帳號:guest(18.188.100.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭盈妙
作者(外文):Kuo, Ying-Miao
論文名稱(中文):產生多重涵義的圖地反轉影像與立體摺紙設計使用二維形狀感知與分析
論文名稱(外文):Generating Ambiguous Figure-Ground Images and Pop-up Design via 2D Shape Perception and Analysis
指導教授(中文):朱宏國
指導教授(外文):Chu, Hung-Kuo
口試委員(中文):廖弘源
李潤容
姚智原
口試委員(外文):Liao, Hong-Yuan
Lee, Ruen-Rone
Yao, Chih-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:102062546
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:圖地影像感知部分輪廓比對曲線形變圖像裁剪圖像二值化立體摺紙摺紙設計
外文關鍵詞:Figure-ground perceptionPartial shape matchingCurve deformationImage croppingImage binarizationPaper Pop-upPop-up Design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:354
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現在二維影像在生活中已經是非常容易取得,所以這些影像常用來做許 多分析,包含相當常見之應用如影像比對、影像分割等等,而透過整合這些 應用亦能創造出非常有趣的題目。在本篇論文中,我們針對二維影像的一些 特徵探討潛在的應用,包含多重涵義的圖地反轉影像和立體摺紙設計。多重 涵義的圖地反轉影像在心理學上指的是一種視覺感知現象,且多以二值化的 影像呈現,根據觀察者所注視的位置可將影像分為兩個區域,而此兩個相鄰 的區域分別代表圖與地,圖與地的感知現象會根據觀察著看的位置而改變。 立體摺紙設計是一個有趣的藝術形式,把要呈現的影像以一張帶有切割與折 線的紙來呈現。當打開這個摺紙設計,影像將會以立體的結構呈現且隨著開 合角度改變。
在第一部份,我們提出了一個系統用來產生多重涵義的圖地影像,演算 法主要分成三個步驟,首先經過片段輪廓匹配找出兩個物件最佳的片段輪 廓,再根據幾何特性來平衡視覺主體的競爭將兩個片段輪廓透過形變結合在 一起,接著找出最佳的剪裁窗口和圖像二值化來最大化兩個物件的輪廓,使 得反轉影像的效果呈現最佳,最後我們透過大量產生多重涵義的圖地的影像 來論證我們方法的有效性。
在第二部分,我們提出了一個立體摺紙設計方法使用二維圖像作為輸入 影像,由於缺乏三維的幾何資訊,我們進行新的理論分析以確保設計的摺疊 性與穩定性,基於圖的表示法,我們進一步提出一個最佳化演算法來最佳化 拓樸結構與幾何形狀,在我們的系統中,我們也允許使用者來指定設計上的 折線位置,最後我們對於產生的實例來進行評估且與其他方法比較來顯示我 們方法的有效性。
Thanks to the high availability of 2D images, images can be analyzed in many ways,including quite common applications such as image matching and image segmentation.The integration of these applications can also create very interesting topics.In this work, we explore the potential applications based on the characteristics of 2D images, including ambiguous figure-ground images and paper pop-up design.Ambiguous figure-ground images, mostly represented by binary images, are fascinating as they present viewers a visual phenomena of perceiving multiple interpretations from a single image. Paper pop-up is a fascinating artistic form which involves only a piece of paper with cuts and folds. Interesting geometric structure `pops up' when the paper is opened.
In the first part, we investigate the theory behind this ambiguous perception and present an automatic algorithm to generate such images.We model the problem as a binary image composition using two object contours and approach it through a three-stage pipeline.Thealgorithm first performs a partial shape matching to find a good partial contour matching between objects. Then we combine matched contours into a compound contour using an adaptive contour deformation, followed by computing an optimal cropping window and image binarization for the compound contour that maximize the object contours.We have tested our system using a wide range of input objects and generated a large number of convincing examples with or without user guidance.The efficiency of our system and quality of results are verified through an extensive experimental study.
In the second part, we present the first paper pop-up design framework that takes 2D images instead of 3D models as input.Due to the lack of 3D geometry information, we perform novel theoretic analysis to ensure the foldability and stability of the resultant design.Based on a novel graph representation of the paper pop-up plan, we further propose a practical optimization algorithm via mixed integer programming that jointly optimizes the topology and geometry of the 2D plan.We also allow the user to interactively explore the design space and specify constraints for creative design.We evaluate our framework on a variety of examples. The experiments and comparisons exhibit both the efficiency and efficacy of our framework.
