帳號:guest(3.144.48.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昭瑜
作者(外文):Chen, Chao-Yu
論文名稱(中文):CMOS共振型微機械訊號處理器
論文名稱(外文):Mechanical Signal Processing Unit in CMOS
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):楊燿州
方維倫
盧向成
戴慶良
邱一
李尉彰
口試委員(外文):Yang, Yao-Joe Joseph
Fang, Weileun
Lu, Michael S.-C.
Dai, Ching-Liang
Chiu, Yi
Li, Wei-Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035804
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:164
中文關鍵詞:金氧半導體微機電系統訊號處理裝置電容式傳感器壓阻式感測微機械共振器微機械濾波器雙域耦合方法CMOS-MEMS 氧化鈦傳感平台頻率之溫度穩定性垂直耦合設計鎖相迴路主動式陣列感測像素
外文關鍵詞:CMOS-MEMSSignal ProcessorCapacitive TransducerPiezoelectric TransducerMicromechanical ResonatorMicromechanical filterMixed CouplingCMOS-MEMS TiN-C PlatformVertically-coupledPhase-locked LoopActive Sensing Pixel Array
相關次數:
  • 推薦推薦:0
  • 點閱點閱:479
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究針對全整合式(Monolithic)微機械訊號處理器之關鍵技術進行開發及特性探討,實現之元件囊括機械式濾波器、震盪器與環境感測器。本論文中提出數種CMOS-MEMS製程技術進行比較,來進一步改善電容式共振元件的性能表現,以裨未來於無線感測網路(Wireless Sensing Network)中所需之頻率選擇、產生,以及感測功能的實現。為了達成上述要求,本研究首先以標準0.35 um CMOS-MEMS平台建置一兼具電性與機械耦合能力的微機械濾波器。相較於本團隊先前所提出之純機械耦合或傳統MEMS之電路耦合式(Parallel-class)濾波器,此元件以後段製程(Back-End-of-Line, BEOL)中的二氧化矽為結構主體(Oxide-rich),使濾波元件可同時具備靈活的電路佈線(Electrical Routing)與非導電性之機械耦合樑(Mechanical Coupler),因此元件可整合電性與機械耦合能力而實現一嶄新之雙域耦合型態。藉此技術的使用,我們可同時實現單端轉差動(Common-mode to Differential, CIDO)或差動轉單端(Differential to Common-mode, DICO)功能於單一濾波器中。其中,適當的機械耦合樑設計有助於元件獲得窄頻濾波通帶,而差動式操作的使用可有效改善頻率響應之拒帶衰減(Stopband Rejection)。結果顯示CMOS-MEMS濾波器之工作頻率座落於8.6MHz,其拒帶衰減大於20dB,並且實現約35kHz之濾波通帶(0.41% Bandwidth)。
為了進一步追求電容式共振器性能的卓越,本研究亦致力於CMOS-MEMS平台傳感機制的改進。以電容式共振元件來說,其性能關鍵在於元件運動阻抗(Rm)大小,以及輸出頻率之穩定度。有鑑於此,氮化鈦複合結構(TiN-C)的概念因應而生,其具備三大特點,分別為:(i) 於各製程段落透過良好的蝕刻停止層(Etching Stop)及製程裕度(Process Window)使元件良率大幅提升(> 90%);(ii) 實現400nm次微米間隙藉以提升機電耦合能力(Electromechanical Coupling);(iii) 利用氮化鈦(TiN)傳感電極來消除電荷累積效應(Charge Effect),同時本研究亦選用適當的結構設計與BEOL材料搭配來對共振元件進行被動之溫度補償。結合上述優點,本研究之電容式TiN-C共振器除了展現高度的頻率穩定度(於不同溫度及長時間的檢測)外,亦具有良好的電容傳感與電路整合能力。
最後,藉由TiN平台特有的高頻率穩定性與良好的MEMS蝕刻區域界定,使MEMS元件及CMOS電路整合的面積小於標準CMOS電路測試接點(100 um×100 um)。並在實際操作上輔以鎖相迴路(Phase-locked Loop, PLL)系統來最佳化感測裝置之相位雜訊(Phase Noise)、艾倫偏差(Allan Deviation),順利將其展延至高解析度「環境感測陣列」的應用。
This thesis presents the versatile resonant-type mechanical signal processors implemented by the standard 0.35 um CMOS platform for MEMS-based oscillator, filter and sensor applications. The first part implements a novel mixed filter coupling scheme which combines the merits of mechanically- and electrically-coupled methods to enable a well-defined narrow bandwidth (NBW) and a decent adjacent channel rejection ratio (ACRR) in a CMOS-MEMS bandpass filter. In the proposed design, a previously-developed free-free beam (FFB) arrayed resonator is employed as a basic resonant tank for the filter concept validation. By the use of several design strategies, including (i) oxide-rich structure, (ii) arrayed design, and (iii) deep-submicron transducer’s gap, the constituent resonant tanks feature small motional impedance (Rm), making filter termination feasible. Furthermore, we also provide the complete equivalent circuit and numerical modeling for such a 4th-order bandpass filter under the suggested coupling scheme. Compared with traditional coupling topologies, the presented coupling concept is capable of achieving significant feedthrough suppression and precise bandwidth control, only at the cost of slight in-band loss. As a result, we report a terminated CMOS-MEMS filter centered at 8.58 MHz with a narrow passband of 35 kHz and a stopband rejection greater than 20 dB.
However, the deep-submicron gap achieved by poly-2 etching post-process cannot be scaled to advanced technology node (i.e., 0.25, 0.18, and 0.13 um). Therefore, a cutting-edge reliable CMOS-MEMS platform for on-chip resonant transducer and readout circuit integration is developed in this thesis with (i) well-defined etch stops and relaxed release windows for high fabrication yield, (ii) narrow transducer gaps (< 400nm) for efficient electrostatic transduction, and (iii) novel titanium nitride composite (TiN-C) structure for dielectric charge elimination and temperature compensation. With the proposed TiN-C platform, MEMS resonant transducers which exhibit low frequency drift over time and temperature (TCf of 0.6 ppm/K from 280K to 380K), excellent electrostatic coupling, and inherent CMOS circuit integration are successfully demonstrated. Worth saying, a modified TiN-C platform is also provided to attain vertically-coupled (VC) structural design with various sensing mechanisms. Consequently, we have implemented a 3-array vertically coupled resonator (VCR) with more than 3-times power handling capability as compared to the general in-plane 9-array counterparts. In addition, the applicable sub-mW capacitive driving/poly-2 sensing scheme offers a 7x reduction on the background floor against the pure capacitive benchmark. All in all, the given TiN-C platform shows a good repeatability and reproducibility on testing and fabrication results.
Particularly, thanks to the high etching selectivity of the suggested TiN platform, the resonator-circuit integration can be very compact. For the active sensing pixel prototype realized in this work, the spacing between MEMS and its associated circuit is only 7.8 um. By multiplexing the phase-locked loop (PLL)-driven oscillators, the chip functionality toward the very large scale integration (VLSI) parallel sensing applications have been presented. For the current demonstration, the Allan deviation (ADEV) of 370 ppb averaged over best 3-pixels is exhibited based on nonlinear operation. Finally, the TiN-C process shows a good balance of all performance indices, which is expected to serve as the main CMOS-MEMS platform in the future to enable high-performance oscillators, filters, and sensors.
ABSTRACT
中文摘要
ACKNOWLEDGEMENTS

LIST OF FIGURES...............................................iv
LIST OF TABLES...............................................xii
CHAPTER 1 General Introduction................................1
1.1 Low-power Connectivity for RF Electronics..................2
1.2 Micromechanical Resonant Units in WuR......................4
1.3 Micromechanical Resonant Units in Wireless Transceiver.....7
1.4 Interface Integration......................................8
1.5 Thesis Organization.......................................10
CHAPTER 2 CMOS-MEMS Technologies.............................12
2.1 CMOS-MEMS Resonators......................................12
2.2 Post-CMOS Fabrication based on BEOL-compatible Layers.....14
2.3 Oxide-removal post-fabrication approach...................16
2.4 Metal-removal Post-fabrication Approach...................19
2.5 Metal-removal based Poly-2 Etching Approach...............22
2.6 TiN-C CMOS-MEMS Platform.................................23
2.7 Summary..................................................25
CHAPTER 3 Modeling and Analogy of Mechanical Resonators......27
3.1 Frequency Response........................................27
3.2 Modeling of One-port Mechanical Resonator.................30
3.3 Modeling of Two-port Mechanical Resonator.................34
3.4 Electrostatic Spring Softening............................37
3.5 Equivalent Motional Parameters............................39
3.5.1 Modification based on Average Deflection Approach......40
CHAPTER 4 Implementation of a CMOS-MEMS Filter through a Mixed Electrical and Mechanical Coupling Scheme.....................42
4.1 Micro-mechanical Filter for Frequency Selection...........42
4.2 Method and Design.........................................44
4.2.1 Traditional Filter Implementations.....................45
4.2.2 Mixed Coupling Configuration...........................51
4.2.3 Consideration of Filter Termination....................59
4.2.4 Physical Implementation................................60
4.3 Experimental Results......................................62
4.3.1 Post-CMOS Fabrication Based on Poly2 Wet-etching.......62
4.3.2 Differential Filter Measurement........................65
4.4 Discussion................................................67
4.5 Summary..................................................70
CHAPTER 5 Fabrication and Implementation of Titanium Nitride Composite (TiN-C) Based CMOS-MEMS Platform....................72
5.1 CMOS-integrated MEMS Platform for Frequency Stable Resonators ..............................................................72
5.2 Why TiN-C CMOS-integration Platform.....................75
5.2.1 Dielectric-Removal Based Approach.......................76
5.2.2 Metal-Removal Based Approach............................77
5.3 CMOS-MEMS TIN-C Platform.................................80
5.3.1 Design Guideline and Consideration......................81
5.3.2 Post-CMOS Process and Fabrication Results...............83
5.3.3 Static Characterization.................................90
5.4 Prospective Implementation...............................91
5.5 Summary..................................................94
CHAPTER 6 Characterizations of CMOS-MEMS TiN-C Resonators....95
6.1 Segmented Analytical Model................................95
6.1.1 Frequency Analysis......................................98
6.1.2 Equivalent Motional Parameters..........................99
6.1.3 Lumped values of the MEMS resonator....................100
6.2 Measurement Results......................................102
6.2.1 Frequency Response.....................................102
6.2.2 Short-term Frequency Drift.............................107
6.2.3 Temperature Stability..................................108
6.3 Discussion...............................................110
6.3.1 Temperature Coefficient of Elastic Modulus.............111
6.3.2 Coefficient of Thermal Expansion and Residue Stress....114
6.3.3 Non-ideal Geometry Resulted by Post-CMOS Process.......115
6.4 Vertically Coupled and Array Design......................117
6.4.1 Background.............................................118
6.4.2 Vertically Coupled Resonator (VCR).....................118
6.5 Summary.................................................127
CHAPTER 7 TiN-C Based Oscillating Active Pixel Array........128
7.1 Design of Oscillating Active Pixels......................128
7.2 Fabrication Issues.......................................131
7.2.1 Non-uniform Etching....................................132
7.2.1 Polymer Re-deposition..................................133
7.3 Device Characterizations.................................134
7.3.1 Active Pixel Array.....................................136
7.4 Summary..................................................140
CHAPTER 8 Conclusions and Future Work.......................141
8.1 Achievements.............................................141
8.2 Future Research Directions...............................143
8.2.1 CMOS-MEMS Oscillator based on Vertically-coupled Arrayed Resonator....................................................143
8.2.2 CMOS-MEMS Monolithic Resonant Sensing Pixel Array......144
BIBLIOGRAPHY.................................................147
PUBLICATION LIST.............................................163
A. Journal Papers (1st author: 3)............................163
B. Conference Proceedings (1st author: 5)....................163

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.
[2] C. T.-C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1756-1768, Aug. 1998.
[3] K. Sankaragomathi, J. Koo, R. Ruby, and B. Otis, “A +/- 3ppm 1.1mW FBAR frequency reference with 750 MHz output and 750mV supply,” Tech. Dig., IEEE International Solid- State Circuits Conf. (ISSCC), Feb. 2015, pp. 454-456.
[4] H. Xie and G. K. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope,” IEEE Sensors Journal, vol. 3, no. 5, pp. 622-631, Oct. 2003.
[5] C.-C. Chu, T.-Y. Liu, T.-M. Chen, C.-H. Weng, W.-T. Hsu, and S.-S. Li, "A miniaturized aerosol sensor implemented by a silicon-based MEMS thermal-piezoresistive oscillator,” Proceedings, 30th IEEE Int. Micro Electro Mechanical Systems Conf. (MEMS), Jan. 2017, pp. 1216-1219.
[6] C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes, “CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors,” IEEE J. Solid State Circuits (JSSC), vol.37, no.12, pp.1867–1878, Dec. 2002.
[7] K. S. Kwak, S. Ullah, and N. Ullah, “An overview of IEEE 802.15.6 standard,” Proceedings, 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Nov. 2010, pp. 1-6.
[8] IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless Body Area Networks, 2012, IEEE Std. 802.15.6-2012.
[9] S. Marinkovic and E. Popovici, “Nano-power wake-up radio circuit for wireless body area networks,” Proceedings, IEEE Radio and Wireless Symposium, Jan. 2011, pp. 398-401.
[10] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, no. 2, pp. 251-270, Feb. 2007.
[11] T. Manzaneque, R. Lu, Y. Yang, and S. Gong, “Lithium niobate mems chirp compressors for near zero power wake-up radios,” Journal of Microelectromechanical Systems (JMEMS), vol. 26, no. 6, pp. 1204-1215, Dec. 2017.
[12] S. Jeong, Y. Chen, T. Jang, J. M.-L. Tsai, D. Blaauw, H.-S. Kim, and D. Sylvester “Always-on 12-nW acoustic sensing and object recognition microsystem for unattended ground sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 261-274, Jan. 2018.
[13] Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer and M. Rinaldi, “Zero-power light-actuated micromechanical relay,” Proceedings, 30th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2017, pp. 940-941.
[14] A. Banerjee, C. Ghosh, C. H. Mastrangelo, H. Kim, S. J. Broadbent, and Ryan Looper, “Picowatt gas sensing and resistance switching in tunneling nano-gap electrodes,” Proceedings, IEEE SENSORS, Nov. 2016, pp. 1-3.
[15] S. S. Bedair, J. S. Pulskamp, R. G. Polcawich, B. Morgan, J. L. Martin, and B. Power, “Thin-film piezoelectric-on-silicon resonant transformers,” Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 6, pp. 1383-1394, Dec. 2013.
[16] C. Casella, G. Chen, Z. Qian, G. Hummel, and M. Rinaldi, “920 MHz aluminum nitride cross-sectional Lamé mode piezoelectric MEMS transformer with high open-circuit voltage gain in excess of 39”, Solid-State Sensor, Actuator, and Microsystems Workshop (Hilton Head), June 2016, pp. 412-415.
[17] T. Manzaneque, R. Lu, Y. Yang, and S. Gong “A high FOM lithium niobate resonant transformer for passive voltage amplification,” Tech. Dig., 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), June 2017, pp. 798-801.
[18] C. R. Valenta and G. D. Durgin, “Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems,” IEEE Microwave Magazine, vol. 15, no. 4, pp. 108-120, June 2014.
[19] M. E. Galanko, A. Kochhar, and G. Piazza, T. Mukherjee, and G. K. Fedder, “CMOS-MEMS resonant demodulator for near-zero-power RF wake-up receiver,” Tech. Dig., 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), June 2017, pp. 86-89.
[20] S.-C. Lu, C.-P. Tsai, and W.-C. Li, “A CMOS-MEMS CC-beam metal resoswitch for zero quiescent power receiver applications,” Proceedings, 31th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2018, pp. 801-804.
[21] R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 3, pp. 334-345, March 2012.
[22] N. Nguyen et al., “A design approach for high-Q FBARs with a dual-step frame,” IEEE Transactions on Ultrasonics, Ferroelectrics, vol. 65, no. 9, pp. 1717-1725, Sept. 2018.
[23] T. Takai, H. Iwamoto, Y. Takamine, T. Fuyutsume, T. Nakao, M. Hiramoto, T. Toi, and M. Koshino “I.H.P. SAW technology and its application to microacoustic components,” Proceedings, IEEE International Ultrasonics Symposium (IUS), Sept. 2017, pp. 1-8.
[24] W. Marrison, “The evolution of the quartz crystal clock,” Bell System Technical Journal (AT&T), vol. 27, 510–588, 1948.
[25] S. Zaliasl, J. C. Salvia, G. C. Hill; L. Chen, K. Joo, R. Palwai, N. Arumugam, M. Phadke, S. Mukherjee, H. C. Lee, C. Grosjean, P. M. Hagelin, S. Pamarti, T. S. Fiez, K. A. A. Makinwa, A. Partridge, and V. Menon, “A 3 ppm 1.5 × 0.8 mm2 1.0 µA 32.768 kHz MEMS-based oscillator,” IEEE Journal of Solid State Circuits (JSSCC), vol. 50, no. 1, pp.291-302., Jan. 2015.
[26] C. L. Roozeboom, B. E. Hill, V. A. Hong, C. H. Ahn, E. J. Ng, Y. Yang, T. W. Kenny, M. A. Hopcroft, and B. L. Pruitt, “Multifunctional Integrated Sensors for. Multiparameter Monitoring Applications,” Journal of microelectromechanical systems (JMEMS), vol. 24, no. 4, Aug. 2015.
[27] A. R. Schofield, A. A. Trusov, and A. M. Shkel, “Versatile vacuum packaging for experimental study of resonant MEMS,” Proceedings, 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2010, pp. 516-519.
[28] J. M. Tsai, M. Daneman, B. Boser, D. Horsley, M. Rais-Zadeh, H.Y. Tang, Y. Lu, O. Rozen, F. Liu, M. Lim, and F. Assaderaghi “Versatile CMOS-MEMS integrated piezoelectric platform,” Dig. of Tech. Papers, International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 2248-2251.
[29] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS - present and future,” IEEE International Conference on Micro Electro Mechanical Systems, Proceedings, 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2002, pp. 459-466.
[30] O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink, and O. Tabata (Eds.), “CMOS–MEMS, Advanced Micro and Nanosystems, vol. 2,” Wiley-VCH, Weinheim, Germany, 2005.
[31] G. K. Fedder, R. T. Howe, T.-J. K. Liu, and E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proceedings of the IEEE, vol. 96, no. 2, pp. 306-322, Feb. 2008.
[32] H. Qu “CMOS MEMS fabrication technologies and devices,” Micromachines vol. 7, no. 14, Jan. 2016.
[33] R. R. Mansour, “RF MEMS-CMOS device Integration,” IEEE Microwave Magazine, vol. 14, issue: 1, pp. 39-56, Jan. 2013.
[34] J. Philippe, G. Arndt, E. Colinet, M. Savoye, T. Ernst, E. Ollier, and J. Arcamone, “Fully monolithic and ultra-compact NEMS-CMOS self-oscillator based-on single-crystal silicon resonators and low-cost CMOS circuitry,” Proceedings, 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2014, pp. 1071-1074.
[35] E. Sage, O. Martin, C. Dupré, T. Ernst, G. Billiot, L. Duraffourg, E. Colinet, and S. Hentz, “Frequency-addressed NEMS arrays for mass and gas sensing applications,” Dig. of Tech. Papers, The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), Jun. 2013, pp. 665-668.
[36] L. J. Hornbeck, “Digital light processing and MEMS: an overview,” Tech. Dig., IEEE/Leos Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing, Aug. 1996, pp. 7-8.
[37] C. T.-C. Nguyen, and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” IEEE J. Solid-State Circuits (JSSC), vol. 34, no. 4, pp. 440-455, Apr. 1999.
[38] A. E. Franke, D. Bilic, D. T. Chang, P. T. Jones, T.-J. King, R. T. Howe, and G. C. Johnson, “Post-CMOS integration of germanium microstructures,” Proceedings, 12nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 1999; pp. 630–637.
[39] R. Jansen, M. Libois, X. Rottenberg, M. Lofrano, J. De Coster, R. Van Hoof, S. Severi, G. Van der Plas, W. de Raedt, H. A. C. Tilmans, S. Donnay, and J. Borremans, “A CMOS-compatible 24MHz poly-SiGe MEMS oscillator with low-power heating for frequency stabilization over temperature,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2011, pp. 1-5.
[40] S. Pacheco, P. Zurcher, S. Young, D, Weston, and W. Dauksher, “RF MEMS resonator for CMOS back-end-of-line integration,” Dig. of Tech. Papers, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Sept. 2004, pp.203-206.
[41] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully monolithic CMOS nickel micromechanical resonator oscillator,” Proceedings, 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2008, pp. 10-13.
[42] F. Nabki, K. Allidina, F. Ahmad, P.-V. Cicek, and M. N. El-Gamal, “A highly integrated 1.8 GHz frequency synthesizer based on a MEMS resonator,” IEEE J. Solid-State Circuits (JSSC), vol. 44, no.8, pp. 2154–2168, Aug. 2009.
[43] L. Huang, W. Rieutort-Louis, A. Gualdino, L. Teagno, Y. Hu, J. Mouro, J. Sanz-Robinson, J. C. Sturm, S. Wagner, V. Chu, J. P. Conde, and N. Verma, “A system based on capacitive interfacing of CMOS with post-processed thin-film mems resonators employing synchronous readout for parasitic nulling”, IEEE J. Solid-State Circuits (JSSC), vol.50, no.4, pp. 1002-1015, Apr. 2015.
[44] K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” Dig. of Tech. Papers, International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2009, pp. 2126-2130.
[45] M. S. Pandian, E. M. Ferrer, W.-S. Tay, V. Madhaven, A. K. Kantimahanti, G. Sobreviela, A. Uranga, and N. Barniol, “Thin film piezoelectric devices integrated on CMOS,” Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Oct. 2016, pp. 167-170.
[46] A. Uranga, G. Sobreviela, N. Barniol, E. Marigó, C. Tay-Wee-Song, M. Shunmugam, A. A. Zainuddin, A. K. Kantimahanti, V. Madhaven, and M. Soundara-Pandian, “Dual-clock with single and monolithical 0-level vacuum packaged MEMS-on-CMOS resonator,” Proceedings, 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2015, pp. 1004–1007.
[47] S.-S. Li, “CMOS-MEMS resonators and their applications,” Proceedings, IEEE UFFC Joint Symposia, Jul. 2013, pp. 915-921.
[48] A. Uranga, J. Verd, N. Barniol, “CMOS-MEMS resonators: From devices to applications,” Microelectronic Engineering, vol. 132, pp.58-73, Jan. 2015.
[49] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” Journal of Micromechanics and Microengineering (JMM), vol. 21, no. 6, pp. 065012, May 2011.
[50] J. Verd, A. Uranga, J. Teva, J.L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Perez-Murano, and N. Barniol, “Integrated CMOS–MEMS with on-chip readout electronics for high-frequency applications,” IEEE Electron Device Letters (EDL), vol. 27, no. 6, pp. 495-497, Jun. 2006.
[51] C.-S. Li, L.-J. Hou, and S.-S. Li, “Advanced CMOS-MEMS resonator platform,” IEEE Electron Device Letters (EDL), vol. 33, no. 2, pp. 272-274, Feb. 2012.
[52] J. L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadal and N. Barniol, “Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” Journal of Micromechanics and Microengineering (JMM), vol. 19, 015002, 2009.
[53] M.-H. Li, W.-C. Chen, and S.-S. Li, “Realizing deep-submicron gap spacing for CMOS-MEMS resonators,” IEEE Sensors Journal, vol. 12, no. 12, pp. 3399-3407, Dec. 2012.
[54] C.-Y. Chen, M.-H. Li, C.-S. Li, and S.-S. Li, “Design and characterization of mechanically coupled CMOS-MEMS filters for channel-select applications,” Sensors and Actuators A: Physical, vol. 216, pp. 394- 404, Sept. 2014.
[55] J. L. Lopez, J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, N. Barniol, “A CMOS–MEMS RF-tunable bandpass filter based on two high- Q 22-MHz polysilicon clamped-clamped beam resonators,” IEEE Electron Device Lett. (EDL), vol. 30, no. 7, July 2009.
[56] C.-C. Lo and G. K. Fedder, “On-Chip high quality factor CMOS-MEMS silicon-fin resonators,” Dig. of Tech. Papers, 14th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2007, pp. 2449-2452.
[57] K. Takahashi, M. Mita, M. Nakada, D. Yamane, A. Higo, H. Fujita, and H. Toshiyoshi, “Development of multi-user multi-chip SOI CMOS-MEMS processes,” IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2009, pp. 701-704.
[58] C.-Y. Chen, M.-H. Li, and S.-S. Li, “Transduction comparison of a resonant transducer realized in a commercially available CMOS-MEMS platform,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 145-148.
[59] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering (JMM), vol. 19, no. 10, pp. 208-210, 1992.
[60] Y.-C. Liu, M.-H. Tsai, W.-C. Chen, M.-H. Li, S.-S. Li, and W. Fang, “Temperature-compensated CMOS-MEMS oxide resonators,” Journal of microelectromechanical systems (JMEMS), vol. 22, no. 5, pp. 1054-1065, Oct. 2013.
[61] W.-C. Chen, M.-H. Li, Y.-C. Liu, W. Fang, and S.-S. Li, “A fully-differential CMOS-MEMS DETF oxide resonator with Q > 4,800 and Positive TCF,” IEEE Electron Device Letters (EDL), vol. 33, no. 5, pp. 721-723, May 2012.
[62] W.-C. Chen, W. Fang, and S.-S. Li, “VHF CMOS-MEMS oxide resonators with Q > 10,000,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2012, pp. 1-4.
[63] C.-S. Li, M.-H. Li, C.-H. Chin, C.-Y. Chen, P. X.-L. Feng, and S.-S. Li, “A piezoresistive CMOS-MEMS resonator with high Q and low TCf,” Proceedings, IEEE UFFC Joint Symposia, Jul. 2013, pp. 425-428.
[64] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Temperature-insensitive composite micromechanical resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 18, no. 6, pp. 1409-1419, Oct. 2009.
[65] O. Brand, H. Baltes, and U. Baldenweg, “Thermally excited silicon oxide bridge resonators in CMOS technology,” Journal of Micromechanics and Microengineering (JMM), vol. 2, no. 3, pp. 105017, 2009.
[66] C.-C. Chen, M.-H. Li, W.-C. Chen, H.-T. Yu, and S.-S. Li, “Thermally-actuated and piezoresistively-sensed CMOS-MEMS resonator array using differential-mode operation,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2012, pp. 1-4.
[67] J.-H. Chang, C.-S. Li, C.-C. Chen, and S.-S. Li, “Performance evaluation of CMOS-MEMS thermal-piezoresistive resonators in ambient pressure for sensor applications,” Proceedings, Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum, Apr. 2015, pp. 202-204.
[68] T.-Y. Liu, C.-C. Chu, M.-H. Li, C.-Y. Liu, C.-Y. Lo, and S.-S. Li, “CMOS-MEMS thermal-piezoresistive oscillators with high transduction efficiency for mass sensing applications,” Dig. of Tech. Papers, 19th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2017, pp. 452-455.
[69] G. K. Fedder and T. Mukherjee, “Self-configuring CMOS microsystems,” in Control Technologies for Emerging Micro and Nanoscale Systems, Berlin, Germany: Springer-Verlag, 2011.
[70] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “Design and characterization of a dual-mode CMOS-MEMS resonator for TCF manipulation,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 2, pp. 446-457, Apr. 2015.
[71] F.-Y. Lin, W.-C. Tian, and P.-C. Li, “CMOS-based Capacitive Micromachined ultrasonic transducers operating without external DC bias,” Proceedings, IEEE International Ultrasonics Symposium (IUS), July 21-25, 2013.
[72] C.-H. Chin, M.-H. Li, C.-Y. Chen, Y.-L. Wang, and S.-S. Li, “A CMOS–MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator,” Journal of Micromechanics and Microengineering (JMM), vol. 25, pp. 115025, Oct. 2015.
[73] C.-Y. Chen, M.-H. Li, C.-H. Chin, and S.-S. Li, “Implementation of a CMOS-MEMS filter through a mixed electrical and mechanical coupling scheme,” Journal of Microelectromechanical Systems (JMEMS), vol. 25, no. 2, pp. 262-274, April 2016.
[74] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 19, vo. 1, pp. 162-174, Feb 2010.
[75] K. L. Dorsey and G. Fedder, “Dielectric charging effects in electrostatically actuated CMOS MEMS resonators,” IEEE Sensors, Nov. 2010, pp. 197-200.
[76] M.-H. Li, C.-Y. Chen, and S.-S. Li, “A reliable CMOS-MEMS platform for titanium nitride composite (TiN-C) resonant transducers with enhanced electrostatic transduction and frequency stability,” Dig. of Tech. Papers, IEEE International Electron Devices Meeting (IEDM), Dec. 7-9, 2015, pp. 487-490.
[77] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 2 pp. 360-372, April 2015.
[78] C.-L. Dai, C.-H. Kuo, and M.-C. Chiang, “Microelectromechanical resonator manufactured using CMOS-MEMS technique,” Microelectronics Journal, vol. 38, issues 6–7, pp. 672-677, Jul. 2007.
[79] M. K. Zalalutdinov, J. D. Cross, J. W. Baldwin, B. R. Ilic, W. Zhou, B. H. Houston, and J. M. Parpia, “CMOS-integrated RF MEMS resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 19, no. 4, pp. 807-815, Aug. 2010.
[80] O. Paul, O. Brand, R. Lenggenhager, and H. Baltes, “Vacuum gauging with complementary metal–oxide–semiconductor microsensors,” Journal of Vacuum Science & Technology A, vol. 13, no. 3, pp. 503-508, May/Jun 1995.
[81] D. Lange, C. Hagleitner, C. Herzog, O. Brand and H. Baltes, “Magnetic actuation and MOS-transistor sensing for CMOS-integrated resonators,” Proceedings, 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2002, pp. 304-307.
[82] C. V. Jahnes, J. Cotte, J. L. Lund, H Deligianni, A. Chinthakindi, L. P. Buchwalter, P. Fyer, J. A. Tornello, N. Hoivik, J. H. Magerlein and D. Seeger, “Simultaneous fabrication of MEMS switches and resonators using copper-based CMOS interconnect manufacturing method,” Proceedings, 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2004, pp. 789-792.
[83] C.-C. Lo and G. K. Fedder, “Integrated HF CMOS-MEMS squareframe resonators with on-chip electronics and electrothermal narrow gap mechanism,” Dig. of Tech. Papers, the 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers), Jun. 2005, pp. 2074–2077.
[84] G.-C. Wei and Michael S-C Lu, “Design and characterization of a CMOS MEMS capacitive resonant sensor array,” Journal of Micromechanics and Microengineering (JMM), vol. 22, 125030, 2012.
[85] H.-C. Su, M.-H. Li, and S.-S. Li, “A single-chip oscillator based on a deep-submicron gap CMOS-MEMS resonator array with high-stiffness driving scheme,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 133-136.
[86] R. Marathe, B. Bahr, W. Wang, Z. Mahmood, L. Daniel, and D. Weinstein, “Resonant Body Transistors in IBM's 32 nm SOI CMOS Technology,” Journal of Microelectromechanical Systems (JMEMS), vol. 23, no. 3, pp. 636-650, Jun. 2014.
[87] S. S. Rao, Mechanical Vibrations, 4th ed., Upper Saddle River, NJ: Pearson Prentice Hall, 2004.
[88] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEEE Journal of Solid State Circuits (JSSCC), vol. 35, no. 4, pp. 512-526, Apr. 2000.
[89] I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell,” Proceedings, IEEE International Ultrasonics Symposium (IUS), Nov. 2008, pp. 2111–2114.
[90] K. Hashimoto and M. Yamaguchi, “Surface acoustic wave filters,” in Encyclopedia of RF and Microwave Engineering, vol. 6, Wiley Interscience, 2005, pp. 5046-5058.
[91] Q. Zou, F. Bi, G. Tsuzuki, P. Bradley, and R. Ruby, “Temperature-compensated FBAR duplexer for band 13,” Proceedings, IEEE UFFC Joint Symposia, Jul. 2013, pp. 236-238.
[92] C.-M. Lin, Y.-Y. Chen, V. V. Felmetsge, D. G. Senesky, and A. P. Pisano, “Two-port filters and resonators on AlN/3C-SiC plates utilizing high-order lamb wave modes,” Proceedings, 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 20-24, 2013, pp. 789-792.
[93] C. Zuo, N. Sinha, and G. Piazza, “Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators,” Sensors and Actuators A: Physical, vol. 160, no. 1-2, May 2010, pp. 132-140.
[94] S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “An MSI micromechanical differential disk-array filter,” Dig. of Tech. Papers, the 14th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers), Jun. 2007, pp. 307-311.
[95] S. Pourkamali, R. Abdolvand, and F. Ayazi, “A 600 kHz electrically-coupled MEMS bandpass filter,” Proceedings, 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2003, pp. 702-705.
[96] J. Yan, A. A. Seshia, K. L. Phan, and J. T. M. van Beek, “Mechanical phase inversion for coupled Lamé mode resonator array filters,” Proceedings, IEEE 21st International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2008, pp. 1024–1027.
[97] J. Yan, A. A. Seshia, K. L. Phan, and J. T. M. van Beek, “Internal phase inversion narrow bandwidth MEMS filter,” Proceedings, IEEE International Ultrasonics Symposium (IUS), Nov. 2008, pp. 705–708.
[98] J. Arcamone, E. Colinet, A. Niel and E. Ollier,“Efficient capacitive transduction of high-frequency micromechanical resonators by intrinsic cancellation of parasitic feedthrough capacitances,” Applied Physics Letters (APL), vol. 97, no. 4, 2010, pp. 043505.
[99] C.-C. Lo, “CMOS-MEMS Resonators for Mixer-Filter Application,” PhD Dissertation, Carnegie Mellon University, July, 2008.
[100] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (TUFFC), vol. 59, no. 3, March 2012, pp. 346-357.
[101] C.-H. Chin, C.-S. Li, M.-H. Li, Y.-L. Wang and S.-S. Li, “Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor,” Journal of Micromechanics and Microengineering (JMM), vol.24, no.9, Sep. 2014, pp. 095005.
[102] S. Pourkamali and F. Ayazi, “Electrically Coupled MEMS Bandpass Filters; Part I: With Coupling Element,” Sensors and Actuators A: Physical, vol. 122, Aug. 2005, pp. 307-316.
[103] C.-Y. Chen, M.-H. Li, C.-H. Chin, C.-S. Li, and S.-S. Li, “Combined electrical and mechanical coupling for mode-reconfigurable CMOS-MEMS filters,” Proceedings, IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2014, pp.1249-1252.
[104] D. Weinstein, H. Chandrahalim, L. F. Cheow, and S. A. Bhave, “Dielectrically transduced single-ended to differential MEMS filter,” Dig. of Tech. Papers, IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2006, pp. 318-319.
[105] Y. Xu and J. E.-Y. Lee, “Single-device and on-chip feedthrough cancellation for hybrid MEMS resonators,” IEEE Transactions on Industrial Electronics, vol. 59, no. 12, Dec 2012, pp. 4930-4937.
[106] J. Giner, A. Uranga, J. L. Muñóz-Gamarra, E. Marigó and N. Barniol, “A fully integrated programmable dual-band RF filter based on electrically and mechanically coupled CMOS-MEMS resonators,” Journal of Micromechanics and Microengineering (JMM), vol. 22, no. 5, Apr. 2012, pp. 055020.
[107] K. Wang and C. T.-C. Nguyen, “High-order medium frequency micromechanical electronic filters,” Journal of Microelectromechanical Systems (JMEMS), vol. 8, no. 4, pp. 534-557, Dec. 1999.
[108] A. I. Zverev, Handbook of Filter Synthesis. New York: Wiley, 1967
[109] R. D. Blevins, Formulas for Natural Frequency and Mode Shape, 5th ed. New York, NY, USA: Oxford Univ. Press, 2004.
[110] J. Stillman, “CMOS-MEMS Resonant Mixer-Filters,” Master Thesis, Carnegie Mellon University, July, 2003.
[111] C.-L. Dai, M.-C. Chiang, and M.-W. Chang “Simulation and fabrication of HF microelectromechanical bandpass filter,” Microelectronics Journal., vol. 38, no. 9, Aug. 2007, pp. 828-833.
[112] J. Giner, A. Uranga, F. Torres, E. Marigo, J. L. Muñoz Gamarra, and N. Barniol, “A CMOS-MEMS filter using a V-coupler and electrical phase inversion,” Proceedings, IEEE International Frequency Control Symposium (IFCS), Jun. 2010, pp.344-348.
[113] S.-H. Tseng, Y.-T. Hsieh, C.-C. Lin, H.-H. Tsai, and Y.-Z. Juang, “CMOS MEMS resonator oscillator with an on-chip boost DC/DC converter,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun., 2015, pp. 1981-1984,
[114] Y. Ismail, H. Lee, S. Pamarti, and C.-K. K. Yang, “A 34 V charge pump in 65nm bulk CMOS technology,” Dig. of Tech. Papers, IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2014, pp. 408-409.
[115] M.-H. Li, C.-Y. Chen, W.-C. Chen, and S.-S. Li, “A vertically-coupled MEMS resonator pair for oscillator applications,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 3 pp. 528-530, Jun. 2015.
[116] M. Ayaz, M. Ammad-uddin, I. Baig, and e. M. Aggoune, “Wireless sensor’s civil applications, prototypes, and future integration possibilities: A review,” IEEE Sensors Journal, vol. 18, no. 1, pp. 4-30, Jan. 2018.
[117] H. Tahir, R. Tahir, and K. McDonald-Maier, “Securing MEMS based sensor nodes in the internet of things,” Proceedings, Sixth International Conference on Emerging Security Technologies (EST), Sept. 2015, pp. 44-49.
[118] A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Micro and Nano Systems, vol. 1, pp. 1-16, May 2015.
[119] Y. Yu, F. Pop, G. Michetti, P. Kulik, M. Pirro, A. Kord, D. Sounas, A. Alù, and M. Rinaldi, “2.5 GHz highly-linear magnetic-free microelectromechanical resonant circulator,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2018, pp. 1-2.
[120] C. C. Enz, J. Baborowski, J. Chabloz, M. Kucera, C. Muller, D. Ruffieux, and N. Scolari, “Ultra low-power MEMS-based radio for wireless sensor networks,” Proceedings, 18th European Conference on Circuit Theory and Design, Aug. 2007, pp. 320-331.
[121] R. Abdolvand, B. Bahreyni, J. E.-Y. Lee, and F. Nabki, “Micromachined resonators: A review,” Micromachines, vol. 7, no. 9: 160, pp. 1-56, Sept. 2016.
[122] R. R. Mansour, “RF MEMS-CMOS device integration,” IEEE Microwave Magazine, vol. 14, issue: 1, pp. 39-56, Jan. 2013.
[123] H. Qu, “CMOS MEMS fabrication technologies and devices,” Micromachines, vol. 7, no. 14, Jan. 2016.
[124] P. Michalik, D. Fernández, M. Wietstruck, M. Kaynak, and J. Madrenas, “Experiments on MEMS integration in 0.25 μm CMOS process,” Sensors, vol. 18, no. 7:2111, pp. 1-22, Jun. 2018.
[125] C.-Y. Chen, M.-H. Li, and S.-S. Li, “CMOS-MEMS resonators and oscillators: a review,” Sensors and Materials, vol. 30, no. 4, pp. 733-756, Apr. 2018.
[126] W. Fang, S.-S. Li, C.-L. Cheng, C.-I. Chang, W.-C. Chen, Y.-C. Liu, M.-H. Tsai, and C. Sun, “CMOS MEMS: A key technology towards the “More than Moore” era,” Dig. of Tech. Papers, the 17th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2013, pp. 2513-2518.
[127] J.-R. Liu, S.-C. Lu, C.-P. Tsai, and W.-C. Li, “A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications,” Journal of Micromechanics and Microengineering (JMM), vol. 28, no. 6, pp. 065001, Mar. 2018.
[128] N. Sarkar, G. Lee, and R. R. Mansour, “CMOS-MEMS dynamic FM atomic force microscope,” Dig. of Tech. Papers, the 17th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2013, pp. 916-919.
[129] K. Dorsey and G. Fedder, “A test structure to inform the effects of dielectric charging on CMOS MEMS inertial sensors,” Proceedings, IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2012, pp. 392-395.
[130] H. Qu, H. Yu, W. Zhou, B. Peng, P. Peng, and X. He, “Effects of dielectric charging on the output voltage of a capacitive accelerometer,” Journal of Micromechanics and Microengineering (JMM), vol. 26, pp.115001, Sept. 2016.
[131] J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” Journal of Vacuum Science & Technology B, vol. 21, pp. 2163-2168, Sept. 2003.
[132] J. C. Gerharz, K. Padmaraju, J. Moers, and D. Grützmacher, “Etching titanium nitride gate stacked on high-κ dielectric,” Microelectronic Engineering, vol. 88, no.8, pp. 2541-2543, Aug. 2011.
[133] T.-H. Hsu, C.-Y. Chen, C.-Y. Liu, M.-H. Li, and S.-S. Li, “A 200-nm-gap titanium nitride composite CMOS-MEMS CMUT for biomedical ultrasounds,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2018, pp. 468-470.
[134] M. Birkholz, K.‐E. Ehwald, P. Kulse, J. Drews, M. Fröhlich, U. Haak, M. Kaynak, E. Matthus, K. Schulz, and D. Wolansky, “Ultrathin TiN membranes as a technology platform for CMOS‐Integrated MEMS and bioMEMS devices,” Advanced Functional Materials, vol. 21, no. 9, pp. 1652-1656, May 2011.
[135] P. Steneteg, O. Hellman, O. Y. Vekilova, N. Shulumba, F. Tasnádi, and I. A. Abrikosov, “Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations,” Physical Review B, vol. 87, no. 9, pp. 094114 1-7, Mar. 2013.
[136] J. C. Marshall, D. L. Herman, P. T. Vernier, D. L. DeVoe, and M. Gaitan, “Young's modulus measurements in standard IC CMOS Processes using MEMS test structures,” IEEE Electron Device Letters (EDL), vol. 28, no. 11, pp. 960-963, Nov. 2007.
[137] W.-T. Hsu, J. R. Clark, and C. T.-C. Nguyen, “Mechanically temperature compensated flexural-mode micromechanical resonators,” Dig. of Tech. Papers, IEEE International Electron Devices Meeting (IEDM), Dec. 2000, pp. 399-402.
[138] A. K. Samarao and F. Ayazi, “Temperature compensation of silicon resonators via degenerate doping,” IEEE Transactions on Electron Devices, Vol. 59, No. 1, Jan. 2012, pp. 87-93.
[139] V. A. Thakar, Z. Z. Wu, A. Peczalski, and M. Rais-Zadeh, “Piezoelectrically transduced temperature-compensated flexural-mode silicon resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 3, pp. 819-823, Jun., 2013.
[140] R. Melamud, M. Hoperoft, C. Jha, Bongsang Kim, S. Chandorkar, R. Candler, and T.W. Kenny, “Effects of stress on the temperature coefficient of frequency in double clamped resonators,” Dig. of Tech. Papers, the 13rd International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2005, pp. 392-395.
[141] S.-Q. Wang and L. H. Allen, “Thermal stability of -titanium in contact with titanium nitride,” Journal of Applied Physics, vol. 79, no. 5, pp. 2446-2457, Mar. 1996.
[142] C.-Y. Chen, M.-H. Li, and S.-S. Li, “Statistical characterization of a CMOS-MEMS resonator for monolithic ovenized oscillator applications,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 1965-1968.
[143] C.-Y. Chou, M.-H. Li, C.-Y. Chen, C.-Y. Liu, and S.-S. Li, "An innovative 3-D mechanically-coupled array design for MEMS resonators and oscillators,” Dig. of Tech. Papers, 19th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2017, pp. 90-93.
[144] C.-S. Li, M.-H. Li, C.-H. Chin, and S.-S. Li, “Differentially piezoresistive sensing for CMOS-MEMS resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 6, pp. 1361-1372, Dec. 2013.
[145] M.-H. Li, C.-Y. Chen, and S.-S. Li*, “A study on the design parameters for MEMS oscillators incorporating nonlinearities,,” IEEE Transactions on Circuits and Systems I (TCAS-I), vol. 65, no. 10, pp. 3424-3434, Oct. 2018.
[146] G. Sobreviela, M. Riverola, F. Torres, A. Uranga and N. Barniol, "Ultra compact CMOS-MEMS oscillator based on a reliable metal-via MEMS resonators with noise-matched high-gain transimpedance CMOS amplifier," Dig. of Tech. Papers, 19th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2017, pp. 1943-1946.
[147] Eric Sage. New concept of mass spectrometer based on arrays of resonating nanostructures, Ph.D. Dissertation, Université de Grenoble, 2013.
[148] I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, M. L. Roukes, “Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications,” Nano Letters, vol. 12 no. 3, pp. 1269-74, 2012.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *