帳號:guest(3.142.245.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠宏
作者(外文):Chen, Kuan-Hung
論文名稱(中文):體外診斷之微流拉曼光學感測系統其設計製造與應用
論文名稱(外文):Microfluidic Raman Biosensors for In Vitro Diagnostics
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):顏宗海
吳俊忠
王本誠
饒達仁
口試委員(外文):Yen, Tzung-Hai
Wu, Jiunn-Jong
Wang, Pen-Cheng
Yao, Da-Jeng
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035808
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:105
中文關鍵詞:拉曼光學體外診斷系統微流體細菌檢測核酸檢測表面增強拉曼散射
外文關鍵詞:In Vitro DiagnosticsPoint-of-care deviceRaman BiosensorsMicrofluidicsbacteriaSERS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
診斷是醫學治療過程中很重要的一個步驟,幫助人類確實的了解自身的身體狀況,並給予合適的治療處置。體外診斷系統能在不侵入人體情況下,得到身體相關資訊,是生醫產業不可缺少的一環。因此開發新穎式體外診斷裝置能快速檢測、操作簡單、又兼具經濟成本是生醫相關研究者努力的目標。拉曼光譜法(Raman Sepectrometry)是近三十年來發展迅速的光學檢測技術,能偵測分子等級訊號,並且不需複雜的前處理步驟,配合表面增強拉曼散射(Surface enhanced Raman Scattering, SERS)原理能進一步提高靈敏度。建置微流體晶片,配合一個手提箱大小的光譜儀是開發體外診斷裝置的優質選擇。本研究中應用微機電相關技術以及奈米工程開展兩個研究項目,打造適用於拉曼光譜法的體外診斷系統用於癌症早期檢測、細菌檢測。
首先,利用微機電技術打造高增進因數的陣列式表面增強拉曼矽奈米柱基板,來檢測結直腸癌的癌症標誌物,微小RNA-21 (miRNA-21)。藉由奈米級遮罩與非等向性蝕刻法打造穩定性高的矽奈米柱陣列,並且藉由優化柱頭上奈米級結構,增進其表面增強效益。在矽奈米柱上接合設計的奈米探針,專一性地抓取特定序列的微小RNA,並且能在不進行放大核酸的情況下,有聚合酶連鎖反應(PCR)核酸放大後的檢測靈敏度。整體的檢測時間也縮短至一個小時內完成。
第二個研究項目中,我們用微機電技術中的電動力學原理,製作為微流體細菌聚集晶片。晶片中產生的交流電介電泳力(AC-DEP)與交流電滲流(AC-EOF)的交互作用下,能選擇性地聚集血液中的細菌於收集井中,將血球排除在收集井外。在避免血球細胞干擾後,結合銀奈米粒子的表面增強拉曼散射作用,得到細菌特有的拉曼光譜,對照資料庫以分辨其種類,其靈敏度可達7 CFU/mL。接著,在聚集晶片中進行抗生素感受性試驗,測試了臨床上常見的大腸桿菌(E. coli)、金黃色葡萄球菌(S. aureus)以及產吲哚金黃桿菌(C. indologenes),並且得到與傳統培養法一致的結果。
綜合這兩項基於拉曼光譜法開發的新穎體外診斷系統,跟傳統檢測裝置相比,能達到縮短時間、提高靈敏度的功效。設計檢測晶片僅一個手掌大小,搭配手持式的拉曼光譜儀未來可應用到移地檢測、即時檢測等。
Diagnosis is an ensencial process in medical treatment, helping humans to truly understand their own physical conditions and provide appropriate treatments. Therefore, developing in vitro diagnostic devices with properties of rapid, easy-use, and cost-effective, is always a desired goal. In this aspect, Raman spectroscopy with surface enhanced Raman scattering (SERS), which can directly detect water solution without complex pretreatment and provide molecular-level signals, shows great potentials. In this dissertation, two diagnostic system based on micro/nano-technology and Raman spectroscopy technology have been developed to early cancer detection and disease diagnosis.
In the first part, a silicon nanopillar (SiNP) with high SERS enhancement factors have been introduced to detect colorectal cancer cancer markers, microRNA-21. With nano-shielding mechanism and anisotropic etching, high aspect ratio, stable silicon nano-pillar array was developed, and its SERS effect is improved by optimizing the nanostrutures on the pillar head. SiNP immobilized with nanoprobe demonstrated great ability to detect miR-21-Cy5, which not only specificially recognized 2-mismatch sequences, but also push the detection limit to 0.1 nM, comparable with one wiht polymerase chain reaction (PCR). The overall inspection time has also been shortened to one hour.
In the second part, we demonstrated a novel multi-functional microfluidic system, designated three dimensional Alternative Current Electrokinetic/Surface Enhanced Raman Scattering (3D-ACEK/SERS) platform, which can concentrate bacteria from whole blood, identify bacteria species, and determine antibiotic susceptibilities of the bacteria rapidly. For bacteria, S. aureus, E. coli, and C. indologenes, the combined electrokinetic mechanism integrating AC-electroosmosis (AC-EO) and dielectrophoresis (DEP), allows thousand-fold concentration of bacteria in the center of an electrode with a wide range of working distance, while blood cells are excluded away through negative DEP forces. This microchip performs SERS based assay to determine the identity of the concentrated bacteria in approximately two minutes with a limit of detection of 7 CFU/ml. Finally, label-free antibiotic susceptibility testing has been successfully demonstrated on the platform using both antibiotic-sensitive and multidrug-resistant bacterial strains.
In summary, the above two novel in vitro diagnostic systems have achieved the desired goals, ie., shortening detection time and improving sensitivities, compared with traditional methods. Moreover, the portable Raman spectroscopy and plam-size microchip provided excellent moblitiy. Together, we believe that these innovations can find important applications in clinical diagnosis, mobile examination, as well as in-situ testing.
摘要 I
Abstracts III
致謝 V
目錄 VII
表目錄 IX
圖目錄 X
第 1 章 緒論 1
1.1 微流體 4
1.1.1 微流體在生醫方面應用 5
1.2 體外診斷系統 8
1.2.1 紙基晶片 11
1.2.2 側向流體檢測裝置 11
1.2.3 聚合物類型微流體檢測裝置 12
1.2.4 拉曼型微流體檢測裝置 12
1.3 研究動機 14
1.4 研究目標 15
第 2 章 文獻探討 17
2.1 拉曼光譜學 18
2.1.1 拉曼光學原理 19
2.1.2 表面增強拉曼散射的原理 20
2.1.3 拉曼儀器結構 22
2.1.4 拉曼光譜法於產業應用 24
2.1.5 SERS材料影響因素探討 24
2.2 癌症標誌物檢測 28
2.2.1 核甘酸癌症標誌物 29
2.2.2 傳統miRNA 檢測法 32
2.3 細菌檢測 34
2.3.1 傳統細菌檢測法 35
2.3.2 細菌快速檢測方法 36
2.3.3 細菌感染治療 38
2.3.4 抗生素藥敏試驗 38
第 3 章 奈米陣列檢測直腸癌標誌物 40
3.1 研究方法 43
3.1.1 實驗材料 43
3.1.2 通過奈米遮罩法製造奈米柱結構 43
3.1.3 電子顯微鏡操作參數 45
3.1.4 奈米柱之SERS效能比較 45
3.1.5 核甘酸探針設計 46
3.1.6 核酸探針製備與基板修飾 47
3.1.7 晶片專一性測試 50
3.2 研究結果與討論 51
3.2.1 SERS 效能與矽奈米柱結構探討 53
3.2.2 miR-21檢測探討 56
3.3 小結 60
第 4 章 細菌集中檢測晶片 61
4.1 細菌檢測晶片之研究方法 66
4.1.1 晶片原理與設計 66
4.1.2 微流道晶片製作 68
4.1.3 交流介電泳和電滲流 70
4.1.4 介電泳參數設定 71
4.1.5 合成SERS奈米粒子 73
4.1.6 計算奈米粒子濃度 76
4.2 細菌檢測晶片之研究成果 77
4.2.1 ACEK-SERS聚集晶片之參數優化 77
4.2.2 用晶片聚集細菌及分析 80
4.2.3 晶片式的抗生素感受性測驗 86
4.3 小結 91
第 5 章 結語與未來展望 92
附錄 參考資料 93
1. Volpatti, L. R.; Yetisen, A. K., Commercialization of microfluidic devices. Trends Biotechnol 2014, 32 (7), 347-350.
2. Reyes, D. R.; van Heeren, H.; Guha, S.; Herbertson, L.; Tzannis, A. P.; Ducrée, J.; Bissig, H.; Becker, H., Accelerating innovation and commercialization through standardization of microfluidic-based medical devices. Lab Chip 2021, 21 (1), 9-21.
3. Sachdeva, S.; Davis, R. W.; Saha, A. K., Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front Bioeng Biotechnol 2021, 8 (1537).
4. Luppa, P. B.; Müller, C.; Schlichtiger, A.; Schlebusch, H., Point-of-care testing (POCT): Current techniques and future perspectives. TrAC, Trends Anal Chem 2011, 30 (6), 887-898.
5. Pai, N. P.; Vadnais, C.; Denkinger, C.; Engel, N.; Pai, M., Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med 2012, 9 (9), e1001306.
6. Sachdeva, S.; Davis, R. W.; Saha, A. K., Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front Bioeng Biotechnol 2021, 8, 1537.
7. Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M., Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 2007, 46 (8), 1318-20.
8. Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F., Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 2018, 1001, 1-17.
9. Chong, H.; Koo, Y.; Collins, B.; Gomez, F.; Yun, Y.; Sankar, J., Paper-based microfluidic point-of-care diagnostic devices for monitoring drug metabolism. J Nanomed Biother Discov 2013, 3, e122.
10. Li, X.; Ballerini, D. R.; Shen, W., A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012, 6 (1), 011301.
11. Koczula, K. M.; Gallotta, A., Lateral flow assays. Essays Biochem 2016, 60 (1), 111-120.
12. Wang, C.; Peng, J.; Liu, D.-F.; Xing, K.-Y.; Zhang, G.-G.; Huang, Z.; Cheng, S.; Zhu, F.-F.; Duan, M.-L.; Zhang, K.-Y., Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157: H7 in milk. J Dairy Sci 2018, 101 (10), 8767-8777.
13. Raj M, K.; Chakraborty, S., PDMS microfluidics: A mini review. J Appl Polym Sci 2020, 137 (27), 48958.
14. Saha, A. K.; Schmidt, B. R.; Wilhelmy, J.; Nguyen, V.; Abugherir, A.; Do, J. K.; Nemat-Gorgani, M.; Davis, R. W.; Ramasubramanian, A. K., Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome. Clin Hemorheol Microcirc 2019, 71 (1), 113-116.
15. Chen, J.; Zhou, Y.; Wang, D.; He, F.; Rotello, V. M.; Carter, K. R.; Watkins, J. J.; Nugen, S. R., UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip 2015, 15 (14), 3086-3094.
16. Graves, P.; Gardiner, D., Practical raman spectroscopy. Springer 1989.
17. McCreery, R. L., Raman spectroscopy for chemical analysis. Meas Sci Technol 2001, 12 (5), 653.
18. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. JACS 1977, 99 (15), 5215-5217.
19. Lee, P.; Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 1982, 86 (17), 3391-3395.
20. Kneipp, K.; Moskovits, M.; Kneipp, H., Surface-enhanced Raman scattering: physics and applications. Springer Science & Business Media: 2006; Vol. 103.
21. Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S.; Anis, H., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. J Phys Chem C 2011, 115 (5), 1403-1409.
22. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J Phys Chem B 2003, 107 (3), 668-677.
23. Cortijo-Campos, S.; Ramírez-Jiménez, R.; Climent-Pascual, E.; Aguilar-Pujol, M.; Jiménez-Villacorta, F.; Martínez, L.; Jiménez-Riobóo, R.; Prieto, C.; de Andrés, A., Raman amplification in the ultra-small limit of Ag nanoparticles on SiO2 and graphene: Size and inter-particle distance effects. Materials & Design 2020, 192, 108702.
24. Cortijo-Campos, S.; Ramírez-Jiménez, R.; Climent-Pascual, E.; Aguilar-Pujol, M.; Jiménez-Villacorta, F.; Martínez, L.; Jiménez-Riobóo, R.; Prieto, C.; de Andrés, A., Raman amplification in the ultra-small limit of Ag nanoparticles on SiO(2) and graphene: Size and inter-particle distance effects. Mater Des 2020, 192, 108702.
25. Petryayeva, E.; Krull, U. J., Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal Chim Acta 2011, 706 (1), 8-24.
26. He, S.; Chua, J.; Tan, E. K. M.; Kah, J. C. Y., Optimizing the SERS enhancement of a facile gold nanostar immobilized paper-based SERS substrate. RSC Adv 2017, 7 (27), 16264-16272.
27. Hsieh, H.-Y.; Xiao, J.-L.; Lee, C.-H.; Huang, T.-W.; Yang, C.-S.; Wang, P.-C.; Tseng, F.-G., Au-coated polystyrene nanoparticles with high-aspect-ratio nanocorrugations via surface-carboxylation-shielded anisotropic etching for significant SERS signal enhancement. J Phys Chem C 2011, 115 (33), 16258-16267.
28. Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Liz-Marzán, L. M.; García de Abajo, F. J., Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics 2017, 4 (2), 329-337.
29. Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y., Cancer biomarker discovery and validation. Transl Cancer Res 2015, 4 (3), 256-269.
30. Moss, E.; Hollingworth, J.; Reynolds, T., The role of CA125 in clinical practice. J Clin Pathol 2005, 58 (3), 308-312.
31. Beale, G.; Chattopadhyay, D.; Gray, J.; Stewart, S.; Hudson, M.; Day, C.; Trerotoli, P.; Giannelli, G.; Manas, D.; Reeves, H., AFP, PIVKAII, GP3, SCCA-1 and follisatin as surveillance biomarkers for hepatocellular cancer in non-alcoholic and alcoholic fatty liver disease. BMC Cancer 2008, 8 (1), 1-8.
32. Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H., Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 2014, 9 (4).
33. Rabinowits, G.; Gerçel-Taylor, C.; Day, J. M.; Taylor, D. D.; Kloecker, G. H., Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 2009, 10 (1), 42-46.
34. Hannafon, B. N.; Trigoso, Y. D.; Calloway, C. L.; Zhao, Y. D.; Lum, D. H.; Welm, A. L.; Zhao, Z. J.; Blick, K. E.; Dooley, W. C.; Ding, W., Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 2016, 18 (1), 90.
35. Taylor, D. D.; Gercel-Taylor, C., MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008, 110 (1), 13-21.
36. Rana, T. M., Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007, 8 (1), 23-36.
37. Thomas, J.; Ohtsuka, M.; Pichler, M.; Ling, H., MicroRNAs: clinical relevance in colorectal cancer. Int J Mol Sci 2015, 16 (12), 28063-28076.
38. Yamada, A.; Horimatsu, T.; Okugawa, Y.; Nishida, N.; Honjo, H.; Ida, H.; Kou, T.; Kusaka, T.; Sasaki, Y.; Yagi, M., Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia. Clin Cancer Res 2015, 21 (18), 4234-4242.
39. Kosaka, N.; Iguchi, H.; Ochiya, T., Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010, 101 (10), 2087-2092.
40. Wang, Z.-X.; Lu, B.-B.; Wang, H.; Cheng, Z.-X.; Yin, Y.-M., MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res 2011, 42 (4), 281-290.
41. Zhu, S.; Si, M.-L.; Wu, H.; Mo, Y.-Y., MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007, 282 (19), 14328-14336.
42. Ziyan, W.; Shuhua, Y.; Xiufang, W.; Xiaoyun, L., MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol 2011, 28 (4), 1469-1474.
43. Torres, A.; Torres, K.; Paszkowski, T.; Radej, S.; Staśkiewicz, G. J.; Ceccaroni, M.; Pesci, A.; Maciejewski, R., Highly increased maspin expression corresponds with up-regulation of miR-21 in endometrial cancer: a preliminary report. Int J Gynecol Cancer 2011, 21 (1), 8-14.
44. Selaru, F. M.; Olaru, A. V.; Kan, T.; David, S.; Cheng, Y.; Mori, Y.; Yang, J.; Paun, B.; Jin, Z.; Agarwal, R., MicroRNA‐21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009, 49 (5), 1595-1601.
45. Iorio, M. V.; Ferracin, M.; Liu, C.-G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M., MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65 (16), 7065-7070.
46. Lehmann, U.; Streichert, T.; Otto, B.; Albat, C.; Hasemeier, B.; Christgen, H.; Schipper, E.; Hille, U.; Kreipe, H. H.; Länger, F., Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer 2010, 10.
47. Sekar, D.; Krishnan, R.; Thirugnanasambantham, K.; Rajasekaran, B.; Islam, V. I. H.; Sekar, P., Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol 2016, 40 (5), 538-545.
48. Jackson, B. L.; Grabowska, A.; Ratan, H. L., MicroRNA in prostate cancer: Functional importance and potential as circulating biomarkers. BMC Cancer 2014, 14 (1).
49. Qu, K.; Zhang, X.; Lin, T.; Liu, T.; Wang, Z.; Liu, S.; Zhou, L.; Wei, J.; Chang, H.; Li, K.; Wang, Z.; Liu, C.; Wu, Z., Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: Evidence from comprehensive miRNA expression profiling analysis and clinical validation. Sci Rep 2017, 7 (1).
50. Zhang, H.; Li, P.; Ju, H.; Pesta, M.; Kulda, V.; Jin, W.; Cai, M.; Liu, C.; Wu, H.; Xu, J.; Ye, Y.; Zhang, G.; Xu, E.; Cai, J.; Lai, M.; Xia, D.; Yang, J.; Wu, Y., Diagnostic and prognostic value of microRNA-21 in colorectal cancer: An original study and individual participant data meta-analysis. Cancer Epidemiol Biomarkers Prev 2014, 23 (12), 2783-2792.
51. Zhu, M.; Huang, Z.; Zhu, D.; Zhou, X.; Shan, X.; Qi, L.-w.; Wu, L.; Cheng, W.; Zhu, J.; Zhang, L.; Zhang, H.; Chen, Y.; Zhu, W.; Wang, T.; Liu, P., A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget 2017, 8 (10).
52. Markou, A.; Zavridou, M.; Lianidou, E. S., MiRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer: Targets and Therapy 2016, 7, 19-27.
53. OROSZ, E.; Kiss, I.; GYÖNGYI, Z.; Varjas, T., Expression of circulating miR-155, miR-21, miR-221, miR-30a, miR-34a and miR-29a: comparison of colonic and rectal Cancer. In Vivo 2018, 32 (6), 1333-1337.
54. McClure, C.; McPeak, M. B.; Youssef, D.; Yao, Z. Q.; McCall, C. E.; El Gazzar, M., Stat3 and C/EBPβ synergize to induce miR‐21 and miR‐181b expression during sepsis. Immunol Cell Biol 2017, 95 (1), 42-55.
55. Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velázquez, I. A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R. M., The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids 2020, 20, 409-420.
56. Jorgensen, J. H.; Turnidge, J. D., Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology 2015, 1253-1273.
57. Woodford, N.; Eastaway, A. T.; Ford, M.; Leanord, A.; Keane, C.; Quayle, R. M.; Steer, J. A.; Zhang, J.; Livermore, D. M., Comparison of BD Phoenix, Vitek 2, and MicroScan Automated Systems for Detection and Inference of Mechanisms Responsible for Carbapenem Resistance in Enterobacteriaceae. J Clin Microbiol 2010, 48 (8), 2999-3002.
58. Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P., Global cancer statistics, 2002. CA Cancer J Clin 2005, 55 (2), 74-108.
59. Arnold, M.; Sierra, M. S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F., Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66 (4), 683-691.
60. Gross, C. P.; Andersen, M. S.; Krumholz, H. M.; McAvay, G. J.; Proctor, D.; Tinetti, M. E., Relation between Medicare screening reimbursement and stage at diagnosis for older patients with colon cancer. JAMA 2006, 296 (23), 2815-2822.
61. Kanaan, Z.; Rai, S. N.; Eichenberger, M. R.; Roberts, H.; Keskey, B.; Pan, J.; Galandiuk, S., Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg 2012, 256 (3), 544-551.
62. Wu, C. W.; Ng, S. S.; Dong, Y. J.; Ng, S. C.; Leung, W. W.; Lee, C. W.; Wong, Y. N.; Chan, F. K.; Yu, J.; Sung, J. J., Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 2012, 61 (5), 739-745.
63. Hubbard, R. A.; Johnson, E.; Hsia, R.; Rutter, C. M., The cumulative risk of false-positive fecal occult blood test after 10 years of colorectal cancer screening. Cancer Epidemiol Biomarkers Prev 2013, 22 (9), 1612-1619.
64. Okita, A.; Takahashi, S.; Ouchi, K.; Inoue, M.; Watanabe, M.; Endo, M.; Honda, H.; Yamada, Y.; Ishioka, C., Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget 2018, 9 (27), 18698-18711.
65. Singh, M. P.; Rai, S.; Pandey, A.; Singh, N. K.; Srivastava, S., Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes & Diseases 2019.
66. Wang, H.-N.; Crawford, B. M.; Fales, A. M.; Bowie, M. L.; Seewaldt, V. L.; Vo-Dinh, T., Multiplexed detection of MicroRNA biomarkers using SERS-based inverse molecular sentinel (iMS) Nanoprobes. J Phys Chem C 2016, 120 (37), 21047-21055.
67. Zhang, H.; Yi, Y.; Zhou, C.; Ying, G.; Zhou, X.; Fu, C.; Zhu, Y.; Shen, Y., SERS detection of microRNA biomarkers for cancer diagnosis using gold-coated paramagnetic nanoparticles to capture SERS-active gold nanoparticles. RSC Adv 2017, 7 (83), 52782-52793.
68. Zhou, W.; Tian, Y.-F.; Yin, B.-C.; Ye, B.-C., Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed microRNA biomarkers. Anal Chem 2017, 89 (11), 6120-6128.
69. Lee, T.; Wi, J.-S.; Oh, A.; Na, H.-K.; Lee, J.; Lee, K.; Lee, T. G.; Haam, S., Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Nanoscale 2018, 10 (8), 3680-3687.
70. Ma, D.; Huang, C.; Zheng, J.; Tang, J.; Li, J.; Yang, J.; Yang, R., Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens Bioelectron 2018, 101, 167-173.
71. Schechinger, M.; Marks, H.; Mabbott, S.; Choudhury, M., A SERS approach for rapid detection of microRNA-17 in the picomolar range. Analyst 2019, 144 (13), 4033-4044.
72. Yang, Z.; Li, Y.; Li, Z.; Wu, D.; Kang, J.; Xu, H.; Sun, M., Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. J Chem Phys 2009, 130 (23), 234705.
73. Jiao, T.; Kutsanedzie, F. Y. H.; Xu, J.; Viswadevarayalu, A.; Hassan, M. M.; Li, H.; Xu, Y.; Chen, Q., SERS-signal optimised AgNPs-plated-ZnO nanoflower-like structure synthesised for sensing applications. Phys Lett A 2019, 383 (12), 1312-1317.
74. Zheng, P.; Li, M.; Jurevic, R.; Cushing, S. K.; Liu, Y.; Wu, N., A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(i) and mercury(ii) in human saliva. Nanoscale 2015, 7 (25), 11005-11012.
75. Driskell, J.; Seto, A.; Jones, L.; Jokela, S.; Dluhy, R.; Zhao, Y.-P.; Tripp, R., Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 2008, 24 (4), 917-922.
76. Driskell, J. D.; Primera-Pedrozo, O. M.; Dluhy, R. A.; Zhao, Y.; Tripp, R. A., Quantitative surface-enhanced Raman spectroscopy based analysis of microRNA mixtures. Appl Spectrosc 2009, 63 (10), 1107-1114.
77. Xu, T.-T.; Huang, J.-A.; He, L.-F.; He, Y.; Su, S.; Lee, S.-T., Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy. Appl Phys Lett 2011, 99 (15), 153116.
78. Lin, D.; Wu, Z.; Li, S.; Zhao, W.; Ma, C.; Wang, J.; Jiang, Z.; Zhong, Z.; Zheng, Y.; Yang, X., Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano 2017, 11 (2), 1478-1487.
79. Huang, J.-A.; Zhao, Y.-Q.; Zhang, X.-J.; He, L.-F.; Wong, T.-L.; Chui, Y.-S.; Zhang, W.-J.; Lee, S.-T., Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett 2013, 13 (11), 5039-5045.
80. Chen, B.; Meng, G.; Huang, Q.; Huang, Z.; Xu, Q.; Zhu, C.; Qian, Y.; Ding, Y., Green synthesis of large-scale highly ordered core@ shell nanoporous Au@ Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl Mater Interfaces 2014, 6 (18), 15667-15675.
81. Alexander, K. D.; Skinner, K.; Zhang, S.; Wei, H.; Lopez, R., Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett 2010, 10 (11), 4488-4493.
82. Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U., Metal-Assisted Chemical Etching of Silicon: A Review. Adv Mater 2011, 23 (2), 285-308.
83. Megouda, N.; Hadjersi, T.; Piret, G.; Boukherroub, R.; Elkechai, O., Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution. Appl Surf Sci 2009, 255 (12), 6210-6216.
84. Song, M.-S.; Rossi, J. J., The anti-miR21 antagomir, a therapeutic tool for colorectal cancer, has a potential synergistic effect by perturbing an angiogenesis-associated miR30. Front Genet 2014, 4, 301.
85. Draz, M. S.; Lu, X., Development of a loop mediated isothermal amplification (LAMP)-surface enhanced Raman spectroscopy (SERS) assay for the detection of Salmonella enterica serotype Enteritidis. Theranostics 2016, 6 (4), 522.
86. Wu, L. Y.; Ross, B. M.; Hong, S.; Lee, L. P., Bioinspired Nanocorals with Decoupled Cellular Targeting and Sensing Functionality. Small 2010, 6 (4), 503-507.
87. Lee, C.; Robertson, C. S.; Nguyen, A. H.; Kahraman, M.; Wachsmann-Hogiu, S., Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Sci Rep 2015, 5 (1), 11644.
88. Ye, L.-P.; Hu, J.; Liang, L.; Zhang, C.-y., Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chem Commun 2014, 50 (80), 11883-11886.
89. Schwarzenbach, H.; Hoon, D. S. B.; Pantel, K., Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011, 11 (6), 426-437.
90. Asaga, S.; Kuo, C.; Nguyen, T.; Terpenning, M.; Giuliano, A. E.; Hoon, D. S., Direct Serum Assay for MicroRNA-21 Concentrations in Early and Advanced Breast Cancer. Clin Chem 2011, 57 (1), 84-91.
91. Correa-Gallego, C.; Maddalo, D.; Doussot, A.; Kemeny, N.; Kingham, T. P.; Allen, P. J.; D'Angelica, M. I.; DeMatteo, R. P.; Betel, D.; Klimstra, D.; Jarnagin, W. R.; Ventura, A., Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma. PLoS One 2016, 11 (9), e0163699-e0163699.
92. Wang, C.; Yu, C., Analytical characterization using surface-enhanced Raman scattering and microfluidic sampling. Nanotechnology 2015, 26 (9), 092001.
93. Jawad, I.; Lukšić, I.; Rafnsson, S. B., Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. J Glob Health 2012, 2 (1), 010404-010404.
94. Kumar, A.; Roberts, D.; Wood, K. E.; Light, B.; Parrillo, J. E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; Gurka, D.; Kumar, A.; Cheang, M., Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006, 34 (6), 1589-96.
95. Biondi, E. A.; Mischler, M.; Jerardi, K. E.; Statile, A. M.; French, J.; Evans, R.; Lee, V.; Chen, C.; Asche, C.; Ren, J., Blood culture time to positivity in febrile infants with bacteremia. JAMA pediatrics 2014, 168 (9), 844-849.
96. Ohlsson, P.; Evander, M.; Petersson, K.; Mellhammar, L.; Lehmusvuori, A.; Karhunen, U.; Soikkeli, M.; Seppä, T.; Tuunainen, E.; Spangar, A., Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal Chem 2016, 88 (19), 9403-9411.
97. Frickmann, H.; Zautner, A. E.; Moter, A.; Kikhney, J.; Hagen, R. M.; Stender, H.; Poppert, S., Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017, 43 (3), 263-293.
98. Belgrader, P.; Benett, W.; Hadley, D.; Richards, J.; Stratton, P.; Mariella, R.; Milanovich, F., PCR detection of bacteria in seven minutes. Science 1999, 284 (5413), 449-450.
99. Dylla, B. L.; Vetter, E. A.; Hughes, J. G.; Cockerill, F., Evaluation of an immunoassay for direct detection of Escherichia coli O157 in stool specimens. J Clin Microbiol 1995, 33 (1), 222-224.
100. Di Gaudio, F.; Indelicato, S.; Indelicato, S.; Tricoli, M. R.; Stampone, G.; Bongiorno, D., Improvement of a rapid direct blood culture microbial identification protocol using MALDI-TOF MS and performance comparison with SepsiTyper kit. J Microbiol Methods 2018, 155, 1-7.
101. Leitner, E.; Scherr, S.; Strempfl, C.; Krause, R.; Feierl, G.; Grisold, A. J., Rapid identification of pathogens with the hemoFISH test applying a novel beacon-based fluorescence in situ hybridization (bbFISH) technology in positive blood culture bottles. J Mol Diagnostics 2013, 15 (6), 835-839.
102. Wang, J. D.; Levin, P. A., Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 2009, 7 (11), 822-7.
103. Wang, R.; Xu, Y.; Wang, R.; Wang, C.; Zhao, H.; Zheng, X.; Liao, X.; Cheng, L., A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Microchim Acta 2017, 184 (1), 279-287.
104. Kahraman, M.; Zamaleeva, A. I.; Fakhrullin, R. F.; Culha, M., Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal Bioanal Chem 2009, 395 (8), 2559.
105. Jarvis, R. M.; Goodacre, R., Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 2004, 76 (1), 40-47.
106. Sztainbuch, I. W., The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement. J Chem Phys 2006, 125 (12), 124707.
107. Yang, D.; Zhou, H.; Haisch, C.; Niessner, R.; Ying, Y., Reproducible E. coli detection based on label-free SERS and mapping. Talanta 2016, 146, 457-463.
108. Kahraman, M.; Yazici, M. M.; Şahin, F.; Bayrak, Ö. F.; Çulha, M., Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Appl Spectrosc 2007, 61 (5), 479-485.
109. Berry, V.; Saraf, R. F., Self‐assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chem Int Ed 2005, 44 (41), 6668-6673.
110. Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C., SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 2014, 86 (3), 1525-1533.
111. Chen, X.; Tang, M.; Liu, Y.; Huang, J.; Liu, Z.; Tian, H.; Zheng, Y.; de la Chapelle, M. L.; Zhang, Y.; Fu, W., Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Microchim Acta 2019, 186 (2), 102.
112. Pang, Y.; Wan, N.; Shi, L.; Wang, C.; Sun, Z.; Xiao, R.; Wang, S., Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal Chim Acta 2019, 1077, 288-296.
113. Wang, C.; Gu, B.; Liu, Q.; Pang, Y.; Xiao, R.; Wang, S., Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine 2018, 13, 1159-1178.
114. Zhang, H.; Ma, X.; Liu, Y.; Duan, N.; Wu, S.; Wang, Z.; Xu, B., Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 2015, 74, 872-877.
115. Bi, L.; Wang, X.; Cao, X.; Liu, L.; Bai, C.; Zheng, Q.; Choo, J.; Chen, L., SERS-active Au@Ag core-shell nanorod (Au@AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing. Talanta 2020, 220, 121397.
116. Galvan, D. D.; Yu, Q., Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Adv Healthcare Mater 2018, 7 (13), e1701335.
117. Lee, D.-H.; Li, X.; Jiang, A.; Lee, A. P., An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood. Biomicrofluidics 2018, 12 (5), 054104.
118. Huang, S.-H.; Chang, Y.-S.; Juang, J.-M. J.; Chang, K.-W.; Tsai, M.-H.; Lu, T.-P.; Lai, L.-C.; Chuang, E. Y.; Huang, N.-T., An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases. Analyst 2018, 143 (6), 1367-1377.
119. Antfolk, M.; Laurell, T., Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood–A review. Anal Chim Acta 2017, 965, 9-35.
120. Romero-Soto, F. O.; Polanco-Oliva, M. I.; Gallo-Villanueva, R. C.; Martinez-Chapa, S. O.; Perez-Gonzalez, V. H., A survey of electrokinetically-driven microfluidics for cancer cells manipulation. Electrophoresis 2021, 42 (5), 605-625.
121. Cheng, J.; Sheldon, E. L.; Wu, L.; Uribe, A.; Gerrue, L. O.; Carrino, J.; Heller, M. J.; O'Connell, J. P., Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat Biotechnol 1998, 16 (6), 541-546.
122. Green, N. G.; Ramos, A.; Morgan, H., Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Electrostat 2002, 56 (2), 235-254.
123. Gadish, N.; Voldman, J., High-throughput positive-dielectrophoretic bioparticle microconcentrator. Anal Chem 2006, 78 (22), 7870-7876.
124. Ramos, A.; Morgan, H.; Green, N. G.; Castellanos, A., AC Electric-Field-Induced fluid flow in microelectrodes. J Colloid Interface Sci 1999, 217 (2), 420-422.
125. Han, C.-H.; Woo, S. Y.; Bhardwaj, J.; Sharma, A.; Jang, J., Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. Sci Rep 2018, 8 (1), 1-10.
126. Cheng, I.-F.; Chang, H.-C.; Chen, T.-Y.; Hu, C.; Yang, F.-L., Rapid (< 5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. Sci Rep 2013, 3, 2365.
127. Melvin, E. M.; Moore, B. R.; Gilchrist, K. H.; Grego, S.; Velev, O. D., On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes. Biomicrofluidics 2011, 5 (3), 034113.
128. Müller, T.; Gradl, G.; Howitz, S.; Shirley, S.; Schnelle, T.; Fuhr, G., A 3-D microelectrode system for handling and caging single cells and particles. Biosens Bioelectron 1999, 14 (3), 247-256.
129. Yu, E.-S.; Lee, H.; Lee, S.-M.; Kim, J.; Kim, T.; Lee, J.; Kim, C.; Seo, M.; Kim, J. H.; Byun, Y. T.; Park, S.-C.; Lee, S.-Y.; Lee, S.-D.; Ryu, Y.-S., Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures. Nat Commun 2020, 11 (1), 2804.
130. Rahman, M. R. U.; Kwak, T. J.; Woehl, J. C.; Chang, W. J., Quantitative analysis of the three‐dimensional trap stiffness of a dielectrophoretic corral trap. Electrophoresis 2021, 42 (5), 644-655.
131. Pohl, H., The behavior of neutral matter in nonuniform electric fields. Cam bridge Cambridge UK 1978.
132. Huang, C.-C.; Bazant, M. Z.; Thorsen, T., Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab Chip 2010, 10 (1), 80-85.
133. Qiang, Y.; Liu, J.; Mian, M.; Du, E., Experimental electromechanics of red blood cells using dielectrophoresis-based microfluidics. In Mechanics of Biological Systems and Materials, Volume 6, Springer: 2017; pp 129-134.
134. Xu, L.-J.; Lei, Z.-C.; Li, J.; Zong, C.; Yang, C. J.; Ren, B., Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. JACS 2015, 137 (15), 5149-5154.
135. Xu, F.; Zhang, Y.; Sun, Y.; Shi, Y.; Wen, Z.; Li, Z., Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect. J Phys Chem C 2011, 115 (20), 9977-9983.
136. Keegan, S.; Arellano, J.; Gruner, T., Validating the measurement of red blood cell diameter in fresh capillary blood by darkfield microscopy: A pilot study. Adv Integr Med 2016, 3 (1), 11-14.
137. Nazlibilek, S.; Karacor, D.; Ercan, T.; Sazli, M. H.; Kalender, O.; Ege, Y., Automatic segmentation, counting, size determination and classification of white blood cells. Measurement 2014, 55, 58-65.
138. Morgan, H.; Hughes, M. P.; Green, N. G., Separation of submicron bioparticles by dielectrophoresis. Biophys J 1999, 77 (1), 516-525.
139. Kuligowski, J.; El-Zahry, M. R.; Sánchez-Illana, Á.; Quintás, G.; Vento, M.; Lendl, B., Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood. Analyst 2016, 141 (7), 2165-2174.
140. Cui, L.; Chen, S.; Zhang, K., Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria. Spectrochim Acta A 2015, 137, 1061-1066.
141. Kloß, S.; Kampe, B.; Sachse, S.; Rösch, P.; Straube, E.; Pfister, W.; Kiehntopf, M.; Popp, J. r., Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem 2013, 85 (20), 9610-9616.
142. Wellinghausen, N.; Kochem, A.-J.; Disqué, C.; Mühl, H.; Gebert, S.; Winter, J.; Matten, J.; Sakka, S. G., Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol 2009, 47 (9), 2759-2765.
143. Ho, C.-S.; Jean, N.; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.; Holodniy, M.; Banaei, N.; Saleh, A. A.; Ermon, S.; Dionne, J., Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun 2019, 10 (1), 1-8.
144. Cheng, I. F.; Chen, T.-Y.; Lu, R.-J.; Wu, H.-W., Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy. Nanoscale Res Lett 2014, 9 (1), 324-324.
145. Yagupsky, P.; Nolte, F. S., Quantitative aspects of septicemia. Clin Microbiol Rev 1990, 3 (3), 269-279.
146. Reimer, L. G.; Wilson, M. L.; Weinstein, M. P., Update on detection of bacteremia and fungemia. Clin Microbiol Rev 1997, 10 (3), 444-465.
147. Lamy, B.; Sundqvist, M.; Idelevich, E. A., Bloodstream infections–standard and progress in pathogen diagnostics. Clin Microbiol Infect 2020, 26 (2), 142-150.
148. Mukerji, R.; Kakarala, R.; Smith, S. J.; Kusz, H. G., Chryseobacterium indologenes: an emerging infection in the USA. BMJ Case Rep 2016, 2016.
149. Izaguirre-Anariba, D. E.; Sivapalan, V., Chryseobacterium indologenes, an emerging bacteria: a case report and review of literature. Cureus 2020, 12 (1), e6720-e6720.
150. Chen, F.-L.; Wang, G.-C.; Teng, S.-O.; Ou, T.-Y.; Yu, F.-L.; Lee, W.-S., Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect 2013, 46 (6), 425-432.
151. Hsueh, P.-R.; Hsiue, T.-R.; Wu, J.-J.; Teng, L.-J.; Ho, S.-W.; Hsieh, W.-C.; Luh, K.-T., Flavobacterium indologenes Bacteremia: Clinical and Microbiological Characteristics. Clin Infect Dis 1996, 23 (3), 550-555.
152. Kirby, J. T.; Sader, H. S.; Walsh, T. R.; Jones, R. N., Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997-2001). J Clin Microbiol 2004, 42 (1), 445-448.
153. Douvoyiannis, M.; Kalyoussef, S.; Philip, G.; Mayers, M. M., Chryseobacterium indologenes bacteremia in an infant. Int J Infect Dis 2010, 14 (6), e531-e532.
154. Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Schubert, S.; Niessner, R.; Wieser, A.; Haisch, C., Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem 2015, 87 (13), 6553-6561.
155. Lee, W.-B.; Chien, C.-C.; You, H.-L.; Kuo, F.-C.; Lee, M. S.; Lee, G.-B., An integrated microfluidic system for antimicrobial susceptibility testing with antibiotic combination. Lab Chip 2019, 19 (16), 2699-2708.
156. Liu, C.-Y.; Han, Y.-Y.; Shih, P.-H.; Lian, W.-N.; Wang, H.-H.; Lin, C.-H.; Hsueh, P.-R.; Wang, J.-K.; Wang, Y.-L., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep 2016, 6 (1), 1-15.
157. Movasaghi, Z.; Rehman, S.; Rehman, I. U., Raman spectroscopy of biological tissues. Appl Spectrosc Rev 2007, 42 (5), 493-541.
158. Kumar, S.; Verma, T.; Mukherjee, R.; Ariese, F.; Somasundaram, K.; Umapathy, S., Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev 2016, 45 (7), 1879-1900.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *