|
[1] E. R. Mardis, The impact of next-generation sequencing technology on genetics, Trends in Genetics, 24 (2008) 133–141.
[2] J. Shendure and H. Ji, Next-generation DNA sequencing, Nature Biotechnology, 26 (2008) 1135–1145.
[3] M. L. Metzker, Sequencing technologies - the next generation, Nature Reviews Genetics, 11 (2010) 31–46.
[4] M. Pop, Genome assembly reborn: recent computational challenges, Briefings in Bioinformatics, 10 (2009) 354–366.
[5] M. Hunt, C. Newbold, M. Berriman and T. D. Otto, A comprehensive evaluation of assembly scaffolding tools, Genome Biology, 15 (2014) R42.
[6] M. Pop, D. S. Kosack and S. L. Salzberg, Hierarchical scaffolding with Bambus, Genome Research, 14 (2004) 149–159.
[7] A. Dayarian, T. P. Michael and A. M. Sengupta, SOPRA: Scaffolding algorithm for paired reads via statistical optimization, BMC Bioinformatics, 11 (2010) 345.
[8] M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler and W. Pirovano, Scaffolding pre-assembled contigs using SSPACE, Bioinformatics, 27 (2011) 578–579.
[9] D. H. Huson, K. Reinert and E. W. Myers, The greedy path-merging algorithm for Contig Scaffolding, Journal of the ACM , 49 (2002) 603–615.
[10] D. R. Bentley, Whole-genome re-sequencing, Current Opinion in Genetics & Development, 16 (2006) 545–552.
[11] S. A. F. T. van Hijum, A. L. Zomer, O. P. Kuipers and J. Kok, Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies, Nucleic Acids Research, 33 (2005) W560–W566.
[12] D. C. Richter, S. C. Schuster and D. H. Huson, OSLay: optimal syntenic layout of unfinished assemblies, Bioinformatics, 23 (2007) 1573–1579.
[13] S. Assefa, T. M. Keane, T. D. Otto, C. Newbold and M. Berriman, ABACAS: algorithm-based automatic contiguation of assembled sequences, Bioinformatics, 25 (2009) 1968–1969.
[14] A. I. Rissman, B. Mau, B. S. Biehl, A. E. Darling, J. D. Glasner and N. T. Perna, Reordering contigs of draft genomes using the Mauve Aligner, Bioinformatics, 25 (2009) 2071–2073.
[15] P. Husemann and J. Stoye, r2cat: synteny plots and comparative assembly, Bioinformatics, 26 (2010) 570–571.
[16] M. Galardini, E. G. Biondi, M. Bazzicalupo and A. Mengoni, CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes, Source Code for Biology and Medicine, 6 (2011) 11.
[17] A. Muñoz, C. Zheng, Q. Zhu, V. A. Albert, S. Rounsley and D. Sankoff, Scaffold filling, contig fusion and comparative gene order inference, BMC Bioinformatics, 11 (2010) 304.
[18] Z. Dias, U. Dias and J. C. Setubal, SIS: a program to generate draft genome sequence scaffolds for prokaryotes, BMC Bioinformatics, 13 (2012) 96.
[19] G. Fertin, A. Labarre, I. Rusu, S. Vialette and E. Tannier, Combinatorics of genome rearrangements, The MIT Press, Cambridge, Massachusetts, 2009.
[20] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals, Journal of the ACM , 46 (1999) 1–27.
[21] H. Kaplan, R. Shamir and R. E. Tarjan, A faster and simpler algorithm for sorting signed permutations by reversals, SIAM Journal on Computing, 29 (2000) 880–892.
[22] E. Tannier, A. Bergeron and M. F. Sagot, Advances on sorting by reversals, Discrete Applied Mathematics, 155 (2007) 881–888.
[23] V. Bafna and P. A. Pevzner, Sorting by transpositions, SIAM Journal on Discrete Mathematics, 11 (1998) 224–240.
[24] D. A. Christie, Sorting permutations by block-interchanges, Information Processing Letters, 60 (1996) 165–169.
[25] Y. C. Lin, C. L. Lu, H. Y. Chang and C. Y. Tang, An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species, Journal of Computational Biology, 12 (2005) 102–112.
[26] S. Hannenhalli and P. A. Pevzner, Transforming men into mice (polynomial algorithm for genomic distance problem), in: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, FOCS1995, IEEE Computer Society, 1995, pp. 581–592.
[27] C. L. Lu, Y. L. Huang, T. C. Wang and H. T. Chiu, Analysis of circular genome rearrangement by fusions, fissions and block-interchanges, BMC Bioinformatics, 7 (2006) 295.
[28] S. Hannenhalli, Polynomial-time algorithm for computing translocation distance between genomes, Discrete Applied Mathematics, 71 (1996) 137–151.
[29] A. Bergeron, J. Mixtacki and J. Stoye, On sorting by translocations, Journal of Computational Biology, 13 (2006) 567–578.
[30] Y. L. Huang and C. L. Lu, Sorting by reversals, generalized transpositions, and translocations using permutation groups, Journal of Computational Biology, 17 (2010) 685–705.
[31] Y. L. Huang, C. C. Huang, C. Y. Tang and C. L. Lu, SoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations, Nucleic Acids Research, 38 (2010) W221–W227.
[32] E. Gaul and M. Blanchette, Ordering partially assembled genomes using gene arrangements, Lecture Notes in Computer Science, 4205 (2006) 113–128.
[33] G. Bourque and P. A. Pevzner, Genome-scale evolution: Reconstructing gene orders in the ancestral species, Genome Research, 12 (2002) 26–36.
[34] C. L. Li, K. T. Chen and C. L. Lu, Assembling contigs in draft genomes using reversals and block-interchanges, BMC Bioinformatics, 14 Suppl 5 (2013) S9.
[35] C. L. Lu, K. T. Chen, S. Y. Huang and H. T. Chiu, CAR: contig assembly of prokaryotic draft genomes using rearrangements, BMC Bioinformatics, 15 (2014) 381.
[36] K. T. Chen, C. J. Chen, H. T. Shen, C. L. Liu, S. H. Huang and C. L. Lu, Multi-CAR: a tool of contig scaffolding using multiple references, BMC Bioinformatics, 17 (2016) 469.
[37] K. T. Chen, C. L. Liu, S. H. Huang, H. T. Shen, Y. K. Shieh, H. T. Chiu and C. L. Lu, CSAR: a contig scaffolding tool using algebraic rearrangements, Bioinformatics, 34 (2018) 109–111.
[38] K. T. Chen and C. L. Lu, CSAR-web: a web server of contig scaffolding using algebraic rearrangements, Nucleic Acids Research, 46 (2018) W55–W59.
[39] K. T. Chen, H. T. Shen and C. L. Lu, Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements, Genome Informatics Workshop 2018, in revision.
[40] D. C. Koboldt, L. Ding, E. R. Mardis and R. K. Wilson, Challenges of sequencing human genomes, Briefings in Bioinformatics, 11 (2010) 484–498.
[41] M. Blanchette, T. Kunisawa and D. Sankoff, Parametric genome rearrangement, Gene, 172 (1996) GC11–GC17.
[42] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu and S. L. Salzberg, Versatile and open software for comparing large genomes, Genome Biology, 5 (2004) R12.
[43] G. Tesler, Efficient algorithms for multichromosomal genome rearrangements, Journal of Computer and System Sciences, 65 (2002) 587–609.
[44] M. Kolmogorov, B. Raney, B. Paten and S. Pham, Ragout-a reference-assisted assembly tool for bacterial genomes, Bioinformatics, 30 (2014) i302–i309.
[45] E. Bosi, B. Donati, M. Galardini, S. Brunetti, M. F. Sagot, P. Lio, P. Crescenzi, R. Fani and M. Fondi, MeDuSa: a multi-draft based scaffolder, Bioinformatics, 31 (2015) 2443–2451.
[46] V. Kolmogorov, Blossom V: a new implementation of a minimum cost perfect matching algorithm, Mathematical Programming Computation, 1 (2009) 43–67.
[47] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, G. Marcais, M. Pop and J. A. Yorke, GAGE: A critical evaluation of genome assemblies and assembly algorithms, Genome Research, 22 (2012) 557–567.
[48] C. L. Lu, An Efficient Algorithm for the Contig Ordering Problem under Algebraic Rearrangement Distance, Journal of Computational Biology, 22 (2015) 975–987.
[49] P. Feijão and J. Meidanis, Extending the algebraic formalism for genome rearrangements to include linear chromosomes, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10 (2013) 819–831.
[50] T. H. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to algorithms, The MIT Press, Cambridge, Massachusetts, 3rd edition, 2009.
[51] A. Gurevich, V. Saveliev, N. Vyahhi and G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics, 29 (2013) 1072–1075.
[52] I. Pagani, K. Liolios, J. Jansson, I. M. A. Chen, T. Smirnova, B. Nosrat, V. M. Markowitz and N. C. Kyrpides, The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata, Nucleic Acids Research, 40 (2012) D571–D579. |