帳號:guest(3.15.221.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁上雯
作者(外文):Wong, Shang-Wen.
論文名稱(中文):以系統生物學方法和大數據資料庫探勘分析正常、發育和再生肝臟之間的基因和表觀遺傳差異細胞網路機制
論文名稱(外文):Investigation of Genetic-and-Epigenetic Networks for Differential Cellular Mechanisms between Normal, Developing and Regenerating Livers via Systems Biology Method and Big Data Mining
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):詹鴻霖
王慧菁
蘇士哲
王禹超
口試委員(外文):Chan, Hong-Lin
Wang, Hui-Ching
Sue, Shih-Che
Wang, Yu-Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061615
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:86
中文關鍵詞:肝臟再生發育肝臟發育造血系統生物學大數據探勘表觀遺傳網路生物標記多分子藥物
外文關鍵詞:liverregenerationdevelopmenthepatogenesishematopoiesissystems biologybig data analysisepigeneticsnetwork biomarkersmulti-molecule drug
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
肝臟是具有較高再生能力的器官,在出生前後對於維持體內平衡和健康發揮重要作用。出生前肝臟發育(HG)和部分肝臟切除(PHx)後的肝臟再生(LR)的遺基因調控機制已經有深入的研究;然而,關於肝臟在肝臟發育和肝臟再生期間為了適應快速的變化所進行地表觀遺傳修飾的機制所知甚少。首先,我們使用系統生物學和大數據探勘,透過發育、正常和肝臟部分切除後再生的肝臟的轉錄組和甲基化來建構全基因組基因及表觀遺傳網路(GWGEN)。接著,我們對3個肝臟條件的GWGEN使用主成分網絡投影(PNP)來提取核心GWGEN。最後,對核心GWGEN進行分析比較,以探究肝臟發育和肝臟再生的重要信號傳導途徑和表觀遺傳修飾機制。我們觀察到細胞外信號被傳導到轉錄因子(TFs),使其目標基因受到調節,從而誘導負責肝臟發育的細胞機制:AR的磷酸化將造血前驅細胞招募到發育中的肝臟,並且ZBTB8A的磷酸化、DNA甲基化活化的MAF和GATA1能促進造血細胞系分化。此外,我們觀察到通過TF ZEB1磷酸化的表觀遺傳修飾對內質網壓力的監控機制。在正常肝臟中,表觀遺傳修飾引發多倍體機制,包括肝細胞中IGF1R、IGF1和ATXN3的磷酸化以及EGR1的DNA甲基化。已經觀察到多倍體機制有利於肝臟的再生。在肝臟再生過程中,表觀遺傳調控對於部分肝臟切除所引起的微環境的反應具有重要作用。在再生的肝臟中,TF ETS1的乙酰化可以觸發SERPINE1在部分肝臟切除後建立最早期的微環境。透過FOXO3的乙酰化和磷酸化,來使損傷的肝細胞自我凋亡;NFATC1和NFATC2也可以產生細胞激素以招募免疫相關細胞,並移除細胞碎片。MDM2的磷酸化和SUMO化正調控AP-1複合物(FOSL2和JUN)的表現,並促進肝細胞增殖以恢復肝臟質量和功能;通過基因調控和DNA甲基化活化MIR21可以維持肝臟再生的瞬態環境。最後,我們提出了一種藥物設計流程,來設計一種多分子藥物來標靶到我們探究肝臟發育和肝臟再生的基因及表觀遺傳機制後提出的特定生物標誌物上,以促進肝臟再生。
The liver is an organ with high regenerative capacity and plays an important role in the maintenance of homeostasis and health before and after birth. The genetic mechanisms of prenatal hepatogenesis (HG) and liver regeneration (LR) after partial hepatectomy (PHx) had been thoroughly investigated; however, less is known about the mechanisms of epigenetic modifications which liver has performed to adapt to the rapidly changing circumstance during hepatogenesis and liver regeneration. First, we used systems biology and big data mining to construct whole genome-wide genetic-and-epigenetic networks (GWGENs) via the transcriptomes and methylomes of human developing, normal and regenerating liver after PHx. Then we extracted the core GWGENs by applying principal network projection (PNP) respectively on GWGENs of 3 hepatic conditions. Finally, the core GWGENs are analyzed and compared to investigate the significant signal transduction pathways and epigenetic modification mechanisms of hepatogenesis and liver regeneration. We observed extracellular signals were transduced to transcription factors (TFs), leading to the regulation of their target genes, in turn inducing cellular mechanisms that are responsible for hepatogenesis: phosphorylation of AR recruits hematopoietic progenitor stem cell into developing liver, and phosphorylation of ZBTB8A and DNA methylation activation of MAF and GATA1 promote hematopoietic cell line differentiation. Moreover, we observed the surveillance mechanism by the epigenetic modification of phosphorylation on TF ZEB1 to react to ER stress. In the human normal liver, polyploidy mechanism is initiated by epigenetic modification including the phosphorylation of IGF1R, IGF1, ATXN3 and DNA methylation of EGR1 in hepatocyte. The polyploidy mechanism is observed to benefit liver regeneration. During early stage of human liver regeneration, epigenetic regulations play an important role to respond to the microenvironment caused by PHx. In the regenerating liver, acetylation of TF ETS1 could trigger SERPINE1 to establish microenvironment at the earliest phase after PHx. Injured hepatocytes are removed by apoptosis due to the acetylation and phosphorylation of FOXO3; also NFATC1 and NFATC2 could produce cytokines to recruit immune-related cells and remove cell debris. Phosphorylation and sumoylation of MDM2 upregulating AP-1 complex (FOSL2, JUN) could promote hepatocytes proliferation to regain liver mass and function; activation of MIR21 by gene regulations and DNA methylation could sustain the transient environment for liver regeneration. Finally, we proposed a drug design procedure to design a multi-molecule drug targeting on specific biomarkers we investigated from the genetic-and-epigenetic mechanisms of hepatogenesis and liver regeneration to promote liver regeneration.
中文摘要 I
Abstract II
Contents V
List of Tables VII
List of Figures VII
List of Abbreviations VIII
1. Introduction 1
2. Materials and Methods 5
2.1 Overview of the construction processes of real GWGENs of 3 hepatic conditions 5
2.2 Big data mining and data preprocessing 6
2.3 Dynamic models of the candidate GWGEN for developing, normal and regenerating livers 8
2.4 System identification method of the dynamic models of candidate GWGEN 11
2.5 System order detection scheme of the dynamic models of GWGEN 17
2.6 Core network identification of the real GWGENs by applying the PNP method 19
3. Results and Discussion 23
3.1 Construction of the real GWGENs of the developing, normal and regenerating livers (Figures S1, S2 and S3). 23
3.2 Construction of core GWGENs of the developing, normal and regenerating livers (Figures S4, S5, and S6). 23
3.3 Core genetic-and-epigenetic mechanism during hepatogenesis (HG)
(Figures 2 and 3) 25
3.3 (a) Cytoskeleton remodeling recruits hematopoietic progenitor cells
(Figure 3(a)) 25
3.3 (b) Hematopoiesis cell line differentiation via the perception of ion concentration changes (Figure 3(b)) 26
3.3 (c) Tight surveillance control of hepatogenesis (Figure 3(c)) 28
3.3 (d) Polyploidy of hepatocyte in normal liver (Figure 3(d)) 28
3.4 Core genetic-and-epigenetic mechanism during liver regeneration (LR) (Figures 4 and 5) 31
3.4 (a) Establishing microenvironment for liver regeneration by acetylation activation of ETS1: phosphorylation, glycosylation, and deubiquitination activation of bipotential progenitor cell (FOXL1) to differentiate into hepatocytes and cholangiocytes (Figure 5(a)) 31
3.4 (b) T cell lineage development and differentiation in liver by GATA3; Apoptosis of injured hepatocytes by acetylation and phosphorylation of FOXO3; production of cytokines by NFATC1 and NFATC2 to recruit immune-related cells and remove cell debris (Figure 5(b)) 33
3.4 (c) Phosphorylation and sumoylation of AP-1 complex (FOSL2, JUN) promotes hepatocytes proliferation; activation of MIR21 by GRs and DNA methylation sustain the environment for liver regeneration
(Figure 5(c)) 36
3.5 The overview of genetic-and-epigenetic mechanisms of developing liver (hepatogenesis), normal liver, and regenerating liver (liver regeneration) 40
3.6 Specific biomarkers for liver regeneration and multi-molecule drug design 44
4. Conclusions 46
Tables 48
Figures 66
References 83

1. Martin, M.A. and M. Bhatia, Analysis of the human fetal liver hematopoietic microenvironment. Stem Cells and Development, 2005. 14(5): pp. 493-504.
2. Hata, S., M. Namae, and H. Nishina, Liver development and regeneration: From laboratory study to clinical therapy. Development Growth & Differentiation, 2007. 49(2): pp. 163-170.
3. Asano, H., M. Kobayashi, and T. Hoshino, The Hematopoietic Microenvironment in the Fetal Liver of Mice - Relationship between Developing Hepatocytes and Erythroblasts. Journal of Electron Microscopy, 1987. 36(1-2): pp. 15-25.
4. Kang, L.I., W.M. Mars, and G.K. Michalopoulos, Signals and cells involved in regulating liver regeneration. Cells, 2012. 1(4): pp. 1261-92.
5. Taub, R., Liver regeneration: From myth to mechanism. Nature Reviews Molecular Cell Biology, 2004. 5(10): pp. 836-847.
6. Gunewardena, S.S., et al., Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome. Plos One, 2015. 10(10).
7. Berasain, C. and M.A. Avila, Regulation of hepatocyte identity and quiescence. Cellular and Molecular Life Sciences, 2015. 72(20): pp. 3831-3851.
8. Zorn, A.M., Liver development, in StemBook. 2008: Cambridge (MA).
9. Gordillo, M., T. Evans, and V. Gouon-Evans, Orchestrating liver development. Development, 2015. 142(12): pp. 2094-2108.
10. Chaveles, I., et al., MicroRNA profiling in murine liver after partial hepatectomy. International Journal of Molecular Medicine, 2012. 29(5): pp. 747-755.
11. Riehle, K.J., et al., New concepts in liver regeneration. Journal of Gastroenterology and Hepatology, 2011. 26: pp. 203-212.
12. Mao, S.A., J.M. Glorioso, and S.L. Nyberg, Liver regeneration. Translational Research, 2014. 163(4): pp. 352-362.
13. Palmes, D. and H.U. Spiegel, Animal models of liver regeneration. Biomaterials, 2004. 25(9): pp. 1601-11.
14. Chen, X.Y., et al., MicroRNAs in Liver Regeneration. Cellular Physiology and Biochemistry, 2015. 37(2): pp. 615-628.
15. Fausto, N., Liver regeneration. Journal of Hepatology, 2000. 32: pp. 19-31.
16. Higgins, G.M. and R.M. Anderson, Experimental pathology of the liver I Restoration of the liver of the white rat following partial surgical removal. Archives of Pathology, 1931. 12(2): pp. 186-202.
17. Stefani, G. and F.J. Slack, Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 2008. 9(3): pp. 219-230.
18. Tzur, G., et al., Comprehensive Gene and microRNA Expression Profiling Reveals a Role for microRNAs in Human Liver Development. Plos One, 2009. 4(10).
19. Kelley-Loughnane, N., et al., Independent and overlapping transcriptional activation during liver development and regeneration in mice. Hepatology, 2002. 35(3): pp. 525-534.
20. Shu, J.M., et al., Genomewide MicroRNA Down-Regulation as a Negative Feedback Mechanism in the Early Phases of Liver Regeneration. Hepatology, 2011. 54(2): pp. 609-619.
21. Kim, M., et al., Identification of DNA methylation markers for lineage commitment of in vitro hepatogenesis. Human Molecular Genetics, 2011. 20(14): pp. 2722-2733.
22. Chu, J. and K.C. Sadler, New School in Liver Development: Lessons from Zebrafish. Hepatology, 2009. 50(5): pp. 1656-1663.
23. Haberland, M., R.L. Montgomery, and E.N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Reviews Genetics, 2009. 10(1): pp. 32-42.
24. Farooq, M., et al., Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Developmental Biology, 2008. 317(1): pp. 336-353.
25. Tzur, G., et al., Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One, 2009. 4(10): pp. e7511.
26. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006. 34: pp. D535-D539.
27. Zheng, G.Y., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): pp. 2416-2417.
28. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015. 4.
29. Huse, S.M., et al., Patterns of gene expression and DNA methylation in human fetal and adult liver. BMC Genomics, 2015. 16: pp. 981.
30. Shi, X.F., et al., Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Letters, 2013. 339(2): pp. 159-166.
31. Yoon, J.H., K. Abdelmohsen, and M. Gorospe, Functional interactions among microRNAs and long noncoding RNAs. Seminars in Cell & Developmental Biology, 2014. 34: pp. 9-14.
32. Weber, M., et al., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007. 39(4): pp. 457-66.
33. Wang, Y.C., et al., Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. BMC Syst Biol, 2013. 7: pp. 79.
34. Chen, B.S. and C.W. Li, Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data. BMC Syst Biol, 2016. 10: pp. 18.
35. R, J., System modeling & Identification. 1993.
36. Coleman, T.F. and Y.Y. Li, A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. Siam Journal on Optimization, 1996. 6(4): pp. 1040-1058.
37. Lu, PP., et al., Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol, 2007. 25(1): pp. 117-24.
38. Otogawa, K., et al., Induction of tropomyosin during hepatic stellate cell activation and the progression of liver fibrosis. Hepatology International, 2009. 3(2): pp. 378-383.
39. Tosti, E., R. Boni, and A. Gallo, Ion currents in embryo development. Birth Defects Res C Embryo Today, 2016. 108(1): pp. 6-18.
40. Lin, S.Y., et al., Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol, 1996. 16(4): pp. 1668-75.
41. Ferreira, R., et al., GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 2005. 25(4): pp. 1215-27.
42. Spaapen, F., et al., The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis. PLoS One, 2013. 8(3): pp. e58083.
43. Lee, H.O., J.M. Davidson, and R.J. Duronio, Endoreplication: polyploidy with purpose. Genes Dev, 2009. 23(21): pp. 2461-77.
44. Wilkinson, N. and K. Pantopoulos, IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2 alpha mRNA translation. Blood, 2013. 122(9): pp. 1658-1668.
45. Sackett, S.D., et al., Foxl1 Is a Marker of Bipotential Hepatic Progenitor Cells in Mice. Hepatology, 2009. 49(3): pp. 920-929.
46. Yin, C.Y., et al., Hepatic stellate cells in liver development, regeneration, and cancer. Journal of Clinical Investigation, 2013. 123(5): pp. 1902-1910.
47. Kubes, PP., D. Payne, and R.C. Woodman, Molecular mechanisms of leukocyte recruitment in postischemic liver microcirculation. Am J Physiol Gastrointest Liver Physiol, 2002. 283(1): pp. G139-47.
48. Duque, G.A. and A. Descoteaux, Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology, 2014. 5: pp. 1-12.
49. Konig, K., et al., Inhibition of Plexin C1 Protects Against Hepatic Ischemia-Reperfusion Injury. Crit Care Med, 2016. 44(8): pp. e625-32.
50. Buschmann, T., et al., SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 2000. 101(7): pp. 753-62.
51. Peng, S.L., et al., NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity, 2001. 14(1): pp. 13-20.
52. Bengtson, PP., et al., Polymorphonuclear leukocytes from individuals carrying the G329A mutation in the alpha 1,3-fucosyltransferase VII gene (FUT7) roll on E- and P-selectins. Journal of Immunology, 2002. 169(7): pp. 3940-3946.
53. Papanikolaou, G. and K. Pantopoulos, Systemic Iron Homeostasis and Erythropoiesis. Iubmb Life, 2017. 69(6): pp. 399-413.
54. Wang, X., et al., Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett, 2004. 561(1-3): pp. 195-201.
55. Fuchs, S.Y., et al., SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 2002. 110(4): pp. 531.
56. Stepniak, E., et al., c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev, 2006. 20(16): pp. 2306-14.
57. Kusakabe, M., et al., c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood, 2011. 118(5): pp. 1374-1385.
58. Lamb, J., et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006. 313(5795): pp. 1929-35.
59. Gear, A.R., A.D. Albert, and J.M. Bednarek, The effect of the hypocholesterolemic drug clofibrate on liver mitochondrial biogenesis. A role for neutral mitochondrial proteases. J Biol Chem, 1974. 249(20): pp. 6495-504.
60. Das, D., et al., Antioxidant properties of colchicine in acute carbon tetrachloride induced rat liver injury and its role in the resolution of established cirrhosis. Biochim Biophys Acta, 2000. 1502(3): pp. 351-62.
61. Merkel, C., et al., Effect of nadolol on liver haemodynamics and function in patients with cirrhosis. Br J Clin Pharmacol, 1986. 21(6): pp. 713-9.
62. Lee, W.G., et al., Nadolol reduces insulin sensitivity in liver cirrhosis: a randomized double-blind crossover trial. Diabetes Metab Res Rev, 2017. 33(3).
63. Shome, S., PP.S. Dasgupta, and S. Basu, Dopamine regulates mobilization of mesenchymal stem cells during wound angiogenesis. PLoS One, 2012. 7(2): pp. e31682.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *