帳號:guest(18.190.160.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭怡馨
作者(外文):Hsiao, Yi-Hsing
論文名稱(中文):自動化微流體生物晶片平台之開發
論文名稱(外文):Development of automated microfluidic biochip platforms
指導教授(中文):陳致真
許佳賢
指導教授(外文):Chen, Chih-chen
Hsu, Chia-Hsien
口試委員(中文):吳旻憲
王翔郁
劉怡劭
鄭兆珉
口試委員(外文):Wu, Min-Hsien
Wang, Hsiang-Yu
Liu, Yi-Shao
Cheng, Chao-Min
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035802
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:104
中文關鍵詞:微流道自動化系統生物晶片細胞內鈣離子噬菌體展示細菌檢測
外文關鍵詞:microfluidicautomatic systembiochipintracellular calciumphage-displaybacterial detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:739
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
微流體是一種具有優勢的技術,適用於在體外模擬細胞內環境,並且也具有高效率在生物系統中觀察和測定之優化、分離、分選和檢測過程。此外,微流道之晶片也易於集成自動化操作,並保持對實驗參數準確有效的控制。然後可以通過並行和定制來提高基礎或臨床研究的效率。本論文提出利用微流道的技術製造生物晶片,重點是高通量,易於操作,可處理性和低成本。我們開發了四個自動系統的微流體生物晶片,在獨特的應用中進行了一些改進。分別是(1)一種微流體方法,其允許使用層流和擴散來生成不同軟硬度的聚丙烯酰胺基質,用於研究癌細胞的機械感測。(2)用於在單個NCI-H716細胞陣列上進行自動化鈣離子成像的微流體平台,用於研究細胞對甜味和苦味刺激的反應,(3)發展一種快速,低成本和試劑消耗,並且與生物淘洗的技術相比,成為噬菌體展示文庫親和力之分離及分選的好方法(4)高動態範圍微流道數字PCR晶片可以使用小體積或低濃度的樣品(15 L體積和10個DNA拷貝數),並且使用前無稀釋及細菌培養的步驟。這些平台可用於研究細菌,病毒或癌細胞的藥物開發,篩選和檢測機制。提出的方法的擴展還可以在檢測中找到應用,或者找出用於疾病早期診斷的生物標誌。
The microfluidics is an advantageous technique and suitable for mimicking cellular microenvironments in vitro and highly efficient optimizing, separating, sorting and detecting processes for the observation and manipulation of biological systems. Furthermore, the microfluidic chip can be amiable for easy integration and automation to control experimental parameters accurately and effectively. Therefore, microfluidic technology can improve the efficiency of both basic and clinical studies through parallel operation and customization. This thesis presents the designs and validations of microfluidic biochips with features of high-throughput, easy operation, disposability and low cost. We have developed four automatic microfluidic systems with improvements for each unique application: 1) a microfluidic approach that allows for the generation of gradient stiffness polyacrylamide substrates using laminar flow and diffusion for studying mechanical sensing of cancer cells; 2) a microfluidic platform for performing automated Ca2+ imaging on an array of single NCI-H716 cells to study cellular response to sweet and bitter taste stimulations; 3) a microfluidic platform for affinity-based sorting of phage-display libraries with low cost and reagent consumption; and 4) a high dynamic range microfluidic digital PCR chip using small volume or low concentration of samples (15 L volume and 10 DNA copies of sample) without dilution or bacterial culture before use. These platforms can be applied to the study of the mechanism of bacteria, viruses or cancer cells with drug development, screening, and detection. Extensions of the proposed method can also find applications in the detection or discovery of biomarkers for early diagnosis of diseases.
Abstract i
中文摘要 ii
誌謝 iii
Table of Contents iv
List of Tables viii
List of Figures ix
Abbreviations and nomenclature xii
Chapter 1 Overview of the microfluidics and microfluidic chip 1
1.1 Fundamentals of microfluidics and microfluidic chip 1
1.1.1 Microfluidic technology 1
1.1.2 Microfluidic chip 1
1.2 Microfluidics chip for bio-systems applications 2
1.2.1 Advantages of microfluidic biochip 2
1.2.2 Applications of cellular systems on microfluidic biochip 3
1.3 Thesis overview 4
References 6
Chapter 2 Microfluidic autogenerator of stiffness-tunable polyacrylamide substrates for studying mechanical regulation of cell culture substrate on Cancer cells 8
2.1 Introduction 8
2.2 Materials and methods 10
2.2.1 Microfabrication 10
2.2.2 Polyacrylamide gel fabrication 10
2.2.3 Simulation of stiffness-tunable device 11
2.2.4 Measurement of polyacrylamide gel elasticity 11
2.2.5 Cell culture 12
2.2.6 Cell spreading and migration analysis 12
2.2.7 Cell staining 13
2.2.8 Microscopic protein quantification 13
2.2.9 Statistics 14
2.3 Results and discussions 14
2.3.1 Design and fabrication of the microfluidic device 14
2.3.2 Generation of substrates with different degrees of stiffness by using tuning flow rates and measurement of substrate elastic moduli using a rheometer 16
2.3.3 Different elastic moduli of cell fates on different PA gel substrates 19
2.3.4 Differential response of cancer cell line invasion to changes in substrate stiffness 22
2.4 Conclusions 24
References 25
Chapter 3 A high-throughput automated microfluidic platform for calcium imaging of taste sensing 28
3.1 Introduction 28
3.2 Materials and methods 29
3.2.1 Device fabrication and operation 29
3.2.2 Culture of NCI-H716 cells 30
3.2.3 Stimulation of tastants and calcium imaging on NCI-H716 cells 30
3.3 Results and discussions 31
3.3.1 Trapping and perfusion of NCI-H716 cells 31
3.3.2 Stimulation of NCI-H716 cells with sweet tastants 33
3.3.3 Order of application of tastant Stimuli 35
3.3.4 Calcium responses to glucose and denatonium benzoate after Gymnema Sylvestre (GS) treatment 37
3.4 Conclusions 38
References 40
Chapter 4 Continuous microfluidic assortment of interactive ligands 47
4.1 Introduction 47
4.2 Materials and methods 49
4.2.1 Microfluidic device design and fabrication. 49
4.2.2 Preparation and modification of agarose hydrogels 49
4.2.3 Microfluidic sorting of phage clones 50
4.2.4 Nanoparticle tracking analysis (NTA) 50
4.2.5 Bacterial amplification 50
4.2.6 DNA sequencing 51
4.2.7 Enzyme-linked immunosorbent assay (ELISA) 51
4.2.8 Biopanning of phage library 52
4.2.9 Materials and reagents 53
4.3 Results and discussions 53
4.3.1 Immobilization of antigen molecules to the agarose gel is stable under the electric field 53
4.3.2 A stronger electric field is needed to electrophorese phages of higher affinity for the antigen 54
4.3.3 Phage numbers may be evaluated using nanoparticle tracking analysis (NTA) 55
4.3.4 Phage clones are sorted using CMAIL 57
4.3.5 More than 80% antigen-interactive phages are recovered when the occurrence is above 1/10,000 62
4.3.6 Phages were enriched at different outlets based on their affinity 65
4.3.7 Five repeated CMAIL operation cycles are possible using the same device 68
4.3.8 CMAIL sorting of a phage library is of favorable recovery rate and purity 69
4.4 Discussions and conclusions 71
References 75
Chapter 5 Digital PCR on a high dynamic range microfluidic chip for complex microbial detection 80
5.1 Introduction 80
5.2 Materials and methods 81
5.2.1 Microfluidic design and fabrication of high dynamic range microfluidic chip 81
5.2.2 Installing and loading of the high dynamic range microfluidic chip 82
5.2.3 Measurement of temperature within the high dynamic range microfluidic chip 82
5.2.4 Pure and complex microbial samples collection and genomic DNA extraction 82
5.2.5 PCR amplification 83
5.2.6 Quantification of fluorescence image in DNA level on high dynamic range microfluidic
chip 83
5.3 Results and discussions 84
5.3.1 Principle and operation of the high dynamic range microfluidic chip 84
5.3.2 Examination of the high dynamic range microfluidic chip 85
5.3.3 Quantitative detection of DNA copies on the high dynamic range microfluidic chip 89
5.3.4 Real samples detection of DNA copies on the high dynamic range microfluidic digital
PCR chip 91
5.4 Conclusions 93
Reference 94
Chapter 6 Conclusions and Future perspectives 96
6.1 Summarize conclusions 96
6.2 Future perspectives 97
References 99
Publication lists 102
References

1. Maeki M, Pawate AS, Yamashita K, Kawamoto M, Tokeshi M, Kenis PJ and Miyazaki M (2015) A method of cryoprotection for protein crystallography by using a microfluidic chip and its application for in situ X-ray diffraction measurements. Anal Chem 87:4194-200. doi: 10.1021/acs.analchem.5b00151
2. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A and Hoorfar M (2015) Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors (Basel) 15:30011-31. doi: 10.3390/s151229783
3. Lee H, Xu L, Koh D, Nyayapathi N and Oh KW (2014) Various on-chip sensors with microfluidics for biological applications. Sensors (Basel) 14:17008-36. doi: 10.3390/s140917008
4. Streets AM and Huang Y (2013) Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics 7:11302. doi: 10.1063/1.4789751
5. Yang J, Li CW and Yang MS (2002) [Lab-on-a-chip (microfluidics) technology]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34:117-23.
6. Waldbaur A, Kittelmann J, Radtke CP, Hubbuch J and Rapp BE (2013) Microfluidics on liquid handling stations (muF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations. Lab Chip 13:2337-43. doi: 10.1039/c3lc00042g
7. Choi K, Kim JY, Ahn JH, Choi JM, Im M and Choi YK (2012) Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application. Lab Chip 12:1533-9. doi: 10.1039/c2lc21203j
8. Lee KG, Park TJ, Soo SY, Wang KW, Kim BI, Park JH, Lee CS, Kim DH and Lee SJ (2010) Synthesis and utilization of E. coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application. Biotechnol Bioeng 107:747-51. doi: 10.1002/bit.22861
9. Linder V, Verpoorte E, Thormann W, de Rooij NF and Sigrist H (2001) Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal Chem 73:4181-9.
10. Xu Y, Jang K, Yamashita T, Tanaka Y, Mawatari K and Kitamori T (2012) Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Anal Bioanal Chem 402:99-107. doi: 10.1007/s00216-011-5296-5
11. Li Pira G, Ivaldi F, Tripodi G, Martinengo M and Manca F (2008) Positive selection and expansion of cytomegalovirus-specific CD4 and CD8 T cells in sealed systems: potential applications for adoptive cellular immunoreconstitution. J Immunother 31:762-70. doi: 10.1097/CJI.0b013e3181826232
12. Critchley-Thorne RJ, Miller SM, Taylor DL and Lingle WL (2009) Applications of cellular systems biology in breast cancer patient stratification and diagnostics. Comb Chem High Throughput Screen 12:860-9.
References

1. Cox TR and Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165-78. doi: 10.1242/dmm.004077.
2. Cretu A, Castagnino P and Assoian R (2010) Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels. J Vis Exp. doi: 10.3791/2089.
3. Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ and Parsons JT (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5:e12905. doi: 10.1371/journal.pone.0012905.
4. Tomonari H, Miura H, Nakayama A, Matsumura E, Ooki M, Ninomiya Y and Harada S (2012) Galpha-gustducin is extensively coexpressed with sweet and bitter taste receptors in both the soft palate and fungiform papillae but has a different functional significance. Chem Senses 37:241-51. doi: 10.1093/chemse/bjr098.
5. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM and Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642-9. doi: 10.1038/nmat3339.
6. Vincent LG, Choi YS, Alonso-Latorre B, del Alamo JC and Engler AJ (2013) Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J 8:472-84. doi: 10.1002/biot.201200205.
7. Lee J, Abdeen AA, Zhang D and Kilian KA (2013) Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140-8. doi: 10.1016/j.biomaterials.2013.07.074.
8. Blakney AK, Swartzlander MD and Bryant SJ (2012) The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 100:1375-86. doi: 10.1002/jbm.a.34104.
9. Palchesko RN, Zhang L, Sun Y and Feinberg AW (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7:e51499. doi: 10.1371/journal.pone.0051499.
10. Nemir S and West JL (2010) Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 38:2-20. doi: 10.1007/s10439-009-9811-1.
11. Yip AK, Iwasaki K, Ursekar C, Machiyama H, Saxena M, Chen H, Harada I, Chiam KH and Sawada Y (2013) Cellular response to substrate rigidity is governed by either stress or strain. Biophys J 104:19-29. doi: 10.1016/j.bpj.2012.11.3805.
12. Gu Z, Liu F, Tonkova EA, Lee SY, Tschumperlin DJ and Brenner MB (2014) Soft matrix is a natural stimulator for cellular invasiveness. Mol Biol Cell 25:457-69. doi: 10.1091/mbc.E13-05-0260.
13. Tse JR and Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol Chapter 10:Unit 10 16. doi: 10.1002/0471143030.cb1016s47
14. Mih JD, Sharif AS, Liu F, Marinkovic A, Symer MM and Tschumperlin DJ (2011) A multiwell platform for studying stiffness-dependent cell biology. PLoS One 6:e19929. doi: 10.1371/journal.pone.0019929.
15. Pirhonen E, Moimas L and Brink M (2006) Mechanical properties of bioactive glass 9-93 fibres. Acta Biomater 2:103-7. doi: 10.1016/j.actbio.2005.08.008.
16. Wu CC, Ding SJ, Wang YH, Tang MJ and Chang HC (2005) Mechanical properties of collagen gels derived from rats of different ages. J Biomater Sci Polym Ed 16:1261-75.
17. Choi JS and Harley BA (2012) The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33:4460-8. doi: 10.1016/j.biomaterials.2012.03.010.
18. Rao N, Grover GN, Vincent LG, Evans SC, Choi YS, Spencer KH, Hui EE, Engler AJ and Christman KL (2013) A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions. Integr Biol (Camb) 5:1344-54. doi: 10.1039/c3ib40078f.
19. Raab M, Swift J, Dingal PC, Shah P, Shin JW and Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669-83. doi: 10.1083/jcb.201205056.
20. Luo M and Guan JL (2010) Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 289:127-39. doi: 10.1016/j.canlet.2009.07.005.
21. Haage A, Nam DH, Ge X and Schneider IC (2014) Matrix metalloproteinase-14 is a mechanically regulated activator of secreted MMPs and invasion. Biochem Biophys Res Commun 450:213-8. doi: 10.1016/j.bbrc.2014.05.086.
22. Haeger A, Krause M, Wolf K and Friedl P (2014) Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840:2386-95. doi: 10.1016/j.bbagen.2014.03.020.
23. Haage A and Schneider IC (2014) Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J 28:3589-99. doi: 10.1096/fj.13-245613.
24. Xie J, Zhang Q, Zhu T, Zhang Y, Liu B, Xu J and Zhao H (2014) Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis. Acta Biomater 10:2463-72. doi: 10.1016/j.actbio.2014.01.031.
25. Fioretta ES, Fledderus JO, Baaijens FP and Bouten CV (2012) Influence of substrate stiffness on circulating progenitor cell fate. J Biomech 45:736-44. doi: 10.1016/j.jbiomech.2011.11.013.
26. Zustiak S, Nossal R and Sackett DL (2014) Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugs. Biotechnol Bioeng 111:396-403. doi: 10.1002/bit.25097.
27. Lee J, Abdeen AA, Huang TH and Kilian KA (2014) Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J Mech Behav Biomed Mater 38:209-18. doi: 10.1016/j.jmbbm.2014.01.009.
References

1. Trivedi BP (2012) Neuroscience: hardwired for taste. Nature 486:S7-9. doi: 10.1038/486S7a.
2. Finger TE and Kinnamon SC (2011) Taste isn't just for taste buds anymore. F1000 Biol Rep 3:20. doi: 10.3410/B3-20.
3. Zheng Y and Sarr MG (2013) Effect of the artificial sweetener, acesulfame potassium, a sweet taste receptor agonist, on glucose uptake in small intestinal cell lines. J Gastrointest Surg 17:153-8; discussion p 158. doi: 10.1007/s11605-012-1998-z.
4. Kyriazis GA, Soundarapandian MM and Tyrberg B (2012) Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 109:E524-32. doi: 10.1073/pnas.1115183109.
5. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF and Cohen NA (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124:1393-405. doi: 10.1172/JCI72094.
6. Simon BR, Learman BS, Parlee SD, Scheller EL, Mori H, Cawthorn WP, Ning X, Krishnan V, Ma YL, Tyrberg B and MacDougald OA (2014) Sweet taste receptor deficient mice have decreased adiposity and increased bone mass. PLoS One 9:e86454. doi: 10.1371/journal.pone.0086454.
7. Young RL (2011) Sensing via intestinal sweet taste pathways. Front Neurosci 5:23. doi: 10.3389/fnins.2011.00023.
8. Kokrashvili Z, Mosinger B and Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90:822S-825S. doi: 10.3945/ajcn.2009.27462T.
9. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D and Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329-33. doi: 10.1126/science.aaf1648.
10. Baquero AF and Gilbertson TA (2011) Insulin activates epithelial sodium channel (ENaC) via phosphoinositide 3-kinase in mammalian taste receptor cells. Am J Physiol Cell Physiol 300:C860-71. doi: 10.1152/ajpcell.00318.2010.
11. Renwick AG and Molinary SV (2010) Sweet-taste receptors, low-energy sweeteners, glucose absorption and insulin release. Br J Nutr 104:1415-20. doi: 10.1017/S0007114510002540.
12. Chaudhari N and Roper SD (2010) The cell biology of taste. J Cell Biol 190:285-96. doi: 10.1083/jcb.201003144.
13. Egan JM and Margolskee RF (2008) Taste cells of the gut and gastrointestinal chemosensation. Mol Interv 8:78-81. doi: 10.1124/mi.8.2.5.
14. Glendinning JI, Stano S, Holter M, Azenkot T, Goldman O, Margolskee RF, Vasselli JR and Sclafani A (2015) Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am J Physiol Regul Integr Comp Physiol 309:R552-60. doi: 10.1152/ajpregu.00056.2015.
15. Kyriazis GA, Smith KR, Tyrberg B, Hussain T and Pratley RE (2014) Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology 155:2112-21. doi: 10.1210/en.2013-2015.
16. Oya M, Suzuki H, Watanabe Y, Sato M and Tsuboi T (2011) Amino acid taste receptor regulates insulin secretion in pancreatic beta-cell line MIN6 cells. Genes Cells 16:608-16. doi: 10.1111/j.1365-2443.2011.01509.x.
17. Spinelli KJ and Gillespie PG (2012) Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM. PLoS One 7:e51874. doi: 10.1371/journal.pone.0051874.
18. Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J and Beglinger C (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 30:524-32. doi: 10.1016/j.clnu.2011.01.007.
19. Maruoka D, Arai M, Tanaka T, Okimoto K, Oyamada A, Minemura S, Tsuboi M, Matsumura T, Nakagawa T, Kanda T, Katsuno T, Imazeki F and Yokosuka O (2015) Mosapride citrate increases postprandial glucagon-like peptide-1, insulin, and gene expression of sweet taste receptors. Dig Dis Sci 60:345-53. doi: 10.1007/s10620-014-3271-7.
20. Harrigan RA, Nathan MS and Beattie P (2001) Oral agents for the treatment of type 2 diabetes mellitus: pharmacology, toxicity, and treatment. Ann Emerg Med 38:68-78. doi: 10.1067/mem.2001.114314.
21. Greenfield JR and Chisholm DJ (2013) How sweet it is: intestinal sweet taste receptors in type 2 diabetes. Diabetes 62:3336-7. doi: 10.2337/db13-1018.
22. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF and Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 104:15069-74. doi: 10.1073/pnas.0706890104.
23. Kim KS, Egan JM and Jang HJ (2014) Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57:2117-25. doi: 10.1007/s00125-014-3326-5.
24. Avau B, Rotondo A, Thijs T, Andrews CN, Janssen P, Tack J and Depoortere I (2015) Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci Rep 5:15985. doi: 10.1038/srep15985.
25. Duskova M, Macourek M, Sramkova M, Hill M and Starka L (2013) The role of taste in cephalic phase of insulin secretion. Prague Med Rep 114:222-30. doi: 10.14712/23362936.2014.11.
26. Bernhardt SJ, Naim M, Zehavi U and Lindemann B (1996) Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol 490 ( Pt 2):325-36.
27. Ogura T, Margolskee RF and Kinnamon SC (2002) Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels. J Neurophysiol 87:3152-5.
28. Yamamoto K and Ishimaru Y (2013) Oral and extra-oral taste perception. Semin Cell Dev Biol 24:240-6. doi: 10.1016/j.semcdb.2012.08.005.
29. Ohtsu Y, Nakagawa Y, Nagasawa M, Takeda S, Arakawa H and Kojima I (2014) Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol Cell Endocrinol 394:70-9. doi: 10.1016/j.mce.2014.07.004.
30. Avau B and Depoortere I (2016) The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol (Oxf) 216:407-20. doi: 10.1111/apha.12621.
31. Faley S, Seale K, Hughey J, Schaffer DK, VanCompernolle S, McKinney B, Baudenbacher F, Unutmaz D and Wikswo JP (2008) Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip 8:1700-12. doi: 10.1039/b719799c.
32. Li X and Li PC (2005) Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium. Anal Chem 77:4315-22. doi: 10.1021/ac048240a.
33. Li X, Huang J, Tibbits GF and Li PC (2007) Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining to drug discovery. Electrophoresis 28:4723-33. doi: 10.1002/elps.200700312.
34. Chokshi TV, Bazopoulou D and Chronis N (2010) An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Lab Chip 10:2758-63. doi: 10.1039/c004658b.
35. Robertson G, Bushell TJ and Zagnoni M (2014) Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr Biol (Camb) 6:636-44. doi: 10.1039/c3ib40221e.
36. Renault R, Sukenik N, Descroix S, Malaquin L, Viovy JL, Peyrin JM, Bottani S, Monceau P, Moses E and Vignes M (2015) Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 10:e0120680. doi: 10.1371/journal.pone.0120680.
37. Scott A, Weir K, Easton C, Huynh W, Moody WJ and Folch A (2013) A microfluidic microelectrode array for simultaneous electrophysiology, chemical stimulation, and imaging of brain slices. Lab Chip 13:527-35. doi: 10.1039/c2lc40826k.
38. Figueroa XA, Cooksey GA, Votaw SV, Horowitz LF and Folch A (2010) Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip 10:1120-7. doi: 10.1039/b920585c.
39. Pirhonen E, Moimas L and Brink M (2006) Mechanical properties of bioactive glass 9-93 fibres. Acta Biomater 2:103-7. doi: 10.1016/j.actbio.2005.08.008.
40. Martin VV, Beierlein M, Morgan JL, Rothe A and Gee KR (2004) Novel fluo-4 analogs for fluorescent calcium measurements. Cell Calcium 36:509-14. doi: 10.1016/j.ceca.2004.05.002
41. Cohen J (1962) The statistical power of abnormal-social psychological research: a review. J Abnorm Soc Psychol 65:145-53.
42. Kim KS, Jung Yang H, Lee IS, Kim KH, Park J, Jeong HS, Kim Y, Ahn KS, Na YC and Jang HJ (2015) The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 5:18325. doi: 10.1038/srep18325.
43. Nakagawa Y, Nagasawa M, Medina J and Kojima I (2015) Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic beta-Cells. PLoS One 10:e0144053. doi: 10.1371/journal.pone.0144053.
44. Tomonari H, Miura H, Nakayama A, Matsumura E, Ooki M, Ninomiya Y and Harada S (2012) Galpha-gustducin is extensively coexpressed with sweet and bitter taste receptors in both the soft palate and fungiform papillae but has a different functional significance. Chem Senses 37:241-51. doi: 10.1093/chemse/bjr098.
45. Grapengiesser E, Gylfe E and Hellman B (1988) Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem Biophys Res Commun 151:1299-304.
46. Shiyovich A, Sztarkier I and Nesher L (2010) Toxic hepatitis induced by Gymnema sylvestre, a natural remedy for type 2 diabetes mellitus. Am J Med Sci 340:514-7. doi: 10.1097/MAJ.0b013e3181f41168.
47. Mendenhall A, Driscoll M and Brent R (2016) Using measures of single-cell physiology and physiological state to understand organismic aging. Aging Cell 15:4-13. doi: 10.1111/acel.12424.
48. Taheri-Araghi S, Brown SD, Sauls JT, McIntosh DB and Jun S (2015) Single-Cell Physiology. Annu Rev Biophys 44:123-42. doi: 10.1146/annurev-biophys-060414-034236.
49. Eiriz MF, Grade S, Rosa A, Xapelli S, Bernardino L, Agasse F and Malva JO (2011) Functional evaluation of neural stem cell differentiation by single cell calcium imaging. Curr Stem Cell Res Ther 6:288-96.
50. Badea T, Goldberg J, Mao B and Yuste R (2001) Calcium imaging of epileptiform events with single-cell resolution. J Neurobiol 48:215-27.
51. Marsh KA (1995) Single-cell calcium imaging. Methods Mol Biol 41:229-38. doi: 10.1385/0-89603-298-1:229.
52. Patel TP, Man K, Firestein BL and Meaney DF (2015) Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging. J Neurosci Methods 243:26-38. doi: 10.1016/j.jneumeth.2015.01.020.
53. Hamano K, Nakagawa Y, Ohtsu Y, Li L, Medina J, Tanaka Y, Masuda K, Komatsu M and Kojima I (2015) Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic beta-cells. J Endocrinol 226:57-66. doi: 10.1530/JOE-15-0102.
54. Chen ZX, Wu W, Zhang WB and Deng SP (2011) Thermodynamics of the interaction of sweeteners and lactisole with fullerenols as an artificial sweet taste receptor model. Food Chem 128:134-44. doi: 10.1016/j.foodchem.2011.03.008.
55. Theodorakis MJ (2015) Comment on Faerch et al. GLP-1 Response to Oral Glucose Is Reduced in Prediabetes, Screen-Detected Type 2 Diabetes, and Obesity and Influenced by Sex: The ADDITION-PRO Study. Diabetes 2015;64:2513-2525. Diabetes 64:e28-9; discussion e30-1. doi: 10.2337/db15-0614.
56. Temizkan S, Deyneli O, Yasar M, Arpa M, Gunes M, Yazici D, Sirikci O, Haklar G, Imeryuz N and Yavuz DG (2015) Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr 69:162-6. doi: 10.1038/ejcn.2014.208.
57. Jimenez A, Casamitjana R, Viaplana-Masclans J, Lacy A and Vidal J (2013) GLP-1 action and glucose tolerance in subjects with remission of type 2 diabetes after gastric bypass surgery. Diabetes Care 36:2062-9. doi: 10.2337/dc12-1535.
References

1. Xu, W., Lucke, A. J. & Fairlie, D. P. (2015) Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J. Mol. Graph. Model. 57, 76-88, doi:10.1016/j.jmgm.2015.01.009.
2. Umlauf, B. J., McGuire, M. J. & Brown, K. C. (2015) Introduction of plasmid encoding for rare tRNAs reduces amplification bias in phage display biopanning. BioTechniques 58, 81-84, doi:10.2144/000114256.
3. Chin, S. E. et al. (2015) Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses. J. Immunol. Methods. 416, 49-58, doi:10.1016/j.jim.2014.10.013.
4. Yang, M. et al. (2014) Phage-display library biopanning and bioinformatic analysis yielded a high-affinity peptide to inflamed vascular endothelium both in vitro and in vivo. J. Control. Release. 174, 72-80, doi:10.1016/j.jconrel.2013.11.009.
5. Ebrahimizadeh, W. & Rajabibazl, M. (2014) Bacteriophage vehicles for phage display: biology, mechanism, and application. Curr. Microbiol. 69, 109-120, doi:10.1007/s00284-014-0557-0.
6. Lee, B. H. & Kwon, T. H. (2013) Application of phage display for ligand peptidomics to identify peptide ligands binding to AQP2-expressing membrane fractions. Method. Mol. Biol. 1023, 181-189, doi:10.1007/978-1-4614-7209-4_12.
7. Becker, M. et al. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol. 15, 43, doi:10.1186/s12896-015-0167-3 (2015).
8. Padmanaban, G. et al. (2014) Identification of peptides that selectively bind to myoglobin by biopanning of phage displayed-peptide library. J. Biotechnol. 187, 43-50, doi:10.1016/j.jbiotec.2014.07.435.
9. t Hoen, P. A. et al. (2012) Phage display screening without repetitious selection rounds. Anal. Biochem. 421, 622-631, doi:10.1016/j.ab.2011.11.005.
10. Lang, Q. et al. (2014) Specific probe selection from landscape phage display library and its application in enzyme-linked immunosorbent assay of free prostate-specific antigen. Anal. Chem. 86, 2767-2774, doi:10.1021/ac404189k.
11. Ellis, S. E., Newlands, G. F., Nisbet, A. J. & Matthews, J. B. (2012) Phage-display library biopanning as a novel approach to identifying nematode vaccine antigens. Parasite Immunol. 34, 285-295, doi:10.1111/j.1365-3024.2011.01317.x.
12. Zahid, M. et al. (2010) Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice. PloS one 5, e12252, doi:10.1371/journal.pone.0012252.
13. Persson, J., Augustsson, P., Laurell, T. & Ohlin, M. (2008) Acoustic microfluidic chip technology to facilitate automation of phage display selection. FEBS J. 275, 5657-5666, doi:10.1111/j.1742-4658.2008.06691.x.
14. Melin, J. & Quake, S. R. (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Bioph. Biom. 36, 213-231, doi:10.1146/annurev.biophys.36.040306.132646.
15. Bessette, P. H., Hu, X., Soh, H. T. & Daugherty, P. S. (2007) Microfluidic library screening for mapping antibody epitopes. Anal. Chem. 79, 2174-2178, doi:10.1021/ac0616916.
16. Charles, P. T. et al. (2015) Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection. Talanta 144, 439-444, doi:10.1016/j.talanta.2015.06.039.
17. Wang, Y. et al. (2014) Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal. Chem. 86, 9930-9938, doi:10.1021/ac5027012.
18. Vistas, C. R. et al. (2014) An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor. Analyst 139, 3709-3713, doi:10.1039/c4an00695j.
19. Cung, K. et al. (2012) Rapid, multiplexed microfluidic phage display. Lab Chip 12, 562-565, doi:10.1039/c2lc21129g.
20. Liu, Y. et al. (2009) Controlling the selection stringency of phage display using a microfluidic device. Lab Chip 9, 1033-1036, doi:10.1039/b820985e.
21. Wang, J. P. et al. (2011) Selection of phage-displayed peptides on live adherent cells in microfluidic channels. P. Natl. Acad. Sci. USA 108, 6909-6914, doi:10.1073/pnas.1014753108.
22. Wang, C. H., Weng, C. H., Che, Y. J., Wang, K. & Lee, G. B. (2015) Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis. Theranostics 5, 431-442, doi:10.7150/thno.10891.
23. Che, Y. J. et al. (2015) An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells. Biomicrofluidics 9, doi:10.1063/1.4933067.
24. Park, H. S., Lee, W. & Nam, Y. S. (2016) Elution dynamics of M13 bacteriophage bound to streptavidin immobilized in a microfluidic channel. Biochip J. 10, 48-55, doi:10.1007/s13206-016-0107-x.
25. Smith, G. P. & Petrenko, V. A. (1997) Phage display. Chem. Rev. 97, 391-410, doi:10.1021/cr960065d.
26. Marvin, D. A. & Hohn, B. (1969) Filamentousbacterial viruses. Bacteriol. Rev. 33, 172-&.
27. Boeke, J. D., Russel, M. & Model, P. (1980) Processing of filamentous phage pre-coat protein - effect of sequence variations near the signal peptidase cleavage site. J. Mol. Biol. 144, 103-116, doi:10.1016/0022-2836(80)90027-3.
28. Schwartz, D. C. & Cantor, C. R. (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel-electrophoresis. Cell 37, 67-75, doi:10.1016/0092-8674(84)90301-5.
29. Bakajin, O. et al. (2001) Separation of 100-kilobase DNA molecules in 10 seconds. Anal. Chem. 73, 6053-6056, doi:10.1021/ac015527o.
30. Dodla, M. C. & Bellamkonda, R. V. (2006) Anisotropic scaffolds facilitate enhanced neurite extension in vitro. J. Biomed. Mater. Res. A 78, 213-221.
31. Lai, Y. D. et al. (2016) Generation of potent anti-vascular endothelial growth factor neutralizing antibodies from mouse phage display library for cancer therapy. Int. J. Mol. Sci. 17, doi:10.3390/ijms17020214.
32. Moses, P. B., Boeke, J. D., Horiuchi, K. & Zinder, N. D. (1980) Restruturing the bacteriophage f1 genome - expression of gene 8 in the intergenic space. Virology 104, 267-278, doi:10.1016/0042-6822(80)90332-3.
33. Carr, B., Siupa, A., Hole, P., Malloy, A. & Hannell, C. (2012) Nanoparticle tracking analysis for the rapid and direct visualisation, sizing and counting of viruses, phage and VLPs in suspension. Hum. Gene Ther. 23, A8-A9.
34. Dogic, Z. & Fraden, S. (1997) Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett. 78, 2417-2420, doi:10.1103/PhysRevLett.78.2417.
35. Karabacak, N. M. et al. (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9, 694-710, doi:10.1038/nprot.2014.044.
36. Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. (2004) Continuous particle separation through deterministic lateral displacement. Science 304, 987-990, doi:10.1126/science.1094567.
37. Lee, C. Y. et al. (2014) Solid-State Electronics and Photonics in Biology and Medicine, Vol. 64 ECS Transactions (ed. Wang, Y. L.) 51-56.
38. Lai, Y. D. et al. (2016) Generation of potent anti-vascular endothelial growth factor neutralizing antibodies from mouse phage display library for cancer therapy. Int. J. Mol. Sci. 17, doi:10.3390/ijms17020214.
39. Gonzalez-Techera, A. et al. (2008) High-throughput method for ranking the affinity of peptide ligands selected from phage display libraries. Bioconjugate Chem. 19, 993-1000, doi:10.1021/bc700279y.
40. Lad, L. et al. (2015) High-throughput kinetic screening of hybridomas to identify high-affinity antibodies using bio-layer interferometry. J. Biomol. Screen. 20, 498-507, doi:10.1177/1087057114560123.
41. McConnell, S. J., Dinh, T., Le, M. H. & Spinella, D. G. (1999) Biopanning phage display libraries using magnetic beads vs. polystyrene plates. BioTechniques 26, 208-+.
42. Walter, G., Konthur, Z. & Lehrach, H. (2001) High-throughput screening of surface displayed gene products. Comb. Chem. High T. Scr. 4, 193-205.
43. Konthur, Z., Wilde, J. & Lim, T. S. (2010) Antibody Engineering 2nd edn, Vol 1 (eds Kontermann, R & Dubel, S) Ch. 18, 267-287 (Springer-Verlag).
44. Krebs, B. et al. (2001) High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254, 67-84, doi:10.1016/s0022-1759(01)00398-2.
45. Kala, M., Bajaj, K. & Sinha, S. (1997) Magnetic bead enzyme-linked immunosorbent assay (ELISA) detects antigen-specific binding by phage-displayed scFv antibodies that are not detected with conventional ELISA. Anal. Biochem. 254, 263-266, doi:10.1006/abio.1997.2378.
References

1. Valour F, Blanc-Pattin V, Freydiere AM, Bouaziz A, Chanard E, Lustig S, Ferry T, Laurent F and Lyon Bone Joint Infection Study G (2014) Rapid detection of Staphylococcus aureus and methicillin resistance in bone and joint infection samples: evaluation of the GeneXpert MRSA/SA SSTI assay. Diagn Microbiol Infect Dis 78:313-5. doi: 10.1016/j.diagmicrobio.2013.11.026.
2. Koitka M and Picard N (2011) Some lessons learned from using medium scale genotyping techniques in pharmacogenetic research. Clin Chem Lab Med 49:551-2. doi: 10.1515/CCLM.2011.076.
3. Tadmor AD, Ottesen EA, Leadbetter JR and Phillips R (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333:58-62. doi: 10.1126/science.1200758.
4. Miyata M, Santos AC, Mendes NH, Cunha EA, de Melo FA and Leite CQ (2011) Assessment of the quality of dna extracted by two techniques from Mycobacterium tuberculosis for fast molecular identification and genotyping. Braz J Microbiol 42:774-7. doi: 10.1590/S1517-838220110002000045.
5. Abrishami M, Hashemi B, Abrishami M, Abnous K, Razavi-Azarkhiavi K and Behravan J (2015) PCR detection and identification of bacterial contaminants in ocular samples from post-operative endophthalmitis. J Clin Diagn Res 9:NC01-3. doi: 10.7860/JCDR/2015/10291.5733.
6. Vuong J, Collard JM, Whaley MJ, Bassira I, Seidou I, Diarra S, Ouedraogo RT, Kambire D, Taylor TH, Jr., Sacchi C, Mayer LW and Wang X (2016) Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction. PLoS One 11:e0147765. doi: 10.1371/journal.pone.0147765.
7. Bian X, Jing F, Li G, Fan X, Jia C, Zhou H, Jin Q and Zhao J (2015) A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes. Biosens Bioelectron 74:770-7. doi: 10.1016/j.bios.2015.07.016.
8. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA and Scott DJ (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40:e82. doi: 10.1093/nar/gks203.
9. Schell WA, Benton JL, Smith PB, Poore M, Rouse JL, Boles DJ, Johnson MD, Alexander BD, Pamula VK, Eckhardt AE, Pollack MG, Benjamin DK, Jr., Perfect JR and Mitchell TG (2012) Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. Eur J Clin Microbiol Infect Dis 31:2237-45. doi: 10.1007/s10096-012-1561-6.
10. Vogelstein B and Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236-41.
11. Shen F, Du W, Davydova EK, Karymov MA, Pandey J and Ismagilov RF (2010) Nanoliter multiplex PCR arrays on a SlipChip. Anal Chem 82:4606-12. doi: 10.1021/ac1007249.
12. Madic J, Zocevic A, Senlis V, Fradet E, Andre B, Muller S, Dangla R and Droniou ME (2016) Three-color crystal digital PCR. Biomol Detect Quantify 10:34-46. doi: 10.1016/j.bdq.2016.10.002.
13. Ottesen EA, Hong JW, Quake SR and Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464-7. doi: 10.1126/science.1131370.
14. Coenye T and Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228:45-9.
References

1. Feng J, Tang Y, Xu Y, Sun Q, Liao F and Han D (2013) Substrate stiffness influences the outcome of antitumor drug screening in vitro. Clin Hemorheol Microcirc 55:121-31. doi: 10.3233/CH-131696.
2. Yang X, Pabon L and Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114:511-23. doi: 10.1161/CIRCRESAHA.114.300558.
3. Yao X, Peng R and Ding J (2013) Cell-material interactions revealed via material techniques of surface patterning. Adv Mater 25:5257-86. doi: 10.1002/adma.201301762.
4. Zhang S, Bai H, Pi J, Yang P and Cai J (2015) Label-free quartz crystal microbalance with dissipation monitoring of resveratrol effect on mechanical changes and folate receptor expression levels of living MCF-7 cells: a model for screening of drugs. Anal Chem 87:4797-805. doi: 10.1021/acs.analchem.5b00083.
5. Zustiak SP (2015) The role of matrix compliance on cell responses to drugs and toxins: towards predictive drug screening platforms. Macromol Biosci 15:589-99. doi: 10.1002/mabi.201400507.
6. Mu Y, Zhao JZ, Yang C, Zu Y and Li Q (2017) [Effect of polydimethylsiloxane matrix elasticity on osteogenic differentiation of rat marrow stromal cells]. Zhonghua Kou Qiang Yi Xue Za Zhi 52:492-498. doi: 10.3760/cma.j.issn.1002-0098.2017.08.009.
7. Olivares-Navarrete R, Lee EM, Smith K, Hyzy SL, Doroudi M, Williams JK, Gall K, Boyan BD and Schwartz Z (2017) Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS One 12:e0170312. doi: 10.1371/journal.pone.0170312.
8. Werner M, Blanquer SB, Haimi SP, Korus G, Dunlop JW, Duda GN, Grijpma DW and Petersen A (2017) Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Adv Sci (Weinh) 4:1600347. doi: 10.1002/advs.201600347.
9. Wright LE, Vecellio Reane D, Milan G, Terrin A, di Bello G, Belligoli A, Sanna M, Foletto M, Favaretto F, Raffaello A, Mammucari C, Nitti D, Vettor R and Rizzuto R (2017) Increased mitochondrial calcium uniporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. Am J Physiol Endocrinol Metab:ajpendo 00143 2016. doi: 10.1152/ajpendo.00143.2016.
10. Nakatsu Y, Mori K, Matsunaga Y, Yamamotoya T, Ueda K, Inoue Y, Mitsuzaki-Miyoshi K, Sakoda H, Fujishiro M, Yamaguchi S, Kushiyama A, Ono H, Ishihara H and Asano T (2017) The prolyl isomerase Pin1 increases beta-cell proliferation and enhances insulin secretion. J Biol Chem 292:11886-11895. doi: 10.1074/jbc.M117.780726.
11. Vasu S, McGahon MK, Moffett RC, Curtis TM, Conlon JM, Abdel-Wahab YH and Flatt PR (2017) Esculentin-2CHa(1-30) and its analogues: stability and mechanisms of insulinotropic action. J Endocrinol 232:423-435. doi: 10.1530/JOE-16-0453.
12. Deyle K, Kong XD and Heinis C (2017) Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Acc Chem Res 50:1866-1874. doi: 10.1021/acs.accounts.7b00184.
13. Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V and Akbari B (2017) Evolution of phage display technology: from discovery to application. J Drug Target 25:216-224. doi: 10.1080/1061186X.2016.1258570.
14. Wang Q, Chen Y, Cvitkovic R, Pennini ME, Chang CS, Pelletier M, Bonnell J, Koksal AC, Wu H, Dall'Acqua WF, Stover CK and Xiao X (2017) Anti-MrkA Monoclonal Antibodies Reveal Distinct Structural and Antigenic Features of MrkA. PLoS One 12:e0170529. doi: 10.1371/journal.pone.0170529.
15. Herring E, Kanaoka S, Tremblay E and Beaulieu JF (2017) Droplet digital PCR for quantification of ITGA6 in a stool mRNA assay for the detection of colorectal cancers. World J Gastroenterol 23:2891-2898. doi: 10.3748/wjg.v23.i16.2891.
16. Kaiser P, Joshi SK, Kim P, Li P, Liu H, Rice AP, Wong JK and Yukl SA (2017) Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods 242:1-8. doi: 10.1016/j.jviromet.2016.12.017.
17. Kalinich M, Bhan I, Kwan TT, Miyamoto DT, Javaid S, LiCausi JA, Milner JD, Hong X, Goyal L, Sil S, Choz M, Ho U, Kapur R, Muzikansky A, Zhang H, Weitz DA, Sequist LV, Ryan DP, Chung RT, Zhu AX, Isselbacher KJ, Ting DT, Toner M, Maheswaran S and Haber DA (2017) An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc Natl Acad Sci U S A 114:1123-1128. doi: 10.1073/pnas.1617032114.
18. Singh G, Sithebe A, Enitan AM, Kumari S, Bux F and Stenstrom TA (2017) Comparison of droplet digital PCR and quantitative PCR for the detection of Salmonella and its application for river sediments. J Water Health 15:505-508. doi: 10.2166/wh.2017.259.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *