|
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013. [2] C. T.-C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1756-1768, Aug. 1998. [3] K. Sankaragomathi, J. Koo, R. Ruby, and B. Otis, “A +/- 3ppm 1.1mW FBAR frequency reference with 750 MHz output and 750mV supply,” Tech. Dig., IEEE International Solid- State Circuits Conf. (ISSCC), Feb. 2015, pp. 454-456. [4] H. Xie and G. K. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope,” IEEE Sensors Journal, vol. 3, no. 5, pp. 622-631, Oct. 2003. [5] C.-C. Chu, T.-Y. Liu, T.-M. Chen, C.-H. Weng, W.-T. Hsu, and S.-S. Li, "A miniaturized aerosol sensor implemented by a silicon-based MEMS thermal-piezoresistive oscillator,” Proceedings, 30th IEEE Int. Micro Electro Mechanical Systems Conf. (MEMS), Jan. 2017, pp. 1216-1219. [6] C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes, “CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors,” IEEE J. Solid State Circuits (JSSC), vol.37, no.12, pp.1867–1878, Dec. 2002. [7] K. S. Kwak, S. Ullah, and N. Ullah, “An overview of IEEE 802.15.6 standard,” Proceedings, 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Nov. 2010, pp. 1-6. [8] IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless Body Area Networks, 2012, IEEE Std. 802.15.6-2012. [9] S. Marinkovic and E. Popovici, “Nano-power wake-up radio circuit for wireless body area networks,” Proceedings, IEEE Radio and Wireless Symposium, Jan. 2011, pp. 398-401. [10] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, no. 2, pp. 251-270, Feb. 2007. [11] T. Manzaneque, R. Lu, Y. Yang, and S. Gong, “Lithium niobate mems chirp compressors for near zero power wake-up radios,” Journal of Microelectromechanical Systems (JMEMS), vol. 26, no. 6, pp. 1204-1215, Dec. 2017. [12] S. Jeong, Y. Chen, T. Jang, J. M.-L. Tsai, D. Blaauw, H.-S. Kim, and D. Sylvester “Always-on 12-nW acoustic sensing and object recognition microsystem for unattended ground sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 261-274, Jan. 2018. [13] Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer and M. Rinaldi, “Zero-power light-actuated micromechanical relay,” Proceedings, 30th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2017, pp. 940-941. [14] A. Banerjee, C. Ghosh, C. H. Mastrangelo, H. Kim, S. J. Broadbent, and Ryan Looper, “Picowatt gas sensing and resistance switching in tunneling nano-gap electrodes,” Proceedings, IEEE SENSORS, Nov. 2016, pp. 1-3. [15] S. S. Bedair, J. S. Pulskamp, R. G. Polcawich, B. Morgan, J. L. Martin, and B. Power, “Thin-film piezoelectric-on-silicon resonant transformers,” Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 6, pp. 1383-1394, Dec. 2013. [16] C. Casella, G. Chen, Z. Qian, G. Hummel, and M. Rinaldi, “920 MHz aluminum nitride cross-sectional Lamé mode piezoelectric MEMS transformer with high open-circuit voltage gain in excess of 39”, Solid-State Sensor, Actuator, and Microsystems Workshop (Hilton Head), June 2016, pp. 412-415. [17] T. Manzaneque, R. Lu, Y. Yang, and S. Gong “A high FOM lithium niobate resonant transformer for passive voltage amplification,” Tech. Dig., 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), June 2017, pp. 798-801. [18] C. R. Valenta and G. D. Durgin, “Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems,” IEEE Microwave Magazine, vol. 15, no. 4, pp. 108-120, June 2014. [19] M. E. Galanko, A. Kochhar, and G. Piazza, T. Mukherjee, and G. K. Fedder, “CMOS-MEMS resonant demodulator for near-zero-power RF wake-up receiver,” Tech. Dig., 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), June 2017, pp. 86-89. [20] S.-C. Lu, C.-P. Tsai, and W.-C. Li, “A CMOS-MEMS CC-beam metal resoswitch for zero quiescent power receiver applications,” Proceedings, 31th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2018, pp. 801-804. [21] R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 3, pp. 334-345, March 2012. [22] N. Nguyen et al., “A design approach for high-Q FBARs with a dual-step frame,” IEEE Transactions on Ultrasonics, Ferroelectrics, vol. 65, no. 9, pp. 1717-1725, Sept. 2018. [23] T. Takai, H. Iwamoto, Y. Takamine, T. Fuyutsume, T. Nakao, M. Hiramoto, T. Toi, and M. Koshino “I.H.P. SAW technology and its application to microacoustic components,” Proceedings, IEEE International Ultrasonics Symposium (IUS), Sept. 2017, pp. 1-8. [24] W. Marrison, “The evolution of the quartz crystal clock,” Bell System Technical Journal (AT&T), vol. 27, 510–588, 1948. [25] S. Zaliasl, J. C. Salvia, G. C. Hill; L. Chen, K. Joo, R. Palwai, N. Arumugam, M. Phadke, S. Mukherjee, H. C. Lee, C. Grosjean, P. M. Hagelin, S. Pamarti, T. S. Fiez, K. A. A. Makinwa, A. Partridge, and V. Menon, “A 3 ppm 1.5 × 0.8 mm2 1.0 µA 32.768 kHz MEMS-based oscillator,” IEEE Journal of Solid State Circuits (JSSCC), vol. 50, no. 1, pp.291-302., Jan. 2015. [26] C. L. Roozeboom, B. E. Hill, V. A. Hong, C. H. Ahn, E. J. Ng, Y. Yang, T. W. Kenny, M. A. Hopcroft, and B. L. Pruitt, “Multifunctional Integrated Sensors for. Multiparameter Monitoring Applications,” Journal of microelectromechanical systems (JMEMS), vol. 24, no. 4, Aug. 2015. [27] A. R. Schofield, A. A. Trusov, and A. M. Shkel, “Versatile vacuum packaging for experimental study of resonant MEMS,” Proceedings, 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2010, pp. 516-519. [28] J. M. Tsai, M. Daneman, B. Boser, D. Horsley, M. Rais-Zadeh, H.Y. Tang, Y. Lu, O. Rozen, F. Liu, M. Lim, and F. Assaderaghi “Versatile CMOS-MEMS integrated piezoelectric platform,” Dig. of Tech. Papers, International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 2248-2251. [29] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS - present and future,” IEEE International Conference on Micro Electro Mechanical Systems, Proceedings, 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2002, pp. 459-466. [30] O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink, and O. Tabata (Eds.), “CMOS–MEMS, Advanced Micro and Nanosystems, vol. 2,” Wiley-VCH, Weinheim, Germany, 2005. [31] G. K. Fedder, R. T. Howe, T.-J. K. Liu, and E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proceedings of the IEEE, vol. 96, no. 2, pp. 306-322, Feb. 2008. [32] H. Qu “CMOS MEMS fabrication technologies and devices,” Micromachines vol. 7, no. 14, Jan. 2016. [33] R. R. Mansour, “RF MEMS-CMOS device Integration,” IEEE Microwave Magazine, vol. 14, issue: 1, pp. 39-56, Jan. 2013. [34] J. Philippe, G. Arndt, E. Colinet, M. Savoye, T. Ernst, E. Ollier, and J. Arcamone, “Fully monolithic and ultra-compact NEMS-CMOS self-oscillator based-on single-crystal silicon resonators and low-cost CMOS circuitry,” Proceedings, 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2014, pp. 1071-1074. [35] E. Sage, O. Martin, C. Dupré, T. Ernst, G. Billiot, L. Duraffourg, E. Colinet, and S. Hentz, “Frequency-addressed NEMS arrays for mass and gas sensing applications,” Dig. of Tech. Papers, The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), Jun. 2013, pp. 665-668. [36] L. J. Hornbeck, “Digital light processing and MEMS: an overview,” Tech. Dig., IEEE/Leos Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing, Aug. 1996, pp. 7-8. [37] C. T.-C. Nguyen, and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” IEEE J. Solid-State Circuits (JSSC), vol. 34, no. 4, pp. 440-455, Apr. 1999. [38] A. E. Franke, D. Bilic, D. T. Chang, P. T. Jones, T.-J. King, R. T. Howe, and G. C. Johnson, “Post-CMOS integration of germanium microstructures,” Proceedings, 12nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 1999; pp. 630–637. [39] R. Jansen, M. Libois, X. Rottenberg, M. Lofrano, J. De Coster, R. Van Hoof, S. Severi, G. Van der Plas, W. de Raedt, H. A. C. Tilmans, S. Donnay, and J. Borremans, “A CMOS-compatible 24MHz poly-SiGe MEMS oscillator with low-power heating for frequency stabilization over temperature,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2011, pp. 1-5. [40] S. Pacheco, P. Zurcher, S. Young, D, Weston, and W. Dauksher, “RF MEMS resonator for CMOS back-end-of-line integration,” Dig. of Tech. Papers, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Sept. 2004, pp.203-206. [41] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully monolithic CMOS nickel micromechanical resonator oscillator,” Proceedings, 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2008, pp. 10-13. [42] F. Nabki, K. Allidina, F. Ahmad, P.-V. Cicek, and M. N. El-Gamal, “A highly integrated 1.8 GHz frequency synthesizer based on a MEMS resonator,” IEEE J. Solid-State Circuits (JSSC), vol. 44, no.8, pp. 2154–2168, Aug. 2009. [43] L. Huang, W. Rieutort-Louis, A. Gualdino, L. Teagno, Y. Hu, J. Mouro, J. Sanz-Robinson, J. C. Sturm, S. Wagner, V. Chu, J. P. Conde, and N. Verma, “A system based on capacitive interfacing of CMOS with post-processed thin-film mems resonators employing synchronous readout for parasitic nulling”, IEEE J. Solid-State Circuits (JSSC), vol.50, no.4, pp. 1002-1015, Apr. 2015. [44] K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” Dig. of Tech. Papers, International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2009, pp. 2126-2130. [45] M. S. Pandian, E. M. Ferrer, W.-S. Tay, V. Madhaven, A. K. Kantimahanti, G. Sobreviela, A. Uranga, and N. Barniol, “Thin film piezoelectric devices integrated on CMOS,” Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Oct. 2016, pp. 167-170. [46] A. Uranga, G. Sobreviela, N. Barniol, E. Marigó, C. Tay-Wee-Song, M. Shunmugam, A. A. Zainuddin, A. K. Kantimahanti, V. Madhaven, and M. Soundara-Pandian, “Dual-clock with single and monolithical 0-level vacuum packaged MEMS-on-CMOS resonator,” Proceedings, 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2015, pp. 1004–1007. [47] S.-S. Li, “CMOS-MEMS resonators and their applications,” Proceedings, IEEE UFFC Joint Symposia, Jul. 2013, pp. 915-921. [48] A. Uranga, J. Verd, N. Barniol, “CMOS-MEMS resonators: From devices to applications,” Microelectronic Engineering, vol. 132, pp.58-73, Jan. 2015. [49] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” Journal of Micromechanics and Microengineering (JMM), vol. 21, no. 6, pp. 065012, May 2011. [50] J. Verd, A. Uranga, J. Teva, J.L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Perez-Murano, and N. Barniol, “Integrated CMOS–MEMS with on-chip readout electronics for high-frequency applications,” IEEE Electron Device Letters (EDL), vol. 27, no. 6, pp. 495-497, Jun. 2006. [51] C.-S. Li, L.-J. Hou, and S.-S. Li, “Advanced CMOS-MEMS resonator platform,” IEEE Electron Device Letters (EDL), vol. 33, no. 2, pp. 272-274, Feb. 2012. [52] J. L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadal and N. Barniol, “Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” Journal of Micromechanics and Microengineering (JMM), vol. 19, 015002, 2009. [53] M.-H. Li, W.-C. Chen, and S.-S. Li, “Realizing deep-submicron gap spacing for CMOS-MEMS resonators,” IEEE Sensors Journal, vol. 12, no. 12, pp. 3399-3407, Dec. 2012. [54] C.-Y. Chen, M.-H. Li, C.-S. Li, and S.-S. Li, “Design and characterization of mechanically coupled CMOS-MEMS filters for channel-select applications,” Sensors and Actuators A: Physical, vol. 216, pp. 394- 404, Sept. 2014. [55] J. L. Lopez, J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, N. Barniol, “A CMOS–MEMS RF-tunable bandpass filter based on two high- Q 22-MHz polysilicon clamped-clamped beam resonators,” IEEE Electron Device Lett. (EDL), vol. 30, no. 7, July 2009. [56] C.-C. Lo and G. K. Fedder, “On-Chip high quality factor CMOS-MEMS silicon-fin resonators,” Dig. of Tech. Papers, 14th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2007, pp. 2449-2452. [57] K. Takahashi, M. Mita, M. Nakada, D. Yamane, A. Higo, H. Fujita, and H. Toshiyoshi, “Development of multi-user multi-chip SOI CMOS-MEMS processes,” IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2009, pp. 701-704. [58] C.-Y. Chen, M.-H. Li, and S.-S. Li, “Transduction comparison of a resonant transducer realized in a commercially available CMOS-MEMS platform,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 145-148. [59] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering (JMM), vol. 19, no. 10, pp. 208-210, 1992. [60] Y.-C. Liu, M.-H. Tsai, W.-C. Chen, M.-H. Li, S.-S. Li, and W. Fang, “Temperature-compensated CMOS-MEMS oxide resonators,” Journal of microelectromechanical systems (JMEMS), vol. 22, no. 5, pp. 1054-1065, Oct. 2013. [61] W.-C. Chen, M.-H. Li, Y.-C. Liu, W. Fang, and S.-S. Li, “A fully-differential CMOS-MEMS DETF oxide resonator with Q > 4,800 and Positive TCF,” IEEE Electron Device Letters (EDL), vol. 33, no. 5, pp. 721-723, May 2012. [62] W.-C. Chen, W. Fang, and S.-S. Li, “VHF CMOS-MEMS oxide resonators with Q > 10,000,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2012, pp. 1-4. [63] C.-S. Li, M.-H. Li, C.-H. Chin, C.-Y. Chen, P. X.-L. Feng, and S.-S. Li, “A piezoresistive CMOS-MEMS resonator with high Q and low TCf,” Proceedings, IEEE UFFC Joint Symposia, Jul. 2013, pp. 425-428. [64] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Temperature-insensitive composite micromechanical resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 18, no. 6, pp. 1409-1419, Oct. 2009. [65] O. Brand, H. Baltes, and U. Baldenweg, “Thermally excited silicon oxide bridge resonators in CMOS technology,” Journal of Micromechanics and Microengineering (JMM), vol. 2, no. 3, pp. 105017, 2009. [66] C.-C. Chen, M.-H. Li, W.-C. Chen, H.-T. Yu, and S.-S. Li, “Thermally-actuated and piezoresistively-sensed CMOS-MEMS resonator array using differential-mode operation,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2012, pp. 1-4. [67] J.-H. Chang, C.-S. Li, C.-C. Chen, and S.-S. Li, “Performance evaluation of CMOS-MEMS thermal-piezoresistive resonators in ambient pressure for sensor applications,” Proceedings, Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum, Apr. 2015, pp. 202-204. [68] T.-Y. Liu, C.-C. Chu, M.-H. Li, C.-Y. Liu, C.-Y. Lo, and S.-S. Li, “CMOS-MEMS thermal-piezoresistive oscillators with high transduction efficiency for mass sensing applications,” Dig. of Tech. Papers, 19th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2017, pp. 452-455. [69] G. K. Fedder and T. Mukherjee, “Self-configuring CMOS microsystems,” in Control Technologies for Emerging Micro and Nanoscale Systems, Berlin, Germany: Springer-Verlag, 2011. [70] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “Design and characterization of a dual-mode CMOS-MEMS resonator for TCF manipulation,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 2, pp. 446-457, Apr. 2015. [71] F.-Y. Lin, W.-C. Tian, and P.-C. Li, “CMOS-based Capacitive Micromachined ultrasonic transducers operating without external DC bias,” Proceedings, IEEE International Ultrasonics Symposium (IUS), July 21-25, 2013. [72] C.-H. Chin, M.-H. Li, C.-Y. Chen, Y.-L. Wang, and S.-S. Li, “A CMOS–MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator,” Journal of Micromechanics and Microengineering (JMM), vol. 25, pp. 115025, Oct. 2015. [73] C.-Y. Chen, M.-H. Li, C.-H. Chin, and S.-S. Li, “Implementation of a CMOS-MEMS filter through a mixed electrical and mechanical coupling scheme,” Journal of Microelectromechanical Systems (JMEMS), vol. 25, no. 2, pp. 262-274, April 2016. [74] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 19, vo. 1, pp. 162-174, Feb 2010. [75] K. L. Dorsey and G. Fedder, “Dielectric charging effects in electrostatically actuated CMOS MEMS resonators,” IEEE Sensors, Nov. 2010, pp. 197-200. [76] M.-H. Li, C.-Y. Chen, and S.-S. Li, “A reliable CMOS-MEMS platform for titanium nitride composite (TiN-C) resonant transducers with enhanced electrostatic transduction and frequency stability,” Dig. of Tech. Papers, IEEE International Electron Devices Meeting (IEDM), Dec. 7-9, 2015, pp. 487-490. [77] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 2 pp. 360-372, April 2015. [78] C.-L. Dai, C.-H. Kuo, and M.-C. Chiang, “Microelectromechanical resonator manufactured using CMOS-MEMS technique,” Microelectronics Journal, vol. 38, issues 6–7, pp. 672-677, Jul. 2007. [79] M. K. Zalalutdinov, J. D. Cross, J. W. Baldwin, B. R. Ilic, W. Zhou, B. H. Houston, and J. M. Parpia, “CMOS-integrated RF MEMS resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 19, no. 4, pp. 807-815, Aug. 2010. [80] O. Paul, O. Brand, R. Lenggenhager, and H. Baltes, “Vacuum gauging with complementary metal–oxide–semiconductor microsensors,” Journal of Vacuum Science & Technology A, vol. 13, no. 3, pp. 503-508, May/Jun 1995. [81] D. Lange, C. Hagleitner, C. Herzog, O. Brand and H. Baltes, “Magnetic actuation and MOS-transistor sensing for CMOS-integrated resonators,” Proceedings, 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2002, pp. 304-307. [82] C. V. Jahnes, J. Cotte, J. L. Lund, H Deligianni, A. Chinthakindi, L. P. Buchwalter, P. Fyer, J. A. Tornello, N. Hoivik, J. H. Magerlein and D. Seeger, “Simultaneous fabrication of MEMS switches and resonators using copper-based CMOS interconnect manufacturing method,” Proceedings, 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2004, pp. 789-792. [83] C.-C. Lo and G. K. Fedder, “Integrated HF CMOS-MEMS squareframe resonators with on-chip electronics and electrothermal narrow gap mechanism,” Dig. of Tech. Papers, the 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers), Jun. 2005, pp. 2074–2077. [84] G.-C. Wei and Michael S-C Lu, “Design and characterization of a CMOS MEMS capacitive resonant sensor array,” Journal of Micromechanics and Microengineering (JMM), vol. 22, 125030, 2012. [85] H.-C. Su, M.-H. Li, and S.-S. Li, “A single-chip oscillator based on a deep-submicron gap CMOS-MEMS resonator array with high-stiffness driving scheme,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 133-136. [86] R. Marathe, B. Bahr, W. Wang, Z. Mahmood, L. Daniel, and D. Weinstein, “Resonant Body Transistors in IBM's 32 nm SOI CMOS Technology,” Journal of Microelectromechanical Systems (JMEMS), vol. 23, no. 3, pp. 636-650, Jun. 2014. [87] S. S. Rao, Mechanical Vibrations, 4th ed., Upper Saddle River, NJ: Pearson Prentice Hall, 2004. [88] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEEE Journal of Solid State Circuits (JSSCC), vol. 35, no. 4, pp. 512-526, Apr. 2000. [89] I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell,” Proceedings, IEEE International Ultrasonics Symposium (IUS), Nov. 2008, pp. 2111–2114. [90] K. Hashimoto and M. Yamaguchi, “Surface acoustic wave filters,” in Encyclopedia of RF and Microwave Engineering, vol. 6, Wiley Interscience, 2005, pp. 5046-5058. [91] Q. Zou, F. Bi, G. Tsuzuki, P. Bradley, and R. Ruby, “Temperature-compensated FBAR duplexer for band 13,” Proceedings, IEEE UFFC Joint Symposia, Jul. 2013, pp. 236-238. [92] C.-M. Lin, Y.-Y. Chen, V. V. Felmetsge, D. G. Senesky, and A. P. Pisano, “Two-port filters and resonators on AlN/3C-SiC plates utilizing high-order lamb wave modes,” Proceedings, 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 20-24, 2013, pp. 789-792. [93] C. Zuo, N. Sinha, and G. Piazza, “Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators,” Sensors and Actuators A: Physical, vol. 160, no. 1-2, May 2010, pp. 132-140. [94] S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “An MSI micromechanical differential disk-array filter,” Dig. of Tech. Papers, the 14th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers), Jun. 2007, pp. 307-311. [95] S. Pourkamali, R. Abdolvand, and F. Ayazi, “A 600 kHz electrically-coupled MEMS bandpass filter,” Proceedings, 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2003, pp. 702-705. [96] J. Yan, A. A. Seshia, K. L. Phan, and J. T. M. van Beek, “Mechanical phase inversion for coupled Lamé mode resonator array filters,” Proceedings, IEEE 21st International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2008, pp. 1024–1027. [97] J. Yan, A. A. Seshia, K. L. Phan, and J. T. M. van Beek, “Internal phase inversion narrow bandwidth MEMS filter,” Proceedings, IEEE International Ultrasonics Symposium (IUS), Nov. 2008, pp. 705–708. [98] J. Arcamone, E. Colinet, A. Niel and E. Ollier,“Efficient capacitive transduction of high-frequency micromechanical resonators by intrinsic cancellation of parasitic feedthrough capacitances,” Applied Physics Letters (APL), vol. 97, no. 4, 2010, pp. 043505. [99] C.-C. Lo, “CMOS-MEMS Resonators for Mixer-Filter Application,” PhD Dissertation, Carnegie Mellon University, July, 2008. [100] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (TUFFC), vol. 59, no. 3, March 2012, pp. 346-357. [101] C.-H. Chin, C.-S. Li, M.-H. Li, Y.-L. Wang and S.-S. Li, “Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor,” Journal of Micromechanics and Microengineering (JMM), vol.24, no.9, Sep. 2014, pp. 095005. [102] S. Pourkamali and F. Ayazi, “Electrically Coupled MEMS Bandpass Filters; Part I: With Coupling Element,” Sensors and Actuators A: Physical, vol. 122, Aug. 2005, pp. 307-316. [103] C.-Y. Chen, M.-H. Li, C.-H. Chin, C.-S. Li, and S.-S. Li, “Combined electrical and mechanical coupling for mode-reconfigurable CMOS-MEMS filters,” Proceedings, IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2014, pp.1249-1252. [104] D. Weinstein, H. Chandrahalim, L. F. Cheow, and S. A. Bhave, “Dielectrically transduced single-ended to differential MEMS filter,” Dig. of Tech. Papers, IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2006, pp. 318-319. [105] Y. Xu and J. E.-Y. Lee, “Single-device and on-chip feedthrough cancellation for hybrid MEMS resonators,” IEEE Transactions on Industrial Electronics, vol. 59, no. 12, Dec 2012, pp. 4930-4937. [106] J. Giner, A. Uranga, J. L. Muñóz-Gamarra, E. Marigó and N. Barniol, “A fully integrated programmable dual-band RF filter based on electrically and mechanically coupled CMOS-MEMS resonators,” Journal of Micromechanics and Microengineering (JMM), vol. 22, no. 5, Apr. 2012, pp. 055020. [107] K. Wang and C. T.-C. Nguyen, “High-order medium frequency micromechanical electronic filters,” Journal of Microelectromechanical Systems (JMEMS), vol. 8, no. 4, pp. 534-557, Dec. 1999. [108] A. I. Zverev, Handbook of Filter Synthesis. New York: Wiley, 1967 [109] R. D. Blevins, Formulas for Natural Frequency and Mode Shape, 5th ed. New York, NY, USA: Oxford Univ. Press, 2004. [110] J. Stillman, “CMOS-MEMS Resonant Mixer-Filters,” Master Thesis, Carnegie Mellon University, July, 2003. [111] C.-L. Dai, M.-C. Chiang, and M.-W. Chang “Simulation and fabrication of HF microelectromechanical bandpass filter,” Microelectronics Journal., vol. 38, no. 9, Aug. 2007, pp. 828-833. [112] J. Giner, A. Uranga, F. Torres, E. Marigo, J. L. Muñoz Gamarra, and N. Barniol, “A CMOS-MEMS filter using a V-coupler and electrical phase inversion,” Proceedings, IEEE International Frequency Control Symposium (IFCS), Jun. 2010, pp.344-348. [113] S.-H. Tseng, Y.-T. Hsieh, C.-C. Lin, H.-H. Tsai, and Y.-Z. Juang, “CMOS MEMS resonator oscillator with an on-chip boost DC/DC converter,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun., 2015, pp. 1981-1984, [114] Y. Ismail, H. Lee, S. Pamarti, and C.-K. K. Yang, “A 34 V charge pump in 65nm bulk CMOS technology,” Dig. of Tech. Papers, IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2014, pp. 408-409. [115] M.-H. Li, C.-Y. Chen, W.-C. Chen, and S.-S. Li, “A vertically-coupled MEMS resonator pair for oscillator applications,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 3 pp. 528-530, Jun. 2015. [116] M. Ayaz, M. Ammad-uddin, I. Baig, and e. M. Aggoune, “Wireless sensor’s civil applications, prototypes, and future integration possibilities: A review,” IEEE Sensors Journal, vol. 18, no. 1, pp. 4-30, Jan. 2018. [117] H. Tahir, R. Tahir, and K. McDonald-Maier, “Securing MEMS based sensor nodes in the internet of things,” Proceedings, Sixth International Conference on Emerging Security Technologies (EST), Sept. 2015, pp. 44-49. [118] A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Micro and Nano Systems, vol. 1, pp. 1-16, May 2015. [119] Y. Yu, F. Pop, G. Michetti, P. Kulik, M. Pirro, A. Kord, D. Sounas, A. Alù, and M. Rinaldi, “2.5 GHz highly-linear magnetic-free microelectromechanical resonant circulator,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2018, pp. 1-2. [120] C. C. Enz, J. Baborowski, J. Chabloz, M. Kucera, C. Muller, D. Ruffieux, and N. Scolari, “Ultra low-power MEMS-based radio for wireless sensor networks,” Proceedings, 18th European Conference on Circuit Theory and Design, Aug. 2007, pp. 320-331. [121] R. Abdolvand, B. Bahreyni, J. E.-Y. Lee, and F. Nabki, “Micromachined resonators: A review,” Micromachines, vol. 7, no. 9: 160, pp. 1-56, Sept. 2016. [122] R. R. Mansour, “RF MEMS-CMOS device integration,” IEEE Microwave Magazine, vol. 14, issue: 1, pp. 39-56, Jan. 2013. [123] H. Qu, “CMOS MEMS fabrication technologies and devices,” Micromachines, vol. 7, no. 14, Jan. 2016. [124] P. Michalik, D. Fernández, M. Wietstruck, M. Kaynak, and J. Madrenas, “Experiments on MEMS integration in 0.25 μm CMOS process,” Sensors, vol. 18, no. 7:2111, pp. 1-22, Jun. 2018. [125] C.-Y. Chen, M.-H. Li, and S.-S. Li, “CMOS-MEMS resonators and oscillators: a review,” Sensors and Materials, vol. 30, no. 4, pp. 733-756, Apr. 2018. [126] W. Fang, S.-S. Li, C.-L. Cheng, C.-I. Chang, W.-C. Chen, Y.-C. Liu, M.-H. Tsai, and C. Sun, “CMOS MEMS: A key technology towards the “More than Moore” era,” Dig. of Tech. Papers, the 17th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2013, pp. 2513-2518. [127] J.-R. Liu, S.-C. Lu, C.-P. Tsai, and W.-C. Li, “A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications,” Journal of Micromechanics and Microengineering (JMM), vol. 28, no. 6, pp. 065001, Mar. 2018. [128] N. Sarkar, G. Lee, and R. R. Mansour, “CMOS-MEMS dynamic FM atomic force microscope,” Dig. of Tech. Papers, the 17th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2013, pp. 916-919. [129] K. Dorsey and G. Fedder, “A test structure to inform the effects of dielectric charging on CMOS MEMS inertial sensors,” Proceedings, IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2012, pp. 392-395. [130] H. Qu, H. Yu, W. Zhou, B. Peng, P. Peng, and X. He, “Effects of dielectric charging on the output voltage of a capacitive accelerometer,” Journal of Micromechanics and Microengineering (JMM), vol. 26, pp.115001, Sept. 2016. [131] J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” Journal of Vacuum Science & Technology B, vol. 21, pp. 2163-2168, Sept. 2003. [132] J. C. Gerharz, K. Padmaraju, J. Moers, and D. Grützmacher, “Etching titanium nitride gate stacked on high-κ dielectric,” Microelectronic Engineering, vol. 88, no.8, pp. 2541-2543, Aug. 2011. [133] T.-H. Hsu, C.-Y. Chen, C.-Y. Liu, M.-H. Li, and S.-S. Li, “A 200-nm-gap titanium nitride composite CMOS-MEMS CMUT for biomedical ultrasounds,” Proceedings, IEEE International Frequency Control Symposium (IFCS), May 2018, pp. 468-470. [134] M. Birkholz, K.‐E. Ehwald, P. Kulse, J. Drews, M. Fröhlich, U. Haak, M. Kaynak, E. Matthus, K. Schulz, and D. Wolansky, “Ultrathin TiN membranes as a technology platform for CMOS‐Integrated MEMS and bioMEMS devices,” Advanced Functional Materials, vol. 21, no. 9, pp. 1652-1656, May 2011. [135] P. Steneteg, O. Hellman, O. Y. Vekilova, N. Shulumba, F. Tasnádi, and I. A. Abrikosov, “Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations,” Physical Review B, vol. 87, no. 9, pp. 094114 1-7, Mar. 2013. [136] J. C. Marshall, D. L. Herman, P. T. Vernier, D. L. DeVoe, and M. Gaitan, “Young's modulus measurements in standard IC CMOS Processes using MEMS test structures,” IEEE Electron Device Letters (EDL), vol. 28, no. 11, pp. 960-963, Nov. 2007. [137] W.-T. Hsu, J. R. Clark, and C. T.-C. Nguyen, “Mechanically temperature compensated flexural-mode micromechanical resonators,” Dig. of Tech. Papers, IEEE International Electron Devices Meeting (IEDM), Dec. 2000, pp. 399-402. [138] A. K. Samarao and F. Ayazi, “Temperature compensation of silicon resonators via degenerate doping,” IEEE Transactions on Electron Devices, Vol. 59, No. 1, Jan. 2012, pp. 87-93. [139] V. A. Thakar, Z. Z. Wu, A. Peczalski, and M. Rais-Zadeh, “Piezoelectrically transduced temperature-compensated flexural-mode silicon resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 3, pp. 819-823, Jun., 2013. [140] R. Melamud, M. Hoperoft, C. Jha, Bongsang Kim, S. Chandorkar, R. Candler, and T.W. Kenny, “Effects of stress on the temperature coefficient of frequency in double clamped resonators,” Dig. of Tech. Papers, the 13rd International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2005, pp. 392-395. [141] S.-Q. Wang and L. H. Allen, “Thermal stability of -titanium in contact with titanium nitride,” Journal of Applied Physics, vol. 79, no. 5, pp. 2446-2457, Mar. 1996. [142] C.-Y. Chen, M.-H. Li, and S.-S. Li, “Statistical characterization of a CMOS-MEMS resonator for monolithic ovenized oscillator applications,” Dig. of Tech. Papers, 18th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2015, pp. 1965-1968. [143] C.-Y. Chou, M.-H. Li, C.-Y. Chen, C.-Y. Liu, and S.-S. Li, "An innovative 3-D mechanically-coupled array design for MEMS resonators and oscillators,” Dig. of Tech. Papers, 19th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2017, pp. 90-93. [144] C.-S. Li, M.-H. Li, C.-H. Chin, and S.-S. Li, “Differentially piezoresistive sensing for CMOS-MEMS resonators,” Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 6, pp. 1361-1372, Dec. 2013. [145] M.-H. Li, C.-Y. Chen, and S.-S. Li*, “A study on the design parameters for MEMS oscillators incorporating nonlinearities,,” IEEE Transactions on Circuits and Systems I (TCAS-I), vol. 65, no. 10, pp. 3424-3434, Oct. 2018. [146] G. Sobreviela, M. Riverola, F. Torres, A. Uranga and N. Barniol, "Ultra compact CMOS-MEMS oscillator based on a reliable metal-via MEMS resonators with noise-matched high-gain transimpedance CMOS amplifier," Dig. of Tech. Papers, 19th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Jun. 2017, pp. 1943-1946. [147] Eric Sage. New concept of mass spectrometer based on arrays of resonating nanostructures, Ph.D. Dissertation, Université de Grenoble, 2013. [148] I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, M. L. Roukes, “Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications,” Nano Letters, vol. 12 no. 3, pp. 1269-74, 2012.
|