帳號:guest(3.145.108.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):藍米斯
作者(外文):Perumal, Ramesh
論文名稱(中文):以閉環式深腦電刺激治療帕金森氏症之高效演算法與其硬體實現
論文名稱(外文):Computationally-efficient algorithms and hardware implementation for treating the Parkinson's disease by closed-loop deep brain stimulation
指導教授(中文):陳 新
葉世榮
指導教授(外文):Chen, Hsin
Yeh, Shih-Rung
口試委員(中文):劉奕汶
李夢麟
柯立偉
吳玉威
口試委員(外文):Liu, Yi-Wen
Li, Meng-Lin
Ko, Li-Wei
Wu, Yu-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061881
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:101
中文關鍵詞:帕金森氏病異常同步高電壓震盪閉環 深部腦刺激卡尔曼滤波脑机界面神经调节
外文關鍵詞:Parkinson's DiseaseHigh-Voltage SpindlesClosed-Loop Deep Brain StimulationKalman FilterBrain-Machine InterfaceNeuromodulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1194
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
帕金森氏病(PD)是一種慢性進行性的神經退行性疾病,長期藥物治療通常效果較差甚至不利。它的主要病症包括靜息性震顫,僵硬,運動遲緩和姿勢不穩。深部腦刺激(DBS)是緩解晚期PD患者運動症狀的一種有前途的治療方法。然而傳統的開環“open-loop”DBS中持續的電刺激會引起神經精神病副作用,並縮短電池壽命。閉環 “closed-loop” DBS(cDBS)克服了這些副作用,並且僅在病理發作狀態下通過精確刺激大腦來進一步提高治療效果。異常同步高電壓震盪(HVS)與6-羥基多巴胺損傷和PD大鼠的運動功能障礙有關。 HVSs是在5-13 Hz頻帶中具有隨時間變化的、尖峰波動的、有韻律性的振盪。與β同步波段相反,儘管HVSs是在PD大鼠中的基底神經節-丘腦皮層網內的多巴胺耗竭後盛行,HVSs在cDBS中是相對被忽略的。為了研究cDBS抑制HVS對治療帕金森氏病是否至關重要,需要一種僅在HVS出現時才刺激大腦的自適應刺激器。
本論文的主要貢獻如下:(1)提出了一種基於希爾伯特-黃變換的算法來標記四隻PD大鼠不同腦區的1,273例HVSs的開始和結束。(2)提出offline-learning和online-learning算法,可在非常短的先前數據(144 ms)與低運算時間(<150 ms)內偵測HVS;(3)通過計算機模擬,評比所提出的CWT與FFT演算法的性能; (4)在8位元微計算器中實現優化的offline-learning來實現closed-loop控制器; (5)在PD大鼠的動物實驗實現了具有closed-loop控制器的cDBS系統,並且探討了cDBS在不同刺激的持續時間內對HVS的影響。
所提出的算法是基於間隔的自回歸建模的,其參數是透過常規的offline Kalman濾波器或online的自適應Kalman濾波器學習的。在包含來自四隻PD大鼠不同大腦區域的1,131個HVS的LFP中,兩種方法均以100%的靈敏度檢測所有HVS。Online-learning對背景噪聲的抵抗性更佳,並實現了更低的運算時間(61毫秒)和更高的精準度(96%),同時比連續小波變換需要更少的計算時間。另一方面,offline-learning的平均等待時間為72毫秒,精度為94%,與online-learning相比,計算時間減少了95%。模擬結果表明,兩種方法均能以在比HVS事件的平均持續時間(4.3 s)短得多的時間內可靠地檢測出HVS。
傳統的DBS可以抑制PD大鼠的HVS,但是在刺激後抑製效果並不會一直持續下去。實驗結果的時頻分析顯示了cDBS的潛在優勢如下:(1)對於不同的刺激(0.2–2 s), cDBS引發的HVS抑制,即使在刺激結束後也可持續超過0.5 s; (2)僅刺激0.2 s可以抑制刺激後的HVS超過0.5 s,儘管需要多次刺激才能完全抑制HVS發作; (3)更長的刺激(0.5–2 s)可以達到更佳的HVS抑制,並且一次刺激就可以完全抑制HVS發作; (4)與PD大鼠的未刺激狀態(3.1 ± 1.4 s)相比,cDBS將HVS持續時間顯著縮短至0.15 ± 0.12 s。這些結果表明,cDBS可以長期有效地抑制HVS,以恢復帕金森氏運動障礙。
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease for which long-term medication usually becomes less or even adversely effective. Its major motor symptoms include resting tremor, rigidity, bradykinesia, and postural instability. Deep brain stimulation (DBS) is a promising treatment for mitigating motor symptoms in advanced PD patients. However, the continuous electrical stimulation in the conventional “open-loop” DBS induces neuropsychiatric side effects and shortens the battery life. The “closed-loop” DBS (cDBS) overcomes these side effects and further improves the therapeutic efficacy by precisely stimulating the brain only during the pathological state.
Abnormally-synchronized high-voltage spindles (HVSs) are associated with motor deficits in 6-hydroxydopamine lesioned PD rats. HVSs are spike-and-wave, rhythmic oscillations with time-varying spectrum in the 5–13 Hz band. In contrast to beta-band synchrony, HVSs are relatively neglected in cDBS despite its prevalence in the basal-ganglia-thalamocortical network after dopamine depletion in PD rats. To investigate whether suppressing HVSs by cDBS is crucial for treating PD, an adaptive stimulator able to stimulate the brain only upon the occurrence of HVSs is demanded.
The major contributions of this thesis are as follows: (1) Proposing an algorithm based on Hilbert-Huang transform to label the onset and end of 1,273 HVS episodes from different brain regions of four PD rats; (2) Proposing the offline-learning and online-learning algorithms for detecting HVSs with low latency (< 150 ms) from very-short prior data (144 ms); (3) Evaluating the performance of the proposed algorithms in comparison with continuous wavelet transform and Fourier transform through computer simulations; (4) Realizing the closed-loop controller by implementing the optimized offline-learning algorithm in an 8-bit microcontroller; (5) Realizing the cDBS system with the closed-loop controller and investigating the effects of cDBS on HVSs across different stimulation durations through animal experiments with two parkinsonian rats.
The proposed algorithms are based on autoregressive modeling at interval, whose parameters are learnt by a conventional Kalman filter offline or an adaptive Kalman filter online. In the LFPs containing 1,131 HVSs from different brain regions of four PD rats, both methods detect all HVSs with 100% sensitivity. The online-learning method is more robust against background noise and achieves lower latency (61 ms) and higher precision (96%), while requiring less computation time than the continuous wavelet transform method. On the other hand, the offline-learning method results in the mean latency of 72 ms and precision of 94%, while achieving a 95% reduction in computation time compared to the online-learning method. The simulation results reveal that the proposed predictive model-based methods reliably detected the HVSs with latencies that are much shorter than the average duration of an HVS episode (4.3 s).
The conventional DBS suppressed the HVSs in PD rats, but the suppression did not persist after the stimulation is turned off. The time-frequency analysis of in vivo experimental results reveals the promising advantages of cDBS as follows: (1) For different stimulation durations (0.2–2 s), the cDBS-induced HVS suppression sustains for more than 0.5 s even after the stimulation is turned off; (2) Stimulating only for 0.2 s could suppress HVSs for more than 0.5 s post-stimulation, although multiple stimulations are required to completely suppress an HVS episode; (3) Longer stimulation (0.5–2 s) achieved stronger HVS suppression and could completely suppress an HVS episode with a single stimulation; (4) cDBS significantly shortened the HVS duration to only 0.15 ± 0.12 s compared with the unstimulated state (3.1 ± 1.4 s) of a PD rat. These results suggest that cDBS could effectively suppress the HVSs to restore the parkinsonian motor impairments with more therapeutic efficacy in the long term.
Contents xi
List of Figures xv
List of Tables xxi
List of Notations xxiii
1 Introduction 1
1.1 Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Epidemiology and Symptomatology . . . . . . . . . . . . . 1
1.1.2 Pathophysiology . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Deep Brain Stimulation . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Closed-Loop Deep Brain Stimulation . . . . . . . . . . . . . . . . 4
1.3.1 Feedback Signal . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Data Recording, Analysis, and Modeling 12
2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Stereotaxic Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Fourier Spectral Analysis . . . . . . . . . . . . . . . . . . 17
2.4.2 Time-Frequency Analysis by Continuous Wavelet Transform 20
2.4.3 Time-Frequency Analysis by Hilbert-Huang Transform . . 23
2.5 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Autoregressive Modeling . . . . . . . . . . . . . . . . . . . 30
2.5.2 System Identification . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Methodology 35
3.1 State-Space Representation of Time-Varying ARτ Model . . . . . 35
3.2 Offline-Learning Method . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Online-Learning Method . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 FFT-based Detection Methods . . . . . . . . . . . . . . . 45
3.4.2 CWT-based Detection Method . . . . . . . . . . . . . . . 45
3.4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . 46
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Simulation Results 48
4.1 The Offline-Trained ARτ Model . . . . . . . . . . . . . . . . . . . 48
4.2 The Online-Learning ARτ Model . . . . . . . . . . . . . . . . . . 49
4.3 Cross-Validation on the Detection Performance of ARτ Model Parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Motivation towards Predictive Modeling Approach . . . . 60
4.5.2 Advantages of the Online-Learning Method . . . . . . . . 60
4.5.3 Advantages of the Offline-Learning Method . . . . . . . . 61
4.5.4 Applicability to Closed-Loop DBS Systems . . . . . . . . . 62
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Effects of Closed-Loop Deep Brain Stimulation on HVSs in Parkinsonian
Rats 64
5.1 Closed-Loop Controller . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . 68
5.2 Closed-Loop DBS Experiment . . . . . . . . . . . . . . . . . . . . 69
5.3 In-Vivo Experimental Results . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Suppression of HVSs by cDBS . . . . . . . . . . . . . . . . 71
5.3.2 Statistical Comparison . . . . . . . . . . . . . . . . . . . . 77
5.4 Implications of the Closed-Loop DBS Experiments . . . . . . . . 81
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6 Conclusion and Future Work 84
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Bibliography 87
[1] C. G. Goetz, “The history of Parkinson’s disease: early clinical descriptions and neurological therapies,” Cold Spring Harb Perspect Med, vol. 1, no. 1, 2011.
[2] J. Parkinson, “An essay on the shaking palsy,” J Neuropsychiatry Clin Neurosci, vol. 14, no. 2, pp. 223–236, 2002.
[3] B. V. Manyam, “Paralysis agitans and levodopa in “Ayurveda”: ancient Indian medical treatise,” Mov Disord, vol. 5, no. 1, pp. 47–48, 1990.
[4] Z.-X. Zhang, Z.-H. Dong, and G. C. Román, “Early descriptions of Parkinson disease in ancient China,” Arch Neurol, vol. 63, no. 5, pp. 782–784, 2006.
[5] F. Fröhlich, Network Neuroscience. Academic Press, 2016.
[6] E. R. Dorsey, A. Elbaz, E. Nichols, F. Abd-Allah, A. Abdelalim, J. C.Adsuar, M. G. Ansha, C. Brayne, J.-Y. J. Choi, D. Collado-Mateo, et al.,“Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016,”Lancet Neurol, vol. 17, no. 11, pp. 939–953, 2018.
[7] Y. Grace, S. Laura, Z. Matt, C. Inna, S. Donna, and H. Paul. (2018) Economic burden and future impact of Parkinson’s disease. [Online]. Available:
https://www.michaeljfox.org/sites/default/files/media/document/2019%
20Parkinson%27s%20Economic%20Burden%20Study%20-%20FINAL.pdf
[8] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” J Neurol Neurosurg Psychiatry, vol. 79, no. 4, pp. 368–376, 2008.
[9] D. Fredericks, J. C. Norton, C. Atchison, R. Schoenhaus, and M. W. Pill,“Parkinson’s disease and Parkinson’s disease psychosis: a perspective on the challenges, treatments, and economic burden,” Am J Manag Care, vol. 23, no. 5 Suppl, pp. S83–S92, 2017.
[10] M. M. Kurtis, T. Rajah, L. F. Delgado, and H. S. Dafsari, “The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence,” NPJ Parkinsons Dis, vol. 3, no. 1, pp. 1–12, 2017.
[11] A. Singh, “Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson’s disease,” Eur J Neurosci, vol. 48, no. 8, pp. 2869–2878,2018.
[12] A. Quiroga-Varela, J. Walters, E. Brazhnik, C. Marin, and J. Obeso, “What basal ganglia changes underlie the parkinsonian state? the significance of neuronal oscillatory activity,” Neurobiol Dis, vol. 58, pp. 242–248, 2013.
[13] A. Oswal, P. Brown, and V. Litvak, “Synchronized neural oscillations and the pathophysiology of Parkinson’s disease,” Curr Opin Neurol, vol. 26, no. 6, pp. 662–670, 2013.
[14] S. J. Schiff, Neural control engineering: the emerging intersection between control theory and neuroscience. MIT Press, 2012.
[15] M. Beudel and P. Brown, “Adaptive deep brain stimulation in Parkinson’s disease,” Parkinsonism Related Disord, vol. 22, pp. S123–S126, 2016.
[16] C. Hammond, H. Bergman, and P. Brown, “Pathological synchronization in Parkinson’s disease: networks, models and treatments,” Trends Neurosci, vol. 30, no. 7, pp. 357–364, 2007.
[17] S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. Foltynie, P. Limousin, K. Ashkan, J. FitzGerald, et al., “Adaptive deep brain stimulation in advanced Parkinson disease,” Ann Neurol, vol. 74, no. 3, pp. 449–457, 2013.
[18] A. A. Kühn, A. Tsui, T. Aziz, N. Ray, C. Brücke, A. Kupsch, G.-H. Schneider, and P. Brown, “Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity,”Exp Neurol, vol. 215, no. 2, pp. 380–387, 2009.
[19] B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S. N. Haber, Z. Israel, E. Vaadia, and H. Bergman, “Closed-loop deep brain stimulation is superior in ameliorating parkinsonism,” Neuron, vol. 72, no. 2, pp. 370–384, 2011.
[20] A. Sharott, P. J. Magill, D. Harnack, A. Kupsch, W. Meissner, and P. Brown,“Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat,” Eur J Neurosci, vol. 21, no. 5, pp. 1413–1422, 2005.
[21] S. Ge, C. Yang, M. Li, J. Li, X. Chang, J. Fu, L. Chen, C. Chang, X. Wang, J. Zhu, et al., “Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats,” Brain Res, vol. 1465, pp. 66–79, 2012.
[22] C. Dejean, C. E. Gross, B. Bioulac, and T. Boraud, “Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat,” J Neurophysiol, vol. 100, no. 1, pp. 385–396, 2008.
[23] C. Yang, J.-R. Zhang, L. Chen, S.-N. Ge, J.-L. Wang, Z.-Q. Yan, D. Jia, J.-L. Zhu, and G.-D. Gao, “High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats,” Neurosci Lett, vol. 595, pp. 122–127, 2015.
[24] M. Buonamici, R. Maj, F. Pagani, A. Rossi, and N. Khazan, “Tremor at rest episodes in unilaterally 6-OHDA-induced substantia nigra lesioned rats: EEG-EMG and behavior,” Neuropharmacology, vol. 25, no. 3, pp. 323–325, 1986.
[25] G. Buzsaki, A. Smith, S. Berger, L. Fisher, F. Gage, G. Aston-Jones, and F. Bloom, “Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker,” Neurosci, vol. 36, no. 1, pp. 1–14, 1990.
[26] A. O. Hebb, J. J. Zhang, M. H. Mahoor, C. Tsiokos, C. Matlack, H. J.Chizeck, and N. Pouratian, “Creating the feedback loop: closed-loop neurostimulation,”Neurosurg Clin N Am, vol. 25, no. 1, pp. 187–204, 2014.
[27] M. Parastarfeizabadi and A. Z. Kouzani, “Advances in closed-loop deep brain stimulation devices,” J Neuroeng Rehabil, vol. 14, no. 1, pp. 1–20, 2017.
[28] F. M. Weaver, K. Follett, M. Stern, K. Hur, C. Harris, W. J. Marks, J. Rothlind, O. Sagher, D. Reda, C. S. Moy, et al., “Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial,” JAMA, vol. 301, no. 1, pp. 63–73, 2009.
[29] J. K. Krauss, N. Lipsman, T. Aziz, A. Boutet, P. Brown, J. W. Chang, B. Davidson, W. M. Grill, M. I. Hariz, A. Horn, et al., “Technology of deep brain stimulation: current status and future directions,” Nat Rev Neurol, pp. 1–13, 2020.
[30] Q. Li, Y. Ke, D. C. Chan, Z.-M. Qian, K. K. Yung, H. Ko, G. W. Arbuthnott, and W.-H. Yung, “Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex,” Neuron, vol. 76, no. 5, pp. 1030–1041, 2012.
[31] T. Tsuboi, J. L. Lopes, B. Patel, J. Legacy, K. Moore, R. S. Eisinger, L. Almeida, K. D. Foote, M. S. Okun, and A. Ramirez-Zamora, “Parkinson’s disease motor subtypes and bilateral GPi deep brain stimulation: One-year outcomes,” Parkinsonism Relat Disord, vol. 75, pp. 7–13, 2020.
[32] M. Arlotti, L. Rossi, M. Rosa, S. Marceglia, and A. Priori, “An external portable device for adaptive deep brain stimulation clinical research in advanced Parkinson’s disease,” Med Eng Phy, vol. 38, no. 5, pp. 498 – 505,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1350453316300017
[33] G. Kleiner-Fisman, J. Herzog, D. N. Fisman, F. Tamma, K. E. Lyons,R. Pahwa, A. E. Lang, and G. Deuschl, “Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes,” Mov Disord, vol. 21, no. S14, pp. S290–S304, 2006.
[34] J. M. Bronstein, M. Tagliati, R. L. Alterman, A. M. Lozano, J. Volkmann, A. Stefani, F. B. Horak, M. S. Okun, K. D. Foote, P. Krack, et al., “Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues,” Arch Neurol, vol. 68, no. 2, pp. 165–165, 2011.
[35] R. Carron, A. Chaillet, A. Filipchuk, W. Pasillas-Lépine, and C. Hammond, “Closing the loop of deep brain stimulation,” Front Syst Neurosci, vol. 7, p.112, 2013.
[36] P. Limousin, P. Pollak, D. Hoffmann, A. Benazzouz, J. E. Perret, and A.-L. Benabid, “Abnormal involuntary movements induced by subthalamic nucleus stimulation in parkinsonian patients,” Mov Disord, vol. 11, no. 3, pp. 231–235, 1996.
[37] C. Hamani, E. Richter, J. M. Schwalb, and A. M. Lozano, “Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature,” Neurosurgery, vol. 56, no. 6, pp. 1313–1324, 2005.
[38] I. Basu, D. Graupe, D. Tuninetti, P. Shukla, K. V. Slavin, L. V. Metman, and D. M. Corcos, “Pathological tremor prediction using surface electromyogram and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design,” J Neural Eng, vol. 10, no. 3, p. 036019, 2013.
[39] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. Van Der Smagt, et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, pp. 372–375, 2012.
[40] J. Sarnthein and D. Jeanmonod, “High thalamocortical theta coherence in patients with Parkinson’s disease,” J Neurosci, vol. 27, no. 1, pp. 124–131, 2007.
[41] N. C. Swann, C. de Hemptinne, M. C. Thompson, S. Miocinovic, A. M. Miller, J. L. Ostrem, H. J. Chizeck, P. A. Starr, et al., “Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing,” J Neural Eng, vol. 15, no. 4, p. 046006, 2018.
[42] M. J. Morrell, “Responsive cortical stimulation for the treatment of medically intractable partial epilepsy,” Neurology, vol. 77, no. 13, pp. 1295–1304, 2011.
[43] A. Priori, G. Foffani, L. Rossi, and S. Marceglia, “Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations,” Exp Neurol, vol. 245, pp. 77–86, 2013.
[44] S. Little, E. Tripoliti, M. Beudel, A. Pogosyan, H. Cagnan, D. Herz, S. Bestmann, T. Aziz, B. Cheeran, L. Zrinzo, et al., “Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting,” J Neurol Neurosurg Psychiatry, vol. 87, no. 12, pp. 1388–1389, 2016.
[45] S. Little, M. Beudel, L. Zrinzo, T. Foltynie, P. Limousin, M. Hariz, S. Neal, B. Cheeran, H. Cagnan, J. Gratwicke, et al., “Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease,” J Neurol Neurosurg Psychiatry, vol. 87, no. 7, pp. 717–721, 2016.
[46] D. Piña-Fuentes, S. Little, M. Oterdoom, S. Neal, A. Pogosyan, M. A. Tijssen, T. van Laar, P. Brown, J. M. C. van Dijk, and M. Beudel, “Adaptive DBS in a Parkinson’s patient with chronically implanted DBS: a proof of principle,” Mov Disord, vol. 32, no. 8, pp. 1253–1254, 2017.
[47] M. Rosa, M. Arlotti, G. Ardolino, F. Cogiamanian, S. Marceglia,
A. Di Fonzo, F. Cortese, P. M. Rampini, and A. Priori, “Adaptive deep
brain stimulation in a freely moving parkinsonian patient,” Mov Disord, vol. 30, no. 7, pp. 1003–1005, 2015.
[48] M. Rosa, M. Arlotti, S. Marceglia, F. Cogiamanian, G. Ardolino, A. D. Fonzo, L. Lopiano, E. Scelzo, A. Merola, M. Locatelli, et al., “Adaptive deep brain stimulation controls levodopa-induced side effects in parkinsonian patients,” Mov Disord, vol. 32, no. 4, pp. 628–629, 2017.
[49] Y.-C. Chen, C.-C. Chang, R. Perumal, S.-R. Yeh, Y.-C. Chang, and H. Chen, “Optimization and implementation of wavelet-based algorithms for detecting high-voltage spindles in neuron signals,” ACM Trans Embed Comput Syst, vol. 18, no. 5, pp. 1–16, 2019.
[50] M. Malekmohammadi, J. Herron, A. Velisar, Z. Blumenfeld, M. H. Trager, H. J. Chizeck, and H. Brontë-Stewart, “Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease,” Mov Disord, vol. 31, no. 3, pp. 426–428, 2016.
[51] NeuroPace. (2019) RNS system user manual. [Online]. Available: https: //www.neuropace.com/manuals/RNS_System_User_Manual.pdf
[52] C.-P. Young, S.-F. Liang, D.-W. Chang, Y.-C. Liao, F.-Z. Shaw, and C.-H. Hsieh, “A portable wireless online closed-loop seizure controller in freely moving rats,” IEEE Trans Instrum Meas, vol. 60, no. 2, pp. 513–521, 2010.
[53] Y. Zheng, Z. Jiang, A. Ping, F. Zhang, J. Zhu, Y. Wang, W. Zhu, and K. Xu, “Acute seizure control efficacy of multi-site closed-loop stimulation in a temporal lobe seizure model,” IEEE Trans Neural Syst Rehabil Eng, vol. 27, no. 3, pp. 419–428, 2019.
[54] P. Afshar, A. Khambhati, S. Stanslaski, D. Carlson, R. Jensen, S. Dani, M. Lazarewicz, J. Giftakis, P. Stypulkowski, and T. Denison, “A translational platform for prototyping closed-loop neuromodulation systems,” Front Neural Circuits, vol. 6, p. 117, 2013.
[55] J. A. Herron, M. C. Thompson, T. Brown, H. J. Chizeck, J. G. Ojemann, and A. L. Ko, “Cortical brain-computer interface for closed-loop deep brain stimulation,” IEEE Trans Neural Syst Rehabil Eng, vol. 25, no. 11, pp. 2180–2187, 2017.
[56] H. Luo, Y. Huang, X. Du, Y. Zhang, A. L. Green, T. Z. Aziz, and S. Wang,“Dynamic neural state identification in deep brain local field potentials of neuropathic pain,” Front Neurosci, vol. 12, p. 237, 2018.
[57] C. Dejean, C. E. Gross, B. Bioulac, and T. Boraud, “Synchronous highvoltage spindles in the cortex-basal ganglia network of awake and unrestrained rats,” Eur J Neurosci, vol. 25, no. 3, pp. 772–784, 2007.
[58] A. Daniely, N. Linial, and S. Shalev-Shwartz, “From average case complexity to improper learning complexity,” in Proc 46th Annual ACM Symposium on Theory of Computing, 2014, pp. 441–448.
[59] R. Perumal and H. Chen, “Performance analysis in a wavelet-based algorithm for automatic detection of high-voltage spindles in Parkinson’s disease rat models,” in 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering. Springer, 2015, pp. 170–173.
[60] Y. C. Chen, R. Perumal, C. H. Hwang, and H. Chen, “Hardware-based simplified discrete wavelet transform for detecting high-voltage spindles in neuron signals,” in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2017, pp. 1–5.
[61] S. De Waele and P. Broersen, “Multirate autoregressive modeling,” Select Topics Signals Syst Control, pp. 75–80, 2001.
[62] P. M. Broersen and S. De Waele, “Time series analysis in a frequency subband,”IEEE Trans Instrum Meas, vol. 52, no. 4, pp. 1054–1060, 2003.
[63] A. Schlögl, The electroencephalogram and the adaptive autoregressive model: theory and applications. Shaker Aachen, 2000.
[64] M. Najim, Modeling, estimation and optimal filtering in signal processing. Wiley Online Library, 2008.
[65] D. P. Nguyen, M. A. Wilson, E. N. Brown, and R. Barbieri, “Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother,” J Neurosci Methods, vol. 184, no. 2, pp. 365–374, 2009.
[66] E. Sitnikova, A. E. Hramov, A. A. Koronovsky, and G. van Luijtelaar, “Sleep spindles and spike-wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis,” J Neurosci Methods, vol. 180, no. 2, pp. 304–316, 2009.
[67] A. Ovchinnikov, A. Lüttjohann, A. Hramov, and G. Van Luijtelaar, “An algorithm for real-time detection of spike-wave discharges in rodents,” J Neurosci Methods, vol. 194, no. 1, pp. 172–178, 2010.
[68] H. Li, S. Kwong, L. Yang, D. Huang, and D. Xiao, “Hilbert-Huang transform for analysis of heart rate variability in cardiac health,” IEEE/ACM Trans Comput Biol Bioinform, vol. 8, no. 6, pp. 1557–1567, 2011.
[69] A. Pigorini, A. G. Casali, S. Casarotto, F. Ferrarelli, G. Baselli, M. Mariotti, M. Massimini, and M. Rosanova, “Time–frequency spectral analysis of tms-evoked eeg oscillations by means of hilbert-huang transform,” J Neurosci Methods, vol. 198, no. 2, pp. 236–245, 2011.
[70] A. N. Silchenko, I. Adamchic, N. Pawelczyk, C. Hauptmann, M. Maarouf, V. Sturm, and P. A. Tass, “Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems,”J Neurosci Methods, vol. 191, no. 1, pp. 32–44, 2010.
[71] R. Perumal, V. Vigneron, C.-F. Chuang, Y.-C. Chang, S.-R. Yeh, and H. Chen, “A computationally-efficient, online-learning algorithm for detect-ing high-voltage spindles in the parkinsonian rats,” Ann Biomed Eng, vol. 48, no. 12, pp. 2809–2820, 2020.
[72] S. M. Kay and S. L. Marple, “Spectrum analysis—a modern perspective,” Proc IEEE, vol. 69, no. 11, pp. 1380–1419, 1981.
[73] M. Arnold, X. Milner, H. Witte, R. Bauer, and C. Braun, “Adaptive AR modeling of nonstationary time series by means of Kalman filtering,” IEEE Trans Biomed Eng, vol. 45, no. 5, pp. 553–562, 1998.
[74] M. Cassidy, P. Mazzone, A. Oliviero, A. Insola, P. Tonali, V. D. Lazzaro, and P. Brown, “Movement-related changes in synchronization in the human basal ganglia,” Brain, vol. 125, no. 6, pp. 1235–1246, 2002.
[75] G. M. Hoerzer, S. Liebe, A. Schloegl, N. K. Logothetis, and G. Rainer, “Directed coupling in local field potentials of macaque v4 during visual short-term memory revealed by multivariate autoregressive models,” Front Comput Neurosci, vol. 4, p. 14, 2010.
[76] T. P. Gilmour, T. Subramanian, C. Lagoa, and W. K. Jenkins, “Multiscale autoregressive identification of neuroelectrophysiological systems,” Computational and Mathematical Methods in Medicine, vol. 2012, 2012.
[77] P. Rajdev, M. P. Ward, J. Rickus, R. Worth, and P. Irazoqui, “Real-time seizure prediction from local field potentials using an adaptive Wiener algorithm,”Comput Biol Med, vol. 40, no. 1, pp. 97–108, 2010.
[78] D. Huberdeau, H. Walker, H. Huang, E. Montgomery, and S. V. Sarma,“Analysis of local field potential signals: a systems approach,” in Proc IEEE EMBS. IEEE, 2011, pp. 814–817.
[79] L. L. Chen, R. Madhavan, B. I. Rapoport, and W. S. Anderson, “Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction,” IEEE Trans Biomed Eng, vol. 60, no. 3, pp. 753–762, 2013.
[80] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control. John Wiley & Sons, 2015.
[81] B. L. Bowerman and R. T. O’Connell, Forecasting and time series: An applied approach. 3rd ed. Duxbury press, 1993.
[82] I. T. Hettiarachchi, T. T. Nguyen, and S. Nahavandi, “Multivariate adaptive autoregressive modeling and Kalman filtering for motor imagery BCI,” in 2015 IEEE Int Conf Systems, Man, and Cybernetics. IEEE, 2015, pp.3164–3168.
[83] S. E. Ross, Z. Ouyang, S. Rajagopalan, and T. M. Bruns, “Evaluation of decoding algorithms for estimating bladder pressure from dorsal root ganglia neural recordings,” Ann Biomed Eng, vol. 46, no. 2, pp. 233–246, 2018.
[84] S. Tatinati, K. C. Veluvolu, S.-M. Hong, W. T. Latt, and W. T. Ang, “Physiological tremor estimation with autoregressive (AR) model and Kalman filter for robotics applications,” IEEE Sensors J, vol. 13, no. 12, pp. 4977–4985, 2013.
[85] K. Lazic, J. Ciric, and J. Saponjic, “Sleep spindle dynamics during NREM and REM sleep following distinct general anaesthesia in control rats and in a rat model of Parkinson’s disease cholinopathy,” J Sleep Res, vol. 28, no. 1, p. e12758, 2019.
[86] C. Camara, P. Isasi, K. Warwick, V. Ruiz, T. Aziz, J. Stein, and E. Bakštein, “Resting tremor classification and detection in Parkinson’s disease patients,”Biomed Signal Process Control, vol. 16, pp. 88–97, 2015.
[87] L. Yao, P. Brown, and M. Shoaran, “Resting tremor detection in Parkinson’s disease with machine learning and Kalman filtering,” in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2018, pp. 1–4.
[88] P. J. Uhlhaas and W. Singer, “Abnormal neural oscillations and synchrony in schizophrenia,” Nature Rev Neurosci, vol. 11, no. 2, pp. 100–113, 2010.
[89] R. J. Radek, P. Curzon, and M. W. Decker, “Characterization of high voltage spindles and spatial memory in young, mature and aged rats,” Brain Res Bull, vol. 33, no. 2, pp. 183–188, 1994.
[90] Silicon Laboratories Inc. (2003) C8051F120 data sheet. [Online].
Available: https://www.silabs.com/documents/public/data-sheets/
C8051F12x-13x.pdf
[91] Texas Instruments. (2019) INA118 precision, low-power instrumentation amplifier data sheet. [Online]. Available: https://www.ti.com/lit/ds/symlink/ina118.pdf
[92] Silicon Laboratories Inc. (2006) C8051F12x development kit user’s guide. [Online]. Available: https://www.silabs.com/documents/public/user-guides/C8051F12x-DK.pdf
[93] ——. (2013) AN104: Integrating Keil 8051 tools into the Silicon
Labs IDE. [Online]. Available: https://www.silabs.com/documents/public/application-notes/an104.pdf
[94] ——. (2013) AN118: Improving ADC resolution by oversampling and
averaging. [Online]. Available: https://www.silabs.com/documents/public/application-notes/an118.pdf
[95] ——. (2003) AN142: FFT routines for the C8051F12X family. [Online].
Available: https://www.silabs.com/documents/public/application-notes/
an142.pdf
[96] G. F. Molnar, G. C. Miyazawa, K. A. Miesel, J. C. Werder, D. L. Carlson, and J. E. Giftakis, “Method and apparatus for the treatment of movement disorders,” May 29 2012, US Patent 8,190,251.
[97] G. Tinkhauser, A. Pogosyan, S. Little, M. Beudel, D. M. Herz, H. Tan, and P. Brown, “The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease,” Brain, vol. 140, no. 4, pp. 1053–1067, 2017.

(此全文20260506後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *