionally, we aim to maximize the number of satisfied users and propose a heuristic algorithm. In the third problem, we model our problem as a budgeted maximum coverage problem by adding a constraint to the user’s satisfying request. We propose two approximation algorithms to maximize the revenue of eNB. These algorithms have approximation ratio of 1-1/√e and 1-1/e respectively, where e denotes the base of natural logarithm.
In the second part of this dissertation, we investigate a problem on incentive-based D2D relaying. Here a content provider seeks eNB’s assistance to disseminate the message in the network. The eNB incentivize the DUs to relay the message. When the message reaches the subscribed user, the content provider pays revenue to eNB. Our objective is to maximize the revenue of eNB collected from a content provider. However, eNB's revenue cannot exceed the message budget limit, and transmission budget limits each DU’s relaying. We propose two algorithms. The first algorithm uses the dynamic programming approach where a DU choose the suitable messages to send to the neighbor by considering the transmission budget and message budget. The second algorithm uses the maximum flow with the relaxation and rounding techniques. The experimental results show that the proposed algorithms perform well regarding collected profit while comparing to the candidate algorithms.
中文摘要 i
Abstract ii
Acknowledgements iv
Contents v
List of Figures viii
List of Tables ix
Chapter 1 1
Introduction 1
1.1 Background to Device-to-Device Communication 1
1.2 Motivation 3
1.3 Contributions 6
1.4 Dissertation Organization 8
Chapter 2 9
Related Works 9
2.1 Resource Allocation Schemes in D2D Multicast 9
2.2 Incentive-Based D2D Caching and Relaying 12
Chapter 3 14
Resource Allocation Algorithms for Profit Maximization in D2D Multicast 14
3.1 Problem Scenario 14
3.2 Maximizing the Satisfied User’s Throughput 15
3.2.1 System Model 15
3.2.2 Algorithm to Maximize the Satisfied Throughput (ST) 17
3.2.3 Algorithm to Maximize the Number of Satisfied User (SU) 21
3.3 Maximizing the Satisfied User’s Profit 24
3.3.1 System Model 24
3.3.2Maximizing the Satisfied User’s Profit and Satisfied User Count 26
3.3.3Maximizing the Satisfied Profit: NP-Hardness proof 27
3.3.4 Maximizing the Satisfied Profit: Greedy Heuristic 31
3.3.5 Maximizing the Satisfied Profit: First Approximation Algorithm 37
3.3.6 Maximizing the Satisfied Profit: Second Approximation Algorithm 39
3.3.7 Maximizing the Satisfied User Count: Greedy Heuristic 40
3.4 Maximizing the Satisfied User’s Profit with a Constraint 41
3.4.1 Problem Formulation 42
3.4.2 NP-Hardness Proof 45
3.4.3 Problem Modelling 47
3.4.4 Algorithms for Satisfied User’s Profit Maximization 48
3.5 Simulation Results 53
3.5.1 Maximizing the Satisfied User’s Throughput 53
3.5.2 Maximizing the Satisfied User’s Profit 57
3.5.3 Maximizing the Satisfied User’s Profit with a Constraint 64
Chapter 4 70
Incentive-Based Relaying in D2D Networks 70
4.1 Problem Scenario 70
4.2 Problem Formulation of Incentive-Based Relaying 70
4.2.1 eNB’s Revenue Maximization Equation 74
4.2.2 Algorithms 76
4.2.3 Algorithm 1: Dual Dynamic Programming (DDP). 77
4.2.4 Algorithm 2: Maximum Flow-based Relaxation (MFR). 80
4.3 Simulation Results 84
4.3.1 Incentive-Based D2D Relaying 84
Chapter 5 89
Conclusion and Future work 89
Appendix 91
References 95
[1] L. Wang, and H. Tang, Device-to-Device Communications in Cellular Networks, Springer, 2016.
[2] F. Alavi, N. M. Yamchi, M. R. Javan, and K. Cumanan, “Limited Feedback Scheme for Device-to-Device Communications in 5G Cellular Networks with Reliability and Cellular Secrecy Outage Constraints,” IEEE Trans. Vehicular Technology, Vol. 66, No. 9, pp. 8072-8085, Sept. 2017.
[3] R. Tang, J. Zhao, H. Qu, and Z. Zhang, “User-Centric Joint Admission Control and Resource Allocation for 5G D2D Extreme Mobile Broadband: A Sequential Convex Programming Approach,” IEEE Commun. Letters, Vol. 21, No. 7, pp. 1641-1644, Jul. 2017.
[4] S. Mumtaz, and J. Rodriguez, Smart Device to Smart Device Communication, Springer, 2014.
[5] I. F. Akyildiz, S. Nie, S-C. Lin , and M. Chandrasekaran, “ 5G Roadmap: 10 Key Enabling Technologies,” Computer Networks, Vol. 106, pp. 17-48, September 2016.
[6] Cisco Visual networking index: global mobile data traffic forecast update: 2016-2021, 2016. [Online]. Available: https://www.cisco.com/c/en/us/solutions/ collateral/ service-provider/visual-networking-index-vni/ mobile-white-paper-c11-520862.html
.
[7] Y. Cao, T. Jiang, X. Chen, and J. Zhang, “Social-Aware Video Multicast Based on Device-to-Device Communications,” IEEE Transactions on Mobile Computing, Vol. 15, Issue 6, pp. 1528-1539, June 2016.
[8] L. Militano, M. Condoluci, G. Araniti, A. Molinaro, A. Iera, and G.-M. Muntean, “Single Frequency-Based Device-to-Device-Enhanced Video Delivery for Evolved Multimedia Broadcast and Multicast Services,” IEEE Transactions on Broadcasting, Vol. 61, No. 2, pp. 263-278, June 2015.
[9] J-P. Sheu, C-C. Kao, S-R. Yang, and L-F. Chang, “A Resource Allocation Scheme for Scalable Video Multicast in WiMAX Relay Networks,” IEEE Transactions on Mobile Computing, Vol. 12, No. 1, pp. 90-104, January 2013.
[10] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, and S. C. D. Sarkar, “A Simple 0.5-Bounded Greedy Algorithm for the 0/1 Knapsack Problem,” Information Processing Letters, Vol. 42, pp. 173-177, May 1992.
[11] N. K. Pratas, and P. Popovski, “Network Assisted Device to Device (D2D) Direct Proximity Discovery with Underlay Communication,” Proceedings of the IEEE Global Communication Conference (GLOBECOM), pp. 1-6, San Diego, USA, December 2015.
[12] Z. Zhou, M. Dong, K. Ota, B. Gu, and T. Sato, “Stackelberg-Game Based Distributed Energy-Aware Resource Allocation in Device-to-Device Communications,” Proceedings of the IEEE Int. Conference on Communication Systems (ICCS), pp. 11-15, Macau, China, November 2014.
[13] L.song, D. Niyato, Z. Han, and E. Hossain, “Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication,” IEEE Wireless Communications Magazine, Vol. 21, No. 3, pp. 136- 144, June 2014.
[14] C. Xia, S. Xu, and K. S. Kwak, “Resource Allocation for Device-to-Device Communication in LTE-A Network: A Stackelberg Game Approach,” pp. 1-5, Proceedings of the IEEE 80th Vehicular Technology Conference (VTC-Fall), Vancouver, Canada, September 2014.
[15] C. Xu, L. Song, D. Zhu, and M.Lei, “Subcarrier and Power Optimization for Device-to-Device Underlay Communication Using Auction Games,” Proceedings of the IEEE Int. Conference on Communications (ICC), pp. 5526-5531, Sydney, Australia, June 2014.
[16] Z. Zhou, M. Dong, K. Ota, R.Shi, Z.Liu, and T. Sato, “Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications,” Special Issue on Advances in Device-to-Device Communications and Networks, IET Communications, Vol. 9, Issue 3, pp. 375-385, September 2014.
[17] L. Zhang, Z. He, K. Niu, B. Zhang, and P. Skov, “Optimization of Coverage and Throughput in Single-Cell E-MBMS,” Proceedings of the IEEE 70th Vehicular Technology Conference (VTC-Fall), pp. 1-5, Barcelona, Spain, September 2009.
[18] A. Alexious, C. Bouras, V. Kokkinos, A. Papazois, and G. Tsichritzis, “Spectral Efficiency Performance of MBSFN-Enabled LTE Networks,” Proceedings of the IEEE Int. Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 361-367, Niagara Falls, Canada, October 2010.
[19] L. Militano, M. Condoluci, G. Araniti, and A. Iera, “Multicast Service Delivery Solutions in LTE-Advanced Systems,” Proceedings of the IEEE Int. Conference on Communications (ICC), pp. 5954- 5958, Budapest, Hungary, June 2013.
[20] X. Lin, R. Ratasuk, A. Ghosh, and J. G. Andrews, “Modelling, Analysis and Optimization of Multicast Device-to-Device Transmission,” IEEE Transactions on Wireless Communications, Vol. 13, No. 8, pp. 4346-4359, September 2013.
[21] R. O. Afolabi, A. Dadlani, and K. Kim, “Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey,” IEEE Communications Surveys & Tutorials, Vol. 15, No. 1, pp. 240-254, April 2013.
[22] T. P. Low, M. O. Pun, Y. W. P. Hong, and C. C. J. Kuo, “Optimized Opportunistic Multicast Scheduling (OMS) Over Wireless Cellular Networks,” IEEE Transactions on Wireless Communications, Vol. 9, No. 2, pp. 791-801, February 2010.
[23] L. Zhang, Z. He, K. Niu, B. Zhang, and P. Skov, “Optimization of Coverage and Throughput in Single-Cell E-MBMS,” Proceedings of the IEEE 70th Vehicular Technology Conference (VTC-Fall), pp. 1-5, Barcelona, Spain, September 2009.
[24] A. Alexious, C. Bouras, V. Kokkinos, A. Papazois, and G. Tsichritzis, “Spectral Efficiency Performance of MBSFN-Enabled LTE Networks,” Proceedings of the IEEE Int.Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 361-367, Niagara Falls, Canada, October 2010.
[25] L. Militano, D. Niyato, M. Condoluci, G. Araniti, A. Iera, and G. Molica Bisci, “Radio Resource Management for Group-Oriented Services in LTE-A,” IEEE Transactions on Vehicular Technology, Vol. 64, No. 8, pp. 3725-3739, August 2015.
[26] G. Araniti, M. Condoluci, A. Iera, A. Molinaro, J. Cosmas, and M. Behjati, “A Low-Complexity Resource Allocation Algorithm for Multicast Service Delivery in OFDMA Networks,” IEEE Transactions on Broadcasting, Vol. 60, No. 2, pp. 358-369, June 2014.
[27] G. Araniti, M. Condoluci, L. Militano, and A. Iera, “Adaptive Resource Allocation to Multicast Services in LTE Systems,” IEEE Transactions on Broadcasting, Vol. 59, No. 4, pp. 658-664, December 2013.
[28] J. Chen, M. Chiang, J. Erman, G. Li, K.K. Ramakrishnan, R. K. Sinha, “Fair and Optimal Resource Allocation for LTE Multicast (eMBMS): Group Partitioning and Dynamics,” Proceedings of the IEEE Int. Conference on Computer Communication (INFOCOM), pp. 1266-1274, Kowloon, Hong Kong, May 2015.
[29] J-P. Sheu, C-C. Kao, S-R. Yang, and L-F. Chang, “A Resource Allocation Scheme for Scalable Video Multicast in WiMAX Relay Networks,” IEEE Transactions on Mobile Computing, Vol. 12, No. 1, pp. 90-104, January 2013.
[30] R. Cohen and G. Grebla, “Multi-Dimensional OFDMA Scheduling in A Wireless Network With Relay Nodes,” Proceedings of the IEEE Int. Conference on Computer Communication (INFOCOM), pp. 2427-2435, Toronto, Canada, May 2014.
[31] R. Cohen and G. Grebla, “Multidimensional OFDMA Scheduling in A Wireless Network with Relay Nodes,” IEEE/ACM Transactions on Networking, Vol. 23, No. 6, pp. 1765-1776, December 2015.
[32] G. Zhang, K. Yang, P. Liu, and J. Wei, “Power Allocation for Full-Duplex Relaying Based D2D Communication Underlaying Cellular Networks,” IEEE Transactions on Vehicular Technology, Vol. 64, No.10, pp. 4911-4916, October 2015.
[33] X. Chen, B. Proulx, X. Gong, and J. Zhang, “Exploiting social ties for cooperative D2D communications: A mobile social networking case,'' IEEE/ACM Trans. Networking, vol. 23, no. 5, Oct. 2015, pp. 1471-1484.
[34] M. Zhang, X. Chen, and J. Zhang, “Social-aware relay selection for cooperative networking: An optimal stopping approach,'' Proceedings of the IEEE Int. Conference on Communication (ICC), Australia, Jun. 2014, pp. 2257-2262.
[35] J. Y. Ryu, J. Lee, and T. Q. S. Quek, “Trust degree-based cooperative transmission for communication secrecy,” Proceedings of the IEEE Global Communication Conference, (GLOBECOM), SanDiego, USA, Dec. 2015, pp. 1–6.
[36] I. O. Nunes, P. O. S. V. Melo, and A. A. F. Loureiro, “Leveraging D2D Multi-Hop Communication Through Social Group Meetings Awareness”, IEEE Wireless Commun. Magazine, vol. 23, Issue. 4, Aug. 2016, pp. 1-9.
[37] B. Zhang, Y. Li, D. Jin, P. Hui, and Z. Han, ``Social-aware peer discovery for D2D Communications Underlaying Cellular Networks,'' IEEE Trans. Wireless Communications., vol. 14, no. 5, May. 2015, pp. 2426-2439.
[38] H. Mao, W. Feng, and N. Ge, “Performance of Social-Position Relationships Based Cooperation among Mobile Terminals”, IEEE Trans. on Vehicular Technology, vol. 65, May. 2016, pp. 3128- 3138.
[39] Y. Zhang, E. Pan, L. Song, W. Saad, Z. Dawy, and Z. Han, “Social network aware device-to-device communication in wireless networks,'' IEEE Trans. Wireless Commun., vol. 14, no. 1, Jan. 2015, pp. 177-190.
[40] L. Wang, H. Wu, W. Wang, and K.-C. Chen, “Socially enabled wireless networks: Resource allocation via bipartite graph matching,'' IEEE Communication. Mag., vol. 53, no. 10, Oct. 2015, pp. 128-135.
[41] K. Zhu, W. Zhi, L. Zhang, X. Chen, and X. Fu, “Social-aware incentivized caching for D2D communications,” IEEE Access, vol. 4, pp. 7585–7593, Nov. 2016.
[42] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile edge networks: Convergence of computing, caching and communications,” IEEE Access, vol. 5, pp. 6757–6779, Mar. 2017.
[43] Z. Chen, Y. Liu, B. Zhou, and M. Tao, “Caching incentive design in wireless D2D networks: A Stackelberg game approach,” Proceedings of the IEEE Int. Conference on Communication (ICC), pp. 1-6, Kuala Lumpur, Malaysia, May 2016.
[44] F. Shen, K. Hamidouche, E. Bastug, and M. Debbah, “A Stackelberg game for incentive proactive caching mechanisms in wireless networks,” Proceedings of the IEEE Global Communication. Conference (GLOBECOM), pp. 1–6, Washington, DC, USA, Dec. 2016.
[45] A. C. Kazez, and T. Girici, “Interference-Aware Distributed Device-to-Device Caching,” Proceedings of the IEEE BlackSea Conference on Communications and Networking (BlackSeaCom), pp. 1-6, Jun. 2017.
[46] R. Wang, J. Zhang, and K. B. Letaief, “Incentive Mechanism Design for Cache-Assisted D2D Communications: A Mobility-Aware Approach”, Proceedings of the IEEE Int. Workshop on Signal Processing Advances in Wireless Communications (IEEE SPAWC), pp. 1-5, May 2017.
[47] W. Zhi, K. Zhu, Y. Zhang, and L. Zhang, “Hierarchically Social-aware incentivized caching for D2D communications,” Proceedings of the IEEE 22nd Int. Conference on Parallel and Distributed Systems (ICPADS), pp. 316–323, Wuhan, China, Dec. 2016.
[48] B. Bai, L. Wang, Z. Han, W. Chen, and T. Svensson, ‘‘Caching based socially-aware D2D communications in wireless content delivery networks: A hypergraph framework,” IEEE Trans. Wireless Commun., vol. 23, no. 4, pp. 74–81, Aug. 2016.
[49] R. Wang, J. Zhang, S. H. Song, and K. B. Letaief, “Mobility-aware caching in D2D networks,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5001–5015, Aug. 2017.
[50] T. Zhang, H. Fan, J. Loo, and D. Liu, “User preference aware caching deployment for device-to-device caching networks,” IEEE Systems Journal, pp. 1–12, Dec. 2017.
[51] C. Xu, C. Gao, Z. Zhou, Z. Chang, and Y. Jia, “Social network-based content delivery in device-to-device underlay cellular networks using matching theory,” IEEE Access, vol. 5, pp. 924–937, Nov. 2016.
[52] B. Shang, L. Zhao, and K. C. Chen, “Operator’s economy of device-to-device offloading in underlaying cellular networks,” IEEE Commun. Lett., vol. 21, no. 4, pp. 865–868, Apr. 2017.
[53] 3GPP, “TS 36.300, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN), Rel. 11,” Tech. Rep., Sept. 2012.
[54] H- L. Chao, C- K. Chang, and C- L. Liu, “A Novel Channel-Aware Frequency-Domain Scheduling in LTE Uplink,” Proceedings of the IEEE Wireless Communication and Networking Conference (WCNC), pp. 917-922, Shanghai, China, April 2013.
[55] R. B. Jagadeesha, J-P. Sheu, and W-K. Hon, “User Satisfaction Based Resource Allocation Schemes for Multicast in D2D Networks,” Proceedings of European Conference on Networks and Communications, (EuCNC’17), June 2017.
[56] LTE System Level Simulator, Vienna University of Technology, Austria. [Online]. Available: https://www.nt.tuwien.ac.at/research /mobile-communications/vccs/vienna-lte-a-simulators/.
[57] S. Khuller, A. Moss, J. S. Naor, “The Budgeted Maximum Coverage Problem,” Information Processing Letters, Vol. 70, Issue. 1, pp. 39-45, December 1998.
[58] J. R. Bhat, J-P. Sheu, and W-K. Hon, “Resource Allocation Schemes for Revenue Maximization in Multicast D2D Networks,” IEEE Access, Vol. 5, pp. 26340 – 26353, November 2017.
[59] S. Wang, W. Zhao, and C. Wang, “Budgeted Cell Planning for Cellular Networks with Small Cells,” IEEE Trans. Vehicular Technology, Vol. 64, No. 10, pp. 4797–4806, October 2015.
[60] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F. S. Salman, “Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions,” Journal of Combinatorial Optimization, vol. 4, pp. 171–186, Sept. 1999.
[61] G. Araniti, A. Orsino, L. Militano , G. Putrino, S. Andreev , Y. Koucheryavy , and A. Iera, “Novel D2D-Based Relaying Method for Multicast Services over 3GPP LTE-A Systems,” Proceedings of IEEE Int. Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Italy, June 2017.
[62] M. Condoluci, L. Militano, G. Araniti, A. Molinaro, and A. Iera, “Multicasting in LTE-A networks enhanced by device-to-device communications,” Proceedings of IEEE Global Communication Conference Workshops (GC Workshops 13), pp. 567–572, December 2013.
[63] G. Fan, W. Bai, X. Gan, X. Wang, and J. Wang “Social Aware Content Sharing in D2D Communication: An Optimal Stopping Approach,” Proceedings of the IEEE Int. Conference on Communication (ICC), pp. 1-6, Kansas City, USA, May 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *