帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃聖閔
作者(外文):Huang, Sheng-Min
論文名稱(中文):基於超音波成像之高強度聚焦式超音波熱治療監控
論文名稱(外文):Ultrasound Imaging Based Monitoring of High Intensity Focused Ultrasound Thermal Therapy
指導教授(中文):李夢麟
指導教授(外文):Li, Meng-Lin
口試委員(中文):葉秩光
鄭桂忠
崔博翔
沈哲州
口試委員(外文):Yeh, Chih-Kuang
Tang, Kea-Tiong
Tsui, Po-Hsiang
Shen, Che-Chou
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061806
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:70
中文關鍵詞:聚焦式超音波熱治療超音波熱成像S型函數互相關Nagagami影像焦斑偵測模型式重建最小均方誤差
外文關鍵詞:High-intensity focused ultrasound thermal therapyUltrasonic thermographySigmoid functionCross-correlationNakagami imagnigLesion detectionModel-based reconstructionMinimum mean-square error
相關次數:
  • 推薦推薦:0
  • 點閱點閱:789
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
高強度聚焦式超音波熱燒灼手術是一種將聲波能量聚焦於體內特定部位產生高熱,使組織細胞因熱凝結而壞死的非侵入性治療技術。臨床上主要採用磁振造影導引手術,以提高執行效率及安全性。然而,磁振造影除了有高成本、非即時性的缺點外,在病人的適用性上也有著嚴格的限制。特別是體內有磁性金屬植入物、配戴心律調節器或是有幽閉恐懼症的患者。因此,有必要開發新的監控技術,以彌補磁振造影的限制。
超音波造影是目前臨床上唯一同時具有高可靠度、低成本、可攜帶性、即時性、非游離性及高病人相容性等優勢的成像技術。因此,本研究以超音波成像為基礎,開發了三種監控技術,分別用於高強度聚焦式超音波熱燒灼手術的三個階段:術前規劃、術間導引及術後確認。對於術前規劃,本研究建議使用超音波溫度造影技術,追蹤溫升反應來定位聚焦點位置。並提出基於S形函式的改良式互相關演算法,解決傳統超音波溫度造影技術對於訊雜比與軸向解析度間的權衡問題。術後確認,則提出使用Nakagami參數影像來識別焦斑生成,以解決傳統超音波影像識別可靠度的問題。最後則提出,使用具有發射/接收操作的雙模高強度聚焦式超音波相控陣系統,搭配基於聲學傳遞系統模型的影像重建技術,重建發射聚焦波束。可望用於術間導引,持續監控焦點位置。
總結來說,本研究透過模擬、仿體及離體實驗證實,所提之三種成像技術可以分別滿足術前規劃、術間導引及術後確認三大目標。證明了以超音波成像為基礎的監控技術,用來導引手術執行是可行的。
High intensity focused ultrasound (HIFU) thermal therapy is a non-invasive treatment technique focusing the ultrasound on the specific location of the inside body to concentrate energy and induce thermal coagulation. Currently, magnetic resonance imaging-guided HIFU (MRgHIFU) is mainly used in clinical treatment. However, MRgHIFU not only has limitations of high cost, slow imaging speed but also are not applicable for patients with claustrophobia, pacemakers, and ferromagnetic implants.
This study proposes three monitoring techniques based on ultrasonic imaging for HIFU thermal therapy which are used in the phases of preoperative planning, intraoperative guidance, and postoperative confirmation to compensate for the limitations of MRI. For preoperative planning, this study suggests using ultrasonic thermography to locate the focal point by tracking temperature change and proposes a sigmoid function based cross-correlation method to improve the axial resolution of the thermography without losing the signal-to-noise ratio. For postoperative confirmation, Nakagami imaging is proposed to identify the thermal lesion generated by HIFU. Compared to the traditional ultrasound B-mode image, Nakagami imaging not only can characterize the lesion effectively but also can avoid the misidentification of the bubbles formed during the treatment as the lesion. Finally, based on a dual-mode ultrasound phased array system supporting both transmit and receive operations, we propose an acoustic propagation model based beam reconstruction method to map the transmit focal beam for the goal of intraoperative guidance.
The results of simulations, phantom experiments, and ex vivo experiments demonstrate that the proposed methods could meet the goals for monitoring HIFU thermal therapy. It also proved the feasibility of ultrasound imaging based monitoring technology to guide HIFU thermal therapy.
摘要...................................................................i
Abstract..............................................................ii
Table of Contents....................................................iii
List of Figures........................................................v
List of Tables........................................................ix
Glossary of Symbols and Abbreviation...................................x
Chapter 1 Introduction.................................................1
1.1 Introduction of HIFU Thermal Therapy...............................1
1.2 Image-guidance of HIFU.............................................3
1.3 Contribution of the Thesis Research................................5
Chapter 2 Axial-Resolution Improved Ultrasonic Thermography............9
2.1 Introduction.......................................................9
2.2 Materials and Methods.............................................13
2.2.1 Sigmoid function based cross-correlation method.................13
2.2.2 Simulation......................................................14
2.2.3 Ex vivo experiment setup........................................17
2.2.4 Data processing and analysis....................................18
2.3 Results...........................................................20
2.3.1 Simulation results..............................................20
2.3.2 Experimental results............................................23
2.4 Discussion........................................................26
2.5 Summary...........................................................29
Chapter 3 Nakagami Parametric Imaging.................................30
3.1 Introduction......................................................30
3.2 Materials and Methods.............................................32
3.2.1 Nakagami probability density function...........................32
3.2.2 Nakagami imaging................................................32
3.2.3 Experiment setup................................................33
3.2.4 Data analysis...................................................35
3.3 Results and Discussion............................................36
3.3.1 With suspected bubble formation.................................36
3.3.2 Without suspected bubble formation..............................39
3.3.3 Receiver Operating Characteristic Curve.........................41
3.3.4 Nakagami parameter as a function of time during HIFU exposure...41
3.4 Summary...........................................................44
Chapter 4 Model-based Transmit Focal Beam Reconstruction..............45
4.1 Introduction......................................................45
4.2 Materials and Methods.............................................48
4.2.1 Acoustic propagation model for a hemispherical phased array.....48
4.2.2 The inverse filter..............................................50
4.2.3 Simulation setup................................................50
4.3 Preliminary Results and Discussion................................52
4.4 Summary...........................................................55
Chapter 5 Conclusion and Future Work..................................56
5.1 Conclusion........................................................56
5.2 Future Work.......................................................58
References............................................................59
[1] J.E.Kennedy, F.Wu, G.R.terHaar, F.V.Gleeson, R.R.Phillips, M.R.Middleton, D.Cranston, High-intensity focused ultrasound for the treatment of liver tumors, Ultrasonics. 42 (2004) 931–935. doi:10.1016/j.ultras.2004.01.089.

[2] T.UCHIDA, H.OHKUSA, H.YAMASHITA, S.SHOJI, Y.NAGATA, T.HYODO, T.SATOH, Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer, Int. J. Urol. 13 (2006) 228–233. doi:10.1111/j.1442-2042.2006.01272.x.

[3] E.A.Stewart, W.M.W.Gedroyc, C.M.C.Tempany, B.J.Quade, Y.Inbar, T.Ehrenstein, A.Shushan, J.T.Hindley, R.D.Goldin, M.David, M.Sklair, J.Rabinovici, Focused ultrasound treatment of uterine fibroid tumors: Safety and feasibility of a noninvasive thermoablative technique, Am. J. Obstet. Gynecol. 189 (2003) 48–54.

[4] C.M.C.Tempany, N.J.McDannold, K.Hynynen, F.A.Jolesz, Focused ultrasound surgery in oncology: overview and principles, Radiology. 259 (2011) 39–56. doi:10.1148/radiol.11100155.

[5] M.R.Bailey, V.A.Khokhlova, O.A.Sapozhnikov, S.G.Kargl, L.A.Crum, Physical mechanisms of the therapeutic effect of ultrasound (a review), Acoust. Phys. 49 (2003) 369–388. doi:10.1134/1.1591291.

[6] G.R.terHaar, Therapeutic applications of ultrasound, Prog. Biophys. Mol. Biol. 93 (2007) 111–129.

[7] A.A.Pilla, M.A.Mont, P.R.Nasser, S.A.Khan, M.Figueiredo, J.J.Kaufman, R.S.Siffert, Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit., J. Orthop. Trauma. 4 (1990) 246–53.

[8] M.Dyson, M.Brookes, Stimulation of bone repair by ultrasound., Ultrasound Med. Biol. Suppl 2 (1983) 61–6.

[9] G.R.terHaar, Ultrasound focal beam surgery, Ultrasound Med. Biol. 21 (1995) 1089–1100. doi:10.1016/0301-5629(95)02010-1.

[10] G.R.terHaar, D.Robertson, Tissue destruction with focused ultrasound in vivo., Eur. Urol. 23 Suppl 1 (1993) 8–11.

[11] J.G.Lynn, R.L.Zwemer, A.J.Chick, A.E.Miller, A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, J. Gen. Physiol. 26 (1942) 179–93. doi:10.1085/jgp.26.2.179.

[12] F.J.FRY, Precision high intensity focusing ultrasonic machines for surgery., Am. J. Phys. Med. 37 (1958) 152–6.

[13] W.J.FRY, J.W.BARNARD, F.J.FRY, J.F.BRENNAN, Ultrasonically produced localized selective lesions in the central nervous system., Am. J. Phys. Med. 34 (1955) 413–23.

[14] M.T.Buchanan, K.Hynynen, Design and experimental evaluation of an intracavitary ultrasound phased array system for hyperthermia, IEEE Trans. Biomed. Eng. 41 (1994) 1178–1187. doi:10.1109/10.335866.

[15] M.Alkhorayef, M.Z.Mahmoud, K.S.Alzimami, A.Sulieman, M.A.Fagiri, High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment, Polish J. Radiol. 80 (2015) 131–141. doi:10.12659/PJR.892341.

[16] R.Seip, E.S.Ebbini, Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound, IEEE Trans. Biomed. Eng. 42 (1995) 828–839.

[17] C.Simon, P.VanBaren, E.S.Ebbini, Two-dimensional temperature estimation using diagnostic ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45 (1998) 1088–1099. doi:10.1109/58.710592.

[18] R.Maass-Moreno, C.A.Damianou, N.T.Sanghvi, Noninvasive temperature estimation in tissue via ultrasound echo- shifts. Part II. In vitro study, J. Acoust. Soc. Am. 100 (1996) 2522–2530.

[19] R.J.Stafford, F.Kallel, R.E.Price, D.M.Cromeens, T.A.Krouskop, J.D.Hazle, J.Ophir, Elastographic imaging of thermal lesions in soft tissue: a preliminary study in vitro, Ultrasound Med. Biol. 24 (1998) 1449–1458. doi:10.1016/S0301-5629(98)00099-4.

[20] C.Maleke, E.E.Konofagou, Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues, Phys. Med. Biol. 53 (2008) 1773.

[21] L.Deng, M.A.O’Reilly, R.M.Jones, R.An, K.Hynynen, A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping, Phys. Med. Biol. 61 (2016) 8476–8501. doi:10.1088/0031-9155/61/24/8476.

[22] M.Gyongy, C.C.Coussios, Passive Spatial Mapping of Inertial Cavitation During HIFU Exposure, IEEE Trans. Biomed. Eng. 57 (2010) 48–56.

[23] S.J.C.G.Hectors, I.Jacobs, C.T.W.Moonen, G.J.Strijkers, K.Nicolay, MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: Current status and future needs, Magn. Reson. Med. 75 (2016) 302–317. doi:10.1002/mrm.25758.

[24] N.McDannold, S.E.Maier, Magnetic resonance acoustic radiation force imaging, Med. Phys. 35 (2008) 3748–3758. doi:10.1118/1.2956712.

[25] D.Schlesinger, S.Benedict, C.Diederich, W.Gedroyc, A.Klibanov, J.Larner, MR-guided focused ultrasound surgery, present and future., Med. Phys. 40 (2013) 080901. doi:10.1118/1.4811136.

[26] A.Roberts, Magnetic resonance-guided focused ultrasound for uterine fibroids., Semin. Intervent. Radiol. 25 (2008) 394–405. doi:10.1055/s-0028-1102999.

[27] A.J.Loeve, J.Al-Issawi, F.Fernandez-Gutiérrez, T.Langø, J.Strehlow, S.Haase, M.Matzko, A.Napoli, A.Melzer, J.Dankelman, Workflow and intervention times of MR-guided focused ultrasound – Predicting the impact of new techniques, J. Biomed. Inform. 60 (2016) 38–48. doi:10.1016/j.jbi.2016.01.001.

[28] S.Srinivasan, R.Righetti, J.Ophir, Trade-offs between the axial resolution and the signal-to-noise ratio in elastography, Ultrasound Med. Biol. 29 (2003) 847–866. doi:10.1016/S0301-5629(03)00037-1.

[29] N.L.Bush, I.Rivens, G.R.terHaar, J.C.Bamber, Acoustic properties of lesions generated with an ultrasound therapy system, Ultrasound Med. Biol. 19 (1993) 789–801. doi:10.1016/0301-5629(93)90095-6.

[30] S.Y.Zhang, F.Y.Zhou, M.X.Wan, M.Wei, Q.Y.Fu, X.Wang, S.P.Wang, Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions, J. Acoust. Soc. Am. 131 (2012) 4836–4844. doi:10.1121/1.4711005.

[31] V.A.Dumane, P.M.Shankar, C.W.Piccoli, J.M.Reid, V.Genis, F.Forsberg, B.B.Goldberg, Classification of ultrasonic B mode images of the breast using frequency diversity and Nakagami statistics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 49 (2002) 664–668. doi:10.1109/TUFFC.2002.1002466.

[32] P.M.Shankar, V.A.Dumane, J.M.Reid, V.Genis, F.Forsberg, C.W.Piccoli, B.B.Goldberg, Classification of ultrasonic B-mode images of breast masses using Nakagami distribution, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48 (2001) 569–580.

[33] H.-L.Liu, C.-H.Tsai, C.-K.Jan, H.-Y.Chang, S.-M.Huang, M.-L.Li, W.Qiu, H.Zheng, Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 65 (2018). doi:10.1109/TUFFC.2018.2855181.

[34] D.Liu, E.S.Ebbini, Real-Time 2-D Temperature Imaging Using Ultrasound, IEEE Trans. Biomed. Eng. 57 (2010) 12–16.

[35] H.-L.Liu, M.-L.Li, P.-H.Tsui, M.-S.Lin, S.-M.Huang, J.Bai, A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy, Phys. Med. Biol. 56 (2011) 169.

[36] H.-L.Liu, M.-L.Li, T.-C.Shih, S.-M.Huang, I.-Y.Lu, K.-C.Ju, A novel ultrasonic-imaging based temperature estimation approach by instantaneous frequency detection, in: IEEE Int. Ultrason. Symp., 2008: pp. 2084–2087.

[37] R.M.Arthur, W.L.Straube, J.W.Trobaugh, E.G.Moros, Non-invasive estimation of hyperthermia temperatures with ultrasound, Int. J. Hyperth. 21 (2005) 589–600. doi:10.1080/02656730500159103.

[38] R.Maass-Moreno, C.A.Damianou, Noninvasive temperature estimation in tissue via ultrasound echo- shifts. Part I. Analytical model, J. Acoust. Soc. Am. 100 (1996) 2514–2521.

[39] A.N.Amini, E.S.Ebbini, T.T.Georgiou, Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques, IEEE Trans. Biomed. Eng. 52 (2005) 221–228.

[40] H.-L.Liu, M.-L.Li, T.-C.Shih, S.-M.Huang, I.-Y.Lu, D.-Y.Lin, S.-M.Lin, K.-C.Ju, Instantaneous Frequency-Based Ultrasonic Temperature Estimation During Focused Ultrasound Thermal Therapy, Ultrasound Med. Biol. 35 (2009) 1647–1661. doi:10.1016/j.ultrasmedbio.2009.05.004.

[41] P.Karwat, J.Litniewski, T.Kujawska, W.Secomski, K.Krawczyk, Noninvasive Imaging of Thermal Fields Induced in Soft Tissues In Vitro by Pulsed Focused Ultrasound Using Analysis of Echoes Displacement, Arch. Acoust. 39 (2014) 139–144. doi:10.2478/aoa-2014-0014.

[42] P.Karwat, T.Kujawska, P.A.Lewin, W.Secomski, B.Gambin, J.Litniewski, Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes, Ultrasonics. 65 (2016) 211–219. doi:10.1016/j.ultras.2015.10.002.

[43] B.Gambin, E.Kruglenko, Temperature measurement by statistical parameters of ultrasound signal backscattered from tissue samples, in: Acta Phys. Pol. A, 2015: pp. A72–A78. doi:10.12693/APhysPolA.128.A-72.

[44] P.-H.Tsui, Y.-C.Shu, W.-S.Chen, H.-L.Liu, I.-T.Hsiao, Y.-T.Chien, Ultrasound temperature estimation based on probability variation of backscatter data, Med. Phys. 39 (2012) 2369–2385. doi:10.1118/1.3700235.

[45] R.M.Arthur, W.L.Straube, J.D.Starman, E.G.Moros, Noninvasive temperature estimation based on the energy of backscattered ultrasound, Med. Phys. 30 (2003) 1021–1029.

[46] T.Shishitani, R.Matsuzawa, S.Yoshizawa, S.Umemura, Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound, J. Acoust. Soc. Am. 134 (2013) 1724–1730. doi:10.1121/1.4813104.

[47] J.W.Trobaugh, R.M.Arthur, W.L.Straube, E.G.Moros, A Simulation Model for Ultrasonic Temperature Imaging Using Change in Backscattered Energy, Ultrasound Med. Biol. 34 (2008) 289–298.

[48] F.Viola, W.F.Walker, A comparison of the performance of time-delay estimators in medical ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 (2003) 392–401. doi:10.1109/TUFFC.2003.1197962.

[49] W.F.Walker, G.E.Trahey, A fundamental limit on delay estimation using partially correlated speckle signals, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42 (1995) 301–308. doi:10.1109/58.365243.

[50] J.S.Bendat, A.G.Piersol, Random Data: Analysis and Measurement Procedures, Fourth Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010. doi:10.1002/9781118032428.

[51] S.K.Alam, J.Ophir, E.E.Konofagou, An adaptive strain estimator for elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45 (2002) 461–472. doi:10.1109/58.660156.

[52] E.Brusseau, C.Perrey, P.Delachartre, M.Vogt, D.Vray, H.Ermert, Axial Strain Imaging Using a Local Estimation of the Scaling Factor from RF Ultrasound Signals, Ultrason. Imaging. 22 (2000) 95–107. doi:10.1177/016173460002200202.

[53] S.Srinivasan, F.Kallel, R.Souchon, J.Ophir, Analysis of an Adaptive Strain Estimation Technique in Elastography, Ultrason. Imaging. 24 (2002) 109–118. doi:10.1177/016173460202400204.

[54] M.Yamakawa, T.Shiina, Strain Estimation Using the Extended Combined Autocorrelation Method, Jpn. J. Appl. Phys. 40 (2001) 3872–3876. doi:10.1143/JJAP.40.3872.

[55] T.Varghese, J.Ophir, Characterization of Elastographic Noise Using the Envelope of Echo Signals, Ultrasound Med. Biol. 24 (1998) 543–555. doi:10.1016/S0301-5629(98)00008-8.

[56] J.Bai, C.Ding, Y.Fan, A multi-scale algorithm for ultrasonic strain reconstruction under moderate compression, Ultrasonics. 37 (1999) 511–519. doi:10.1016/S0041-624X(99)00026-8.

[57] A.Thitaikumar, R.Righetti, T.A.Krouskop, J.Ophir, Resolution of axial shear strain elastography, Phys. Med. Biol. 51 (2006) 5245–5257. doi:10.1088/0031-9155/51/20/011.

[58] S.K.Alam, J.Ophir, T.Varghese, Elastographic axial resolution criteria: an experimental study, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47 (2000) 304–309. doi:10.1109/58.818775.

[59] S.Srinivasan, J.Ophir, S.K.Alam, Theoretical derivation of SNR, CNR and spatial resolution for a local adaptive strain estimator for elastography, Ultrasound Med. Biol. 30 (2004) 1185–1197.

[60] T.Varghese, M.Bilgen, J.Ophir, Multiresolution imaging in elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45 (1998) 65–75. doi:10.1109/58.646912.

[61] C.Pellot-Barakat, F.Frouin, M.F.Insana, A.Herment, Ultrasound elastography based on multiscale estimations of regularized displacement fields, IEEE Trans. Med. Imaging. 23 (2004) 153–163. doi:10.1109/TMI.2003.822825.

[62] H.Chen, H.Shi, T.Varghese, Improvement of elastographic displacement estimation using a two-step cross-correlation method, Ultrasound Med. Biol. 33 (2007) 48–56. doi:10.1016/j.ultrasmedbio.2006.07.022.

[63] R.Zahiri-Azar, S.E.Salcudean, Motion Estimation in Ultrasound Images Using Time Domain Cross Correlation With Prior Estimates, IEEE Trans. Biomed. Eng. 53 (2006) 1990–2000. doi:10.1109/TBME.2006.881780.

[64] T.A.Fuhrmann, O.Georg, J.Haller, K.-V.Jenderka, V.Wilkens, Uncertainty estimation for temperature measurement with diagnostic ultrasound, J. Ther. Ultrasound. 4 (2016) 28. doi:10.1186/s40349-016-0071-x.

[65] B.E.Treeby, B.T.Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt. 15 (2010) 21314.

[66] S.A.Goss, R.L.Johnston, F.Dunn, Comprehensive compilation of empirical ultrasonic properties of mammalian tissues, J. Acoust. Soc. Am. 64 (1978) 423–457. doi:10.1121/1.382016.

[67] R.C.Chivers, R.J.Parry, Ultrasonic velocity and attenuation in mammalian tissues, J. Acoust. Soc. Am. 63 (1978) 940–953. doi:10.1121/1.381774.

[68] I.M.Hallaj, R.O.Cleveland, K.Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am. 109 (2001) 2245–2253.

[69] H.H.Pennes, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, J. Appl. Physiol. 1 (1948) 93–122. doi:10.1152/jappl.1948.1.2.93.

[70] E.L.Madsen, G.R.Frank, F.Dong, Liquid or Solid Ultrasonically Tissue-Mimicking Materials with Very Low Scatter, Ultrasound Med. Biol. 24 (1998) 535–542. doi:10.1016/S0301-5629(98)00013-1.

[71] S.A.Sapareto, W.C.Dewey, Thermal dose determination in cancer therapy., Int. J. Radiat. Oncol. Biol. Phys. 10 (1984) 787–800.

[72] P.S.Yarmolenko, E.J.Moon, C.Landon, A.Manzoor, D.W.Hochman, B.L.Viglianti, M.W.Dewhirst, Thresholds for thermal damage to normal tissues: an update., Int. J. Hyperth. 27 (2011) 320–43. doi:10.3109/02656736.2010.534527.

[73] K.D.Donohue, F.Forsberg, C.W.Piccoli, B.B.Goldberg, Analysis and classification of tissue with scatterer structure templates, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46 (1999) 300–310. doi:10.1109/58.753018.

[74] P.M.Shankar, R.Molthen, V.M.Narayanan, J.M.Reid, V.Genis, F.Forsberg, C.W.Piccoli, A.E.Lindenmayer, B.B.Goldberg, Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization, Ultrasound Med. Biol. 22 (1996) 873–882. doi:10.1016/0301-5629(96)00080-4.

[75] R.F.Wagner, M.F.Insana, D.G.Brown, Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound, J. Opt. Soc. Am. A. 4 (1987) 910–922. doi:10.1364/JOSAA.4.000910.

[76] T.A.Tuthill, R.H.Sperry, K.J.Parker, Deviations from Rayleigh statistics in ultrasonic speckle, Ultrason. Imaging. 10 (1988) 81–89. doi:10.1016/0161-7346(88)90051-X.

[77] P.M.Shankar, Ultrasonic tissue characterization using a generalized Nakagami model, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48 (2001) 1716–1720. doi:10.1109/58.971725.

[78] P.-H.Tsui, C.-K.Yeh, Y.-Y.Liao, C.-C.Chang, W.-H.Kuo, K.-J.Chang, C.-N.Chen, Ultrasonic Nakagami Imaging: A Strategy to Visualize the Scatterer Properties of Benign and Malignant Breast Tumors, Ultrasound Med. Biol. 36 (2010) 209–217. doi:10.1016/j.ultrasmedbio.2009.10.006.

[79] C.-C.Huang, P.-H.Tsui, S.-H.Wang, Detection of coagulating blood under steady flow by statistical analysis of backscattered signals, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54 (2007) 435–442. doi:10.1109/TUFFC.2007.258.

[80] P.-H.Tsui, C.-K.Yeh, C.-C.Chang, Microvascular Flow Estimation by Contrast-Assisted Ultrasound B-Scan and Statistical Parametric Images, IEEE Trans. Inf. Technol. Biomed. 13 (2009) 360–369. doi:10.1109/TITB.2009.2013249.

[81] F.Destrempes, J.Meunier, M.F.Giroux, G.Soulez, G.Cloutier, Segmentation in Ultrasonic B-Mode Images of Healthy Carotid Arteries Using Mixtures of Nakagami Distributions and Stochastic Optimization, IEEE Trans. Med. Imaging. 28 (2009) 215–229. doi:10.1109/TMI.2008.929098.

[82] F.Destrempes, G.Cloutier, A Critical Review and Uniformized Representation of Statistical Distributions Modeling the Ultrasound Echo Envelope, Ultrasound Med. Biol. 36 (2010) 1037–1051. doi:10.1016/j.ultrasmedbio.2010.04.001.

[83] T.-Y.Wang, Z.Xu, F.Winterroth, T.L.Hall, J.B.Fowlkes, E.D.Rothman, W.W.Roberts, C.A.Cain, Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy-histotripsy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56 (2009) 995–1005.

[84] F.Liu, Z.Hu, L.Qiu, C.Hui, C.Li, P.Zhong, J.Zhang, Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation, J. Transl. Med. 8 (2010) 7. doi:10.1186/1479-5876-8-7.

[85] H.L.M.Cheng, M.A.Haider, M.J.Dill-Macky, J.M.Sweet, J.Trachtenberg, M.R.Gertner, MRI and contrast-enhanced ultrasound monitoring of prostate microwave focal thermal therapy: An in vivo canine study, J. Magn. Reson. Imaging. 28 (2008) 136–143. doi:10.1002/jmri.21415.

[86] C.-Y.Wang, X.Geng, T.-S.Yeh, H.-L.Liu, P.-H.Tsui, Monitoring radiofrequency ablation with ultrasound Nakagami imaging, Med. Phys. 40 (2013) 072901. doi:10.1118/1.4808115.

[87] P.M.Shankar, A general statistical model for ultrasonic backscattering from tissues, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47 (2000) 727–736.

[88] P.-H.Tsui, C.-C.Chang, Imaging Local Scatterer Concentrations by the Nakagami Statistical Model, Ultrasound Med. Biol. 33 (2007) 608–619. doi:10.1016/j.ultrasmedbio.2006.10.005.

[89] X.Yu, Y.Guo, S.-M.Huang, M.-L.Li, W.-N.Lee, Beamforming effects on generalized Nakagami imaging, Phys. Med. Biol. 60 (2015) 7513–7531.

[90] P.-H.Tsui, C.-K.Yeh, C.-C.Chang, W.-S.Chen, Performance Evaluation of Ultrasonic Nakagami Image in Tissue Characterization, Ultrason. Imaging. 30 (2008) 78–94.

[91] P.-H.Tsui, C.-C.Huang, C.-C.Chang, S.-H.Wang, K.K.Shung, Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro, Phys. Med. Biol. 52 (2007) 6413.

[92] V.A.Dumane, P.M.Shankar, Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48 (2001) 1139–1146. doi:10.1109/58.935733.

[93] P.-H.Tsui, C.-C.Huang, S.-H.Wang, Use of Nakagami Distribution and Logarithmic Compression in Ultrasonic Tissue Characterization, J. Med. Biol. Eng. 26 (2006) 69–73.

[94] A.Haritonova, D.Liu, E.S.Ebbini, In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 62 (2015) 2031–2042. doi:10.1109/TUFFC.2014.006882.

[95] E.S.Ebbini, H.Yao, A.Shrestha, Dual-Mode Ultrasound Phased Arrays for Image-Guided Surgery, Ultrason. Imaging. 28 (2006) 65–82. doi:10.1177/016173460602800201.

[96] Hui Yao, R.Griffin, E.S.Ebbini, Noninvasive localized ultrasonic measurement of tissue properties, in: IEEE Ultrason. Symp. 2004, IEEE, n.d.: pp. 724–727. doi:10.1109/ULTSYM.2004.1417824.

[97] Hui Yao, E.S.Ebbini, Dual-mode ultrasound phased arrays for imaging and therapy, in: 2004 2nd IEEE Int. Symp. Biomed. Imaging Macro to Nano (IEEE Cat No. 04EX821), IEEE, n.d.: pp. 25–28. doi:10.1109/ISBI.2004.1398465.

[98] F.Marquet, M.Pernot, J.-F.Aubry, M.Tanter, G.Montaldo, M.Fink, In-vivo non-invasive motion tracking and correction in High Intensity Focused Ultrasound therapy, in: 2006 Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE, 2006: pp. 688–691. doi:10.1109/IEMBS.2006.259963.

[99] F.Lingvall, Time domain reconstruction methods for ultrasonic array imaging, Uppsala University, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *