|
[1] ITU-R, “Attenuation by atmospheric gases,” in ITU-R Rec, Geneva, 2005, pp. 676-6. [2] FCC, “Use of Spectrum Bands Above 24 GHz For Mobile Radio Services, et al,” FCC 16-89, 2016. [3] ETSI, “Broadband Radio Access Networks (BRAN); 60 GHz Multiple-Gigabit WAS/RLAN Systems; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive,” ETSI EN 302 567 v2.0.22, 2016. [4] MIC, “Woking Class of 60 GHz Band Wireless Device,” 2015. [Online]. Available: http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/joho_tsusin/idou/60ghz.html. [5] MIIT, “Provisions of the People's Republic of China on Radio Spectrum Allocations,” 2013. [Online]. Available: http://www.miit.gov.cn/n1146295/n1146557/n1146624/c3554788/content.html. [6] Rohde & Schwarz, “802.11ad - WLAN at 60 GHz,” White Paper WLAN 802.11ad ─ 1MA220_2e, 2013. [7] I. Aoki, S. Kee, D. Rutledge and A. Hajimiri, “Distributed active transformer—A new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002. [8] J. Y.-C. Liu, Q. J. Gu, A. Tang, N.-Y. Wang and M.-C. F. Chang, “A 60 GHz Tunable Output Profile Power Amplifier in 65 nm CMOS,” IEEE Microw. and Wireless Compon. Lett., vol. 21, no. 7, pp. 377-379, Jul. 2011. [9] H. Oh, H. Kang, H. Lee, H. Koo, M. Kim, W. Lee, W. Lim, C.-S. Park, K. C. Hwang, K.-Y. Lee and Y. Yang, “Doherty Power Amplifier Based on the Fundamental Current Ratio for Asymmetric cells,” IEEE Trans. Microw. Theory Techn., vol. PP, no. 99, pp. 1-8, May 2017. [10] T.-Y. Huang, Y.-H. Lin and H. Wang, “A K-Band Adaptive-Bias Power Amplifier with Enhanced Linearizer Using 0.18-μm CMOS Process,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, May 2015. [11] N. Deferm and P. Reynaert, “A 100 GHz Transformer-Coupled Fully Differential Amplifier in 90 nm CMOS,” in Radio Frequency Integrated Circuits Symposium, 2010. [12] D. A. Chan and M. Feng, “A Compact W-Band CMOS Power Amplifier With Gain Boosting and Short-Circuited Stub Matching for High Power and High Efficiency Operation,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 98-100, Feb. 2011. [13] K.-J. Koh, Y.-S. Youn and H.-K. Yu, “A gain boosting method at RF frequency using active feedback and its application to RF variable gain amplifier (VGA),” in Proc. Int. Symp. Circuits and Syst., 2002. [14] L. W. Chan and R. J. Long, “A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564, Mar. 2010. [15] Y.-C. Chen, Y.-T. Chang and H.-C. Lu, “A K-Band Power Amplifier with Parasitic Diode Linearizerin 0.18-μm CMOS Process Using 1.8-V Supply Voltage,” in Proc. IEEE Radio Freq. Integr. Technology (RFIT), 2016. [16] J.-H. Tsai, C.-H. Wu, H.-Y. Yang and T.-W. Huang, “A 60 GHz CMOS Power Amplifier With Built-in Pre-Distortion Linearizer,” IEEE Microw. and Wireless Compon. Lett., pp. 676-678, Dec. 2011. [17] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H.-W. Kim, C.-H. Lee and K. T. Kornegay, “A Linear Multi-Mode CMOS Power Amplifier With Discrete Resizing and Concurrent Power Combining Structure,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1034-1048, May 2011. [18] K.-J. Tsai, J.-L. Kuo and H. Wang, “A W-band Power Amplifier in 65-nm CMOS with 27 GHz Bandwidth and 14.8 dBm Saturated Output Power,” in IEEE RFIC Symp. Dig., 2012. [19] W. Tai and D. S. Ricketts, “A W-band 21.1 dBm Power Amplifier with an 8-way Zero-degree Combiner in 45 nm SOI CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014. [20] H. Jia, B. Chi, L. Kuang and Z. Wang, “A W-Band Power Amplifier Utilizing a Miniaturized Marchand Balun Combiner,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 719-725, Feb. 2015. [21] Z. Xu, Q. J. Gu and M.-C. F. Chang, “A 100–117 GHz W-Band CMOS Power Amplifier With On-Chip Adaptive Biasing,” IEEE Microw. and Wireless Compon. Lett., vol. 21, no. 10, pp. 547-549, Aug. 2011. [22] Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C. Kao and H. Wang, “Millimeter-Wave CMOS Power Amplifiers With High Output Power and Wideband Performances,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4520-4533, Dec. 2013. [23] D. Sandström, B. Martineau, M. Varonen, M. Kärkkäinen, A. Cathelin and K. A. I. Halonen, “94 GHz Power-Combining Power Amplifier with +13 dBm,” in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2011. [24] J.-A. Han, Z.-H. Kong, K. Ma and K. S. Yeo, “A 26.8 dB Gain 19.7 dBm CMOS Power Amplifier Using 4-way Hybrid Coupling Combiner,” IEEE Microw. and Wireless Compon. Lett., vol. 25, no. 1, pp. 43-45, Jan. 2015. [25] Q. J. Gu, Z. Xu and M.-C. F. Chang, “Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1365-1374, May 2012. [26] J.-F. Yeh, J.-H. Tsai and T.-W. Huang, “A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1280-1290, Mar. 2013. [27] C.-F. Chou, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, C.-W. Wu and H. Wang, “Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4545-4560, Dec. 2016. [28] J. Y.-C. Liu, C.-T. Chan and S. S. H. Hsu, “A K-Band Power Amplifier with Adaptive Bias in 90-nm CMOS,” in 9th European Microwave Integrated Circuit Conf. (EuMIC), 2014. [29] Y.-H. Hsiao, H.-C. Liao, J.-C. Kao and H. Wang, “A V-Band Power Amplifier with Adaptive Bias Circuit to Save Quiescent DC Power Consumption Using 90-nm CMOS Technology,” in 2014 Asia-Pacific Microwave Conf. (APMC), 2014. [30] D. Zhao and P. Reynaert, “A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2323-2337, Oct. 2013. |