|
[1] J.E.Kennedy, F.Wu, G.R.terHaar, F.V.Gleeson, R.R.Phillips, M.R.Middleton, D.Cranston, High-intensity focused ultrasound for the treatment of liver tumors, Ultrasonics. 42 (2004) 931–935. doi:10.1016/j.ultras.2004.01.089.
[2] T.UCHIDA, H.OHKUSA, H.YAMASHITA, S.SHOJI, Y.NAGATA, T.HYODO, T.SATOH, Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer, Int. J. Urol. 13 (2006) 228–233. doi:10.1111/j.1442-2042.2006.01272.x.
[3] E.A.Stewart, W.M.W.Gedroyc, C.M.C.Tempany, B.J.Quade, Y.Inbar, T.Ehrenstein, A.Shushan, J.T.Hindley, R.D.Goldin, M.David, M.Sklair, J.Rabinovici, Focused ultrasound treatment of uterine fibroid tumors: Safety and feasibility of a noninvasive thermoablative technique, Am. J. Obstet. Gynecol. 189 (2003) 48–54.
[4] C.M.C.Tempany, N.J.McDannold, K.Hynynen, F.A.Jolesz, Focused ultrasound surgery in oncology: overview and principles, Radiology. 259 (2011) 39–56. doi:10.1148/radiol.11100155.
[5] M.R.Bailey, V.A.Khokhlova, O.A.Sapozhnikov, S.G.Kargl, L.A.Crum, Physical mechanisms of the therapeutic effect of ultrasound (a review), Acoust. Phys. 49 (2003) 369–388. doi:10.1134/1.1591291.
[6] G.R.terHaar, Therapeutic applications of ultrasound, Prog. Biophys. Mol. Biol. 93 (2007) 111–129.
[7] A.A.Pilla, M.A.Mont, P.R.Nasser, S.A.Khan, M.Figueiredo, J.J.Kaufman, R.S.Siffert, Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit., J. Orthop. Trauma. 4 (1990) 246–53.
[8] M.Dyson, M.Brookes, Stimulation of bone repair by ultrasound., Ultrasound Med. Biol. Suppl 2 (1983) 61–6.
[9] G.R.terHaar, Ultrasound focal beam surgery, Ultrasound Med. Biol. 21 (1995) 1089–1100. doi:10.1016/0301-5629(95)02010-1.
[10] G.R.terHaar, D.Robertson, Tissue destruction with focused ultrasound in vivo., Eur. Urol. 23 Suppl 1 (1993) 8–11.
[11] J.G.Lynn, R.L.Zwemer, A.J.Chick, A.E.Miller, A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, J. Gen. Physiol. 26 (1942) 179–93. doi:10.1085/jgp.26.2.179.
[12] F.J.FRY, Precision high intensity focusing ultrasonic machines for surgery., Am. J. Phys. Med. 37 (1958) 152–6.
[13] W.J.FRY, J.W.BARNARD, F.J.FRY, J.F.BRENNAN, Ultrasonically produced localized selective lesions in the central nervous system., Am. J. Phys. Med. 34 (1955) 413–23.
[14] M.T.Buchanan, K.Hynynen, Design and experimental evaluation of an intracavitary ultrasound phased array system for hyperthermia, IEEE Trans. Biomed. Eng. 41 (1994) 1178–1187. doi:10.1109/10.335866.
[15] M.Alkhorayef, M.Z.Mahmoud, K.S.Alzimami, A.Sulieman, M.A.Fagiri, High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment, Polish J. Radiol. 80 (2015) 131–141. doi:10.12659/PJR.892341.
[16] R.Seip, E.S.Ebbini, Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound, IEEE Trans. Biomed. Eng. 42 (1995) 828–839.
[17] C.Simon, P.VanBaren, E.S.Ebbini, Two-dimensional temperature estimation using diagnostic ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45 (1998) 1088–1099. doi:10.1109/58.710592.
[18] R.Maass-Moreno, C.A.Damianou, N.T.Sanghvi, Noninvasive temperature estimation in tissue via ultrasound echo- shifts. Part II. In vitro study, J. Acoust. Soc. Am. 100 (1996) 2522–2530.
[19] R.J.Stafford, F.Kallel, R.E.Price, D.M.Cromeens, T.A.Krouskop, J.D.Hazle, J.Ophir, Elastographic imaging of thermal lesions in soft tissue: a preliminary study in vitro, Ultrasound Med. Biol. 24 (1998) 1449–1458. doi:10.1016/S0301-5629(98)00099-4.
[20] C.Maleke, E.E.Konofagou, Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues, Phys. Med. Biol. 53 (2008) 1773.
[21] L.Deng, M.A.O’Reilly, R.M.Jones, R.An, K.Hynynen, A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping, Phys. Med. Biol. 61 (2016) 8476–8501. doi:10.1088/0031-9155/61/24/8476.
[22] M.Gyongy, C.C.Coussios, Passive Spatial Mapping of Inertial Cavitation During HIFU Exposure, IEEE Trans. Biomed. Eng. 57 (2010) 48–56.
[23] S.J.C.G.Hectors, I.Jacobs, C.T.W.Moonen, G.J.Strijkers, K.Nicolay, MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: Current status and future needs, Magn. Reson. Med. 75 (2016) 302–317. doi:10.1002/mrm.25758.
[24] N.McDannold, S.E.Maier, Magnetic resonance acoustic radiation force imaging, Med. Phys. 35 (2008) 3748–3758. doi:10.1118/1.2956712.
[25] D.Schlesinger, S.Benedict, C.Diederich, W.Gedroyc, A.Klibanov, J.Larner, MR-guided focused ultrasound surgery, present and future., Med. Phys. 40 (2013) 080901. doi:10.1118/1.4811136.
[26] A.Roberts, Magnetic resonance-guided focused ultrasound for uterine fibroids., Semin. Intervent. Radiol. 25 (2008) 394–405. doi:10.1055/s-0028-1102999.
[27] A.J.Loeve, J.Al-Issawi, F.Fernandez-Gutiérrez, T.Langø, J.Strehlow, S.Haase, M.Matzko, A.Napoli, A.Melzer, J.Dankelman, Workflow and intervention times of MR-guided focused ultrasound – Predicting the impact of new techniques, J. Biomed. Inform. 60 (2016) 38–48. doi:10.1016/j.jbi.2016.01.001.
[28] S.Srinivasan, R.Righetti, J.Ophir, Trade-offs between the axial resolution and the signal-to-noise ratio in elastography, Ultrasound Med. Biol. 29 (2003) 847–866. doi:10.1016/S0301-5629(03)00037-1.
[29] N.L.Bush, I.Rivens, G.R.terHaar, J.C.Bamber, Acoustic properties of lesions generated with an ultrasound therapy system, Ultrasound Med. Biol. 19 (1993) 789–801. doi:10.1016/0301-5629(93)90095-6.
[30] S.Y.Zhang, F.Y.Zhou, M.X.Wan, M.Wei, Q.Y.Fu, X.Wang, S.P.Wang, Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions, J. Acoust. Soc. Am. 131 (2012) 4836–4844. doi:10.1121/1.4711005.
[31] V.A.Dumane, P.M.Shankar, C.W.Piccoli, J.M.Reid, V.Genis, F.Forsberg, B.B.Goldberg, Classification of ultrasonic B mode images of the breast using frequency diversity and Nakagami statistics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 49 (2002) 664–668. doi:10.1109/TUFFC.2002.1002466.
[32] P.M.Shankar, V.A.Dumane, J.M.Reid, V.Genis, F.Forsberg, C.W.Piccoli, B.B.Goldberg, Classification of ultrasonic B-mode images of breast masses using Nakagami distribution, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48 (2001) 569–580.
[33] H.-L.Liu, C.-H.Tsai, C.-K.Jan, H.-Y.Chang, S.-M.Huang, M.-L.Li, W.Qiu, H.Zheng, Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 65 (2018). doi:10.1109/TUFFC.2018.2855181.
[34] D.Liu, E.S.Ebbini, Real-Time 2-D Temperature Imaging Using Ultrasound, IEEE Trans. Biomed. Eng. 57 (2010) 12–16.
[35] H.-L.Liu, M.-L.Li, P.-H.Tsui, M.-S.Lin, S.-M.Huang, J.Bai, A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy, Phys. Med. Biol. 56 (2011) 169.
[36] H.-L.Liu, M.-L.Li, T.-C.Shih, S.-M.Huang, I.-Y.Lu, K.-C.Ju, A novel ultrasonic-imaging based temperature estimation approach by instantaneous frequency detection, in: IEEE Int. Ultrason. Symp., 2008: pp. 2084–2087.
[37] R.M.Arthur, W.L.Straube, J.W.Trobaugh, E.G.Moros, Non-invasive estimation of hyperthermia temperatures with ultrasound, Int. J. Hyperth. 21 (2005) 589–600. doi:10.1080/02656730500159103.
[38] R.Maass-Moreno, C.A.Damianou, Noninvasive temperature estimation in tissue via ultrasound echo- shifts. Part I. Analytical model, J. Acoust. Soc. Am. 100 (1996) 2514–2521.
[39] A.N.Amini, E.S.Ebbini, T.T.Georgiou, Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques, IEEE Trans. Biomed. Eng. 52 (2005) 221–228.
[40] H.-L.Liu, M.-L.Li, T.-C.Shih, S.-M.Huang, I.-Y.Lu, D.-Y.Lin, S.-M.Lin, K.-C.Ju, Instantaneous Frequency-Based Ultrasonic Temperature Estimation During Focused Ultrasound Thermal Therapy, Ultrasound Med. Biol. 35 (2009) 1647–1661. doi:10.1016/j.ultrasmedbio.2009.05.004.
[41] P.Karwat, J.Litniewski, T.Kujawska, W.Secomski, K.Krawczyk, Noninvasive Imaging of Thermal Fields Induced in Soft Tissues In Vitro by Pulsed Focused Ultrasound Using Analysis of Echoes Displacement, Arch. Acoust. 39 (2014) 139–144. doi:10.2478/aoa-2014-0014.
[42] P.Karwat, T.Kujawska, P.A.Lewin, W.Secomski, B.Gambin, J.Litniewski, Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes, Ultrasonics. 65 (2016) 211–219. doi:10.1016/j.ultras.2015.10.002.
[43] B.Gambin, E.Kruglenko, Temperature measurement by statistical parameters of ultrasound signal backscattered from tissue samples, in: Acta Phys. Pol. A, 2015: pp. A72–A78. doi:10.12693/APhysPolA.128.A-72.
[44] P.-H.Tsui, Y.-C.Shu, W.-S.Chen, H.-L.Liu, I.-T.Hsiao, Y.-T.Chien, Ultrasound temperature estimation based on probability variation of backscatter data, Med. Phys. 39 (2012) 2369–2385. doi:10.1118/1.3700235.
[45] R.M.Arthur, W.L.Straube, J.D.Starman, E.G.Moros, Noninvasive temperature estimation based on the energy of backscattered ultrasound, Med. Phys. 30 (2003) 1021–1029.
[46] T.Shishitani, R.Matsuzawa, S.Yoshizawa, S.Umemura, Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound, J. Acoust. Soc. Am. 134 (2013) 1724–1730. doi:10.1121/1.4813104.
[47] J.W.Trobaugh, R.M.Arthur, W.L.Straube, E.G.Moros, A Simulation Model for Ultrasonic Temperature Imaging Using Change in Backscattered Energy, Ultrasound Med. Biol. 34 (2008) 289–298.
[48] F.Viola, W.F.Walker, A comparison of the performance of time-delay estimators in medical ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 (2003) 392–401. doi:10.1109/TUFFC.2003.1197962.
[49] W.F.Walker, G.E.Trahey, A fundamental limit on delay estimation using partially correlated speckle signals, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42 (1995) 301–308. doi:10.1109/58.365243.
[50] J.S.Bendat, A.G.Piersol, Random Data: Analysis and Measurement Procedures, Fourth Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010. doi:10.1002/9781118032428.
[51] S.K.Alam, J.Ophir, E.E.Konofagou, An adaptive strain estimator for elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45 (2002) 461–472. doi:10.1109/58.660156.
[52] E.Brusseau, C.Perrey, P.Delachartre, M.Vogt, D.Vray, H.Ermert, Axial Strain Imaging Using a Local Estimation of the Scaling Factor from RF Ultrasound Signals, Ultrason. Imaging. 22 (2000) 95–107. doi:10.1177/016173460002200202.
[53] S.Srinivasan, F.Kallel, R.Souchon, J.Ophir, Analysis of an Adaptive Strain Estimation Technique in Elastography, Ultrason. Imaging. 24 (2002) 109–118. doi:10.1177/016173460202400204.
[54] M.Yamakawa, T.Shiina, Strain Estimation Using the Extended Combined Autocorrelation Method, Jpn. J. Appl. Phys. 40 (2001) 3872–3876. doi:10.1143/JJAP.40.3872.
[55] T.Varghese, J.Ophir, Characterization of Elastographic Noise Using the Envelope of Echo Signals, Ultrasound Med. Biol. 24 (1998) 543–555. doi:10.1016/S0301-5629(98)00008-8.
[56] J.Bai, C.Ding, Y.Fan, A multi-scale algorithm for ultrasonic strain reconstruction under moderate compression, Ultrasonics. 37 (1999) 511–519. doi:10.1016/S0041-624X(99)00026-8.
[57] A.Thitaikumar, R.Righetti, T.A.Krouskop, J.Ophir, Resolution of axial shear strain elastography, Phys. Med. Biol. 51 (2006) 5245–5257. doi:10.1088/0031-9155/51/20/011.
[58] S.K.Alam, J.Ophir, T.Varghese, Elastographic axial resolution criteria: an experimental study, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47 (2000) 304–309. doi:10.1109/58.818775.
[59] S.Srinivasan, J.Ophir, S.K.Alam, Theoretical derivation of SNR, CNR and spatial resolution for a local adaptive strain estimator for elastography, Ultrasound Med. Biol. 30 (2004) 1185–1197.
[60] T.Varghese, M.Bilgen, J.Ophir, Multiresolution imaging in elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45 (1998) 65–75. doi:10.1109/58.646912.
[61] C.Pellot-Barakat, F.Frouin, M.F.Insana, A.Herment, Ultrasound elastography based on multiscale estimations of regularized displacement fields, IEEE Trans. Med. Imaging. 23 (2004) 153–163. doi:10.1109/TMI.2003.822825.
[62] H.Chen, H.Shi, T.Varghese, Improvement of elastographic displacement estimation using a two-step cross-correlation method, Ultrasound Med. Biol. 33 (2007) 48–56. doi:10.1016/j.ultrasmedbio.2006.07.022.
[63] R.Zahiri-Azar, S.E.Salcudean, Motion Estimation in Ultrasound Images Using Time Domain Cross Correlation With Prior Estimates, IEEE Trans. Biomed. Eng. 53 (2006) 1990–2000. doi:10.1109/TBME.2006.881780.
[64] T.A.Fuhrmann, O.Georg, J.Haller, K.-V.Jenderka, V.Wilkens, Uncertainty estimation for temperature measurement with diagnostic ultrasound, J. Ther. Ultrasound. 4 (2016) 28. doi:10.1186/s40349-016-0071-x.
[65] B.E.Treeby, B.T.Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt. 15 (2010) 21314.
[66] S.A.Goss, R.L.Johnston, F.Dunn, Comprehensive compilation of empirical ultrasonic properties of mammalian tissues, J. Acoust. Soc. Am. 64 (1978) 423–457. doi:10.1121/1.382016.
[67] R.C.Chivers, R.J.Parry, Ultrasonic velocity and attenuation in mammalian tissues, J. Acoust. Soc. Am. 63 (1978) 940–953. doi:10.1121/1.381774.
[68] I.M.Hallaj, R.O.Cleveland, K.Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am. 109 (2001) 2245–2253.
[69] H.H.Pennes, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, J. Appl. Physiol. 1 (1948) 93–122. doi:10.1152/jappl.1948.1.2.93.
[70] E.L.Madsen, G.R.Frank, F.Dong, Liquid or Solid Ultrasonically Tissue-Mimicking Materials with Very Low Scatter, Ultrasound Med. Biol. 24 (1998) 535–542. doi:10.1016/S0301-5629(98)00013-1.
[71] S.A.Sapareto, W.C.Dewey, Thermal dose determination in cancer therapy., Int. J. Radiat. Oncol. Biol. Phys. 10 (1984) 787–800.
[72] P.S.Yarmolenko, E.J.Moon, C.Landon, A.Manzoor, D.W.Hochman, B.L.Viglianti, M.W.Dewhirst, Thresholds for thermal damage to normal tissues: an update., Int. J. Hyperth. 27 (2011) 320–43. doi:10.3109/02656736.2010.534527.
[73] K.D.Donohue, F.Forsberg, C.W.Piccoli, B.B.Goldberg, Analysis and classification of tissue with scatterer structure templates, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46 (1999) 300–310. doi:10.1109/58.753018.
[74] P.M.Shankar, R.Molthen, V.M.Narayanan, J.M.Reid, V.Genis, F.Forsberg, C.W.Piccoli, A.E.Lindenmayer, B.B.Goldberg, Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization, Ultrasound Med. Biol. 22 (1996) 873–882. doi:10.1016/0301-5629(96)00080-4.
[75] R.F.Wagner, M.F.Insana, D.G.Brown, Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound, J. Opt. Soc. Am. A. 4 (1987) 910–922. doi:10.1364/JOSAA.4.000910.
[76] T.A.Tuthill, R.H.Sperry, K.J.Parker, Deviations from Rayleigh statistics in ultrasonic speckle, Ultrason. Imaging. 10 (1988) 81–89. doi:10.1016/0161-7346(88)90051-X.
[77] P.M.Shankar, Ultrasonic tissue characterization using a generalized Nakagami model, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48 (2001) 1716–1720. doi:10.1109/58.971725.
[78] P.-H.Tsui, C.-K.Yeh, Y.-Y.Liao, C.-C.Chang, W.-H.Kuo, K.-J.Chang, C.-N.Chen, Ultrasonic Nakagami Imaging: A Strategy to Visualize the Scatterer Properties of Benign and Malignant Breast Tumors, Ultrasound Med. Biol. 36 (2010) 209–217. doi:10.1016/j.ultrasmedbio.2009.10.006.
[79] C.-C.Huang, P.-H.Tsui, S.-H.Wang, Detection of coagulating blood under steady flow by statistical analysis of backscattered signals, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54 (2007) 435–442. doi:10.1109/TUFFC.2007.258.
[80] P.-H.Tsui, C.-K.Yeh, C.-C.Chang, Microvascular Flow Estimation by Contrast-Assisted Ultrasound B-Scan and Statistical Parametric Images, IEEE Trans. Inf. Technol. Biomed. 13 (2009) 360–369. doi:10.1109/TITB.2009.2013249.
[81] F.Destrempes, J.Meunier, M.F.Giroux, G.Soulez, G.Cloutier, Segmentation in Ultrasonic B-Mode Images of Healthy Carotid Arteries Using Mixtures of Nakagami Distributions and Stochastic Optimization, IEEE Trans. Med. Imaging. 28 (2009) 215–229. doi:10.1109/TMI.2008.929098.
[82] F.Destrempes, G.Cloutier, A Critical Review and Uniformized Representation of Statistical Distributions Modeling the Ultrasound Echo Envelope, Ultrasound Med. Biol. 36 (2010) 1037–1051. doi:10.1016/j.ultrasmedbio.2010.04.001.
[83] T.-Y.Wang, Z.Xu, F.Winterroth, T.L.Hall, J.B.Fowlkes, E.D.Rothman, W.W.Roberts, C.A.Cain, Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy-histotripsy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56 (2009) 995–1005.
[84] F.Liu, Z.Hu, L.Qiu, C.Hui, C.Li, P.Zhong, J.Zhang, Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation, J. Transl. Med. 8 (2010) 7. doi:10.1186/1479-5876-8-7.
[85] H.L.M.Cheng, M.A.Haider, M.J.Dill-Macky, J.M.Sweet, J.Trachtenberg, M.R.Gertner, MRI and contrast-enhanced ultrasound monitoring of prostate microwave focal thermal therapy: An in vivo canine study, J. Magn. Reson. Imaging. 28 (2008) 136–143. doi:10.1002/jmri.21415.
[86] C.-Y.Wang, X.Geng, T.-S.Yeh, H.-L.Liu, P.-H.Tsui, Monitoring radiofrequency ablation with ultrasound Nakagami imaging, Med. Phys. 40 (2013) 072901. doi:10.1118/1.4808115.
[87] P.M.Shankar, A general statistical model for ultrasonic backscattering from tissues, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47 (2000) 727–736.
[88] P.-H.Tsui, C.-C.Chang, Imaging Local Scatterer Concentrations by the Nakagami Statistical Model, Ultrasound Med. Biol. 33 (2007) 608–619. doi:10.1016/j.ultrasmedbio.2006.10.005.
[89] X.Yu, Y.Guo, S.-M.Huang, M.-L.Li, W.-N.Lee, Beamforming effects on generalized Nakagami imaging, Phys. Med. Biol. 60 (2015) 7513–7531.
[90] P.-H.Tsui, C.-K.Yeh, C.-C.Chang, W.-S.Chen, Performance Evaluation of Ultrasonic Nakagami Image in Tissue Characterization, Ultrason. Imaging. 30 (2008) 78–94.
[91] P.-H.Tsui, C.-C.Huang, C.-C.Chang, S.-H.Wang, K.K.Shung, Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro, Phys. Med. Biol. 52 (2007) 6413.
[92] V.A.Dumane, P.M.Shankar, Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48 (2001) 1139–1146. doi:10.1109/58.935733.
[93] P.-H.Tsui, C.-C.Huang, S.-H.Wang, Use of Nakagami Distribution and Logarithmic Compression in Ultrasonic Tissue Characterization, J. Med. Biol. Eng. 26 (2006) 69–73.
[94] A.Haritonova, D.Liu, E.S.Ebbini, In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 62 (2015) 2031–2042. doi:10.1109/TUFFC.2014.006882.
[95] E.S.Ebbini, H.Yao, A.Shrestha, Dual-Mode Ultrasound Phased Arrays for Image-Guided Surgery, Ultrason. Imaging. 28 (2006) 65–82. doi:10.1177/016173460602800201.
[96] Hui Yao, R.Griffin, E.S.Ebbini, Noninvasive localized ultrasonic measurement of tissue properties, in: IEEE Ultrason. Symp. 2004, IEEE, n.d.: pp. 724–727. doi:10.1109/ULTSYM.2004.1417824.
[97] Hui Yao, E.S.Ebbini, Dual-mode ultrasound phased arrays for imaging and therapy, in: 2004 2nd IEEE Int. Symp. Biomed. Imaging Macro to Nano (IEEE Cat No. 04EX821), IEEE, n.d.: pp. 25–28. doi:10.1109/ISBI.2004.1398465.
[98] F.Marquet, M.Pernot, J.-F.Aubry, M.Tanter, G.Montaldo, M.Fink, In-vivo non-invasive motion tracking and correction in High Intensity Focused Ultrasound therapy, in: 2006 Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE, 2006: pp. 688–691. doi:10.1109/IEMBS.2006.259963.
[99] F.Lingvall, Time domain reconstruction methods for ultrasonic array imaging, Uppsala University, 2004. |