致􅍯謝i
中文摘􃗓要ii
Abstract iii
Contents v
List of Figures vii
1 Introduction . . . . . . . . . . . . . . . . 1
1.1 Generating Ambiguous Figure-Ground Images . . . . . . . . . . . . . . . . 1
1.2 Image-based Paper Pop-up Design . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Works 7
2.1 Perceptual Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Computational Arts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Shape Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Paper Craft Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Computational Paper Pop-ups . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Photo Pop-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Algorithm Part I 12
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Partial Shape Matching . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1.1 Content-Aware Shape Matching Metric . . . . . . . . . . 14
3.2.1.2 Initial Sub-Matching Contours . . . . . . . . . . . . . . . 16
3.2.2 Sub-Matching Contours Clustering . . . . . . . . . . . . . . . . . . 17
3.2.2.1 Optimal Partial Contour Matching . . . . . . . . . . . . . 17
3.2.3 Adaptive Contour Deformation . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Image Cropping and Binarization . . . . . . . . . . . . . . . . . . . 20
3.2.5 User Controls and Application . . . . . . . . . . . . . . . . . . . . 22
4 Algorithm Part II 23
4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1.1 Pop-up Plans . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1.2 Foldability . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2.1 Initialize boundary fold lines . . . . . . . . . . . . . . . . 30
4.2.2.2 Initialize inner fold lines . . . . . . . . . . . . . . . . . . . 31
4.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3.3 MIP formulation . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.4 Ensuring Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5 Results and Discussion 38
5.1 Generating Ambiguous Figure-Ground Images . . . . . . . . . . . . . . . . 38
5.1.1 Timing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Shape Matching Metric Evaluation . . . . . . . . . . . . . . . . . . 40
5.1.3 Performance of Partial Shape Matching . . . . . . . . . . . . . . . 40
5.1.4 Ranking Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.5 Figure-Ground Ambiguity Test . . . . . . . . . . . . . . . . . . . . 42
5.1.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Image-based Paper Pop-up Design . . . . . . . . . . . . . . . . . . . . . . 44
6 Conclusion and Future Work . . . . . . . . . . . . . . . . 47
6.1 Generating Ambiguous Figure-Ground Images . . . . . . . . . . . . . . . . 47
6.2 Image-based Paper Pop-up Design . . . . . . . . . . . . . . . . . . . . . . 48
A The Detailed Timings of the Results . . . . . . . . . . . . . . . . . . . . . . 49
Bibliography . . . . . . . . . . . . . . . . . . . . . . 50
[1] Vicki Bruce, Patrick R. Green, and Mark A. Georgeson. Visual Perception: Physiology,
Psychology, and Ecology. Psychology Press, 2003.
[2] Paul K Kienker, Terrence J Sejnowski, Geoffrey E Hinton, and Lee E Schumacher.
Separating figure from ground with a parallel network. Perception, 15(2):197–216,
1986.
[3] Mary A Peterson and Bradley S Gibson. Object recognition contributions to figureground
organization: Operations on outlines and subjective contours. Perception
& Psychophysics, 56(5):551–564, 1994.
[4] Mary A Peterson and Emily Skow. Inhibitory competition between shape properties
in figure-ground perception. Journal of Experimental Psychology: Human
Perception and Performance, 34(2):251, 2008.
[5] Mary A Peterson and Elizabeth Salvagio. Inhibitory competition in figure-ground
perception: Context and convexity. Journal of Vision, 8(16):4, 2008.
[6] Mary A Peterson. Low-level and high-level contributions to figure-ground organization.
Handbook of perceptual organization.
[7] Gaetano Kanizsa and Walter Gerbino. Convexity and symmetry in figure-ground
organization. Vision and artifact, pages 25–32, 1976.
[8] Mary A Peterson, Erin M Harvey, and Hollis J Weidenbacher. Shape recognition
contributions to figure-ground reversal: which route counts? Journal of Experimental
Psychology: Human Perception and Performance, 17(4):1075, 1991.
[9] Mary A Peterson. Object perception. Blackwell Handbook of Sensation and Perception,
pages 168–203, 2001.
[10] Pinterest. http://www.pinterest.com/soates80/figure-ground/.
[11] J. Mitani and H. Suzuki. Computer aided design for origamic architecture models
with polygonal representation. In Proceedings Computer Graphics International,
2004., pages 93–99, 2004.
50
[12] Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min Hu. Popup:
Automatic paper architectures from 3d models. ACM Trans. Graph. (Proc. SIGGRAPH),
29(4):111:1–111:9, 2010.
[13] Sang N. Le, Su-Jun Leow, Tuong-Vu Le-Nguyen, Conrado Ruiz, and Kok-Lim Low.
Surface and contour-preserving origamic architecture paper pop-ups. IEEE Trans.
Vis. Comput. Graph., 20(2):276–288, 2014.
[14] Xian-Ying Li, Tao Ju, Yan Gu, and Shi-Min Hu. A geometric study of v-style
pop-ups: Theories and algorithms. ACM Trans. Graph., 30(4):98:1–98:10, 2011.
[15] Conrado R. Ruiz, Sang N. Le, Jinze Yu, and Kok-Lim Low. Multi-style paper popup
designs from 3d models. Comp. Graphics Forum (Proc. EUROGRAPHICS), 33
(2):487–496, 2014.
[16] AmazingPopup. http://www.amazingpopup.com. 2017.
[17] Edgar Rubin. Figure and ground. Readings in perception, pages 194–203, 1958.
[18] Ming-Te Chi, Tong-Yee Lee, Yingge Qu, and Tien-Tsin Wong. Self-animating images:
illusory motion using repeated asymmetric patterns. In ACM Trans. Graph.
(Proc. SIGGRAPH), volume 27, page 62. ACM, 2008.
[19] Niloy J. Mitra and Mark Pauly. Shadow art. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 28(5):156:1–156:7, 2009. ISSN 0730-0301.
[20] Niloy J. Mitra, Hung-Kuo Chu, Tong-Yee Lee, Lior Wolf, Hezy Yeshurun, and
Daniel Cohen-Or. Emerging images. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
28(5):163:1–163:8, 2009. ISSN 0730-0301.
[21] Jong-Chul Yoon, In-Kwon Lee, and Henry Kang. A hidden-picture puzzles generator.
In Comp. Graphics Forum, volume 27, pages 1869–1877. Wiley Online Library,
2008.
[22] Hung-Kuo Chu, Wei-Hsin Hsu, Niloy J. Mitra, Daniel Cohen-Or, Tien-Tsin Wong,
and Tong-Yee Lee. Camouflage images. ACM Trans. Graph. (Proc. SIGGRAPH),
29:51:1–51:8, 2010. ISSN 0730-0301.
[23] Qiang Tong, Song-Hai Zhang, Shi-Min Hu, and Ralph R Martin. Hidden images.
In Proc. of NPAR, pages 27–34. ACM, 2011.
[24] Craig S Kaplan and David H Salesin. Escherization. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pages 499–510.
ACM Press/Addison-Wesley Publishing Co., 2000.
[25] R. Gal, O. Sorkine, T. Popa, A. Sheffer, and D. Cohen-Or. 3D collage: Expressive
non-realistic modeling. In Proc. of NPAR, page 14. ACM, 2007.
[26] Hua Huang, Lei Zhang, and Hong-Chao Zhang. Arcimboldo-like collage using internet
images. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 30(6):155:1–155:8,
December 2011. ISSN 0730-0301.
[27] Qiang Tong, Song hai Zhang, Ralph R. Martin, and Paul L. Rosin. Nested images.
In Asian Conference on Design and Digital Engineering, pages 445–450, 2011.
[28] Remco C Veltkamp and Michiel Hagedoorn. State of the art in shape matching.
Springer, 2001.
[29] Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham. Active
shape models-their training and application. Computer vision and image understanding,
61(1):38–59, 1995.
[30] Longin Jan Latecki, Rolf Lakamper, and T Eckhardt. Shape descriptors for nonrigid
shapes with a single closed contour. In IEEE CVPR, volume 1, pages 424–429.
IEEE, 2000.
[31] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object
recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):
509–522, 2002.
[32] Alexander C Berg, Tamara L Berg, and Jitendra Malik. Shape matching and object
recognition using low distortion correspondences. In IEEE CVPR, volume 1, pages
26–33. IEEE, 2005.
[33] Michael Donoser, Hayko Riemenschneider, and Horst Bischof. Efficient partial
shape matching of outer contours. In ACCV, pages 281–292. Springer, 2010.
[34] Hayko Riemenschneider, Michael Donoser, and Horst Bischof. Using partial edge
contour matches for efficient object category localization. In ECCV, pages 29–42,
2010.
[35] Erik Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, 2007.
[36] Joseph O’Rourke. How to Fold It: The Mathematics of Linkages, Origami, and
Polyhedra. Cambridge University Press, 2011.
[37] Tomohiro Tachi. Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput.
Graph., 16(2):298–311, 2010.
[38] Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and
Helmut Pottmann. Curved folding. ACM Trans. Graph. (Proc. SIGGRAPH), 27
(3):75:1–75:9, 2008.
[39] Martin Kilian, Aron Monszpart, and Niloy J. Mitra. String actuated curved folded
surfaces. ACM Trans. Graph., 2017, to appear.
[40] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes using stripbased
approximate unfolding. ACM Trans. Graph. (Proc. SIGGRAPH), 23(3):
259–263, 2004.
[41] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-developable mesh
segmentation. Comp. Graphics Forum (Proc. EUROGRAPHICS), 24(3):581–590,
2005.
[42] Idan Shatz, Ayellet Tal, and George Leifman. Paper craft models from meshes. Vis.
Comput., 22(9):825–834, 2006.
[43] Fady Massarwi, Craig Gotsman, and Gershon Elber. Papercraft models using generalized
cylinders. In Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications, PG ’07, pages 148–157, 2007.
[44] Jie Xu, Craig S. Kaplan, and Xiaofeng Mi. Computer-generated papercutting. In
Proceedings of the 15th Pacific Conference on Computer Graphics and Applications,
PG ’07, pages 343–350, 2007.
[45] Yan Li, Jinhui Yu, Kwan-liu Ma, and Jiaoying Shi. 3d paper-cut modeling and
animation. Computer Animation and Virtual Worlds, 18(4-5):395–403, 2007.
[46] James McCrae, Karan Singh, and Niloy J. Mitra. Slices: A shape-proxy based on
planar sections. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 30(6):168:1–168:12,
2011.
[47] Kristian Hildebrand, Bernd Bickel, and Marc Alexa. crdbrd: Shape fabrication
by sliding planar slices. Comp. Graphics Forum (Proc. EUROGRAPHICS), 31:
583–592, 2012.
[48] Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. Field-aligned
mesh joinery. ACM Trans. Graph., 33(1):11:1–11:12, 2014.
[49] A. Glassner. Interactive pop-up card design. 1. IEEE Computer Graphics and
Applications, 22(1):79–86, 2002.
[50] A. Glassner. Interactive pop-up card design. 2. IEEE Computer Graphics and
Applications, 22(2):74–85, 2002.
[51] S. L. Hendrix and M. A. Eisenberg. Computer-assisted pop-up design for children:
Computationally enriched paper engineering. Adv. Technol. Learn., 3(2):119–127,
2006.
[52] Jyun-Ming Chen and Yu-Zhi Zhang. A computer-aided design system for origamic
architecture. In Proc. Int¡¯l Conf. Supercomputing, 2006.
[53] Conrado Ruiz, Sang N. Le, and Kok-Lim Low. Generating animated paper pop-ups
from the motion of articulated characters. The Visual Computer, 31(6):925–935,
2015.
[54] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Automatic photo pop-up. ACM
Trans. Graph. (Proc. SIGGRAPH), 24(3):577–584, 2005.
[55] Erick Delage, Honglak Lee, and Andrew Y. Ng. Automatic single-image 3d reconstructions
of indoor manhattan world scenes. In Robotics Research: Results of the
12th International Symposium ISRR, pages 305–321, 2007.
[56] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Cartographica,
10(2):112–122, 1973.
[57] Nancy M. Amato, O. Burçhan Bayazit, Lucia K. Dale, Christopher Jones, and
Daniel Vallejo. Choosing good distance metrics and local planners for probabilistic
roadmap methods. IEEE T. Robotics and Automation, 16(4):442–447, 2000.
[58] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619, 2002.
[59] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Inc., 1982. ISBN 0-13-152462-3.
[60] Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation using moving
least squares. ACM Trans. Graph. (Proc. SIGGRAPH), 25(3):533–540, July 2006.
ISSN 0730-0301.
[61] Shape manipulation with moving least squares for curves. http://
www.morethantechnical.com/ 2013/01/05/ shape-manipulation-with-moving-leastsquares-
for-curves-w-code/.
[62] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, 3 edition, 2007. ISBN 0521880688, 9780521880688.
[63] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL
SOCIETY, SERIES B, 39(1):1–38, 1977.
[64] Kaiming He, Christoph Rhemann, Carsten Rother, Xiaoou Tang, and Jian Sun.
A global sampling method for alpha matting. In IEEE CVPR, pages 2049–2056,
2011.
[65] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016. URL http:
//www.gurobi.com.
[66] N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate symmetry detection
for 3d geometry. ACM Trans. Graph. (Proc. SIGGRAPH), 25(3):560–568, 2006.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *