帳號:guest(3.147.58.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高瑞夫
作者(外文):Pendharkar, Gaurav
論文名稱(中文):微流體晶片在細胞配對與融合的生物應用
論文名稱(外文):Cell pairing and fusion implemented on a microfluidic lab chip for biological applications
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):北森武彥
陳致真
盧向成
呂衍達
徐琅
口試委員(外文):Kitamori, Takehiko
Chen, Chih-Chen
Lu, Shiang-Cheng
Lu, Yen-Ta
Hsu, Long
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033879
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:88
中文關鍵詞:癌症免疫治療細胞電融合剝離製程聚二甲基矽氧烷細胞存活率絕緣體介電泳
外文關鍵詞:cancer immunotherapycell electrofusionlift-off processPDMScell viabilityinsulator-based dielectrophoresis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:124
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在全球,癌症一直是致死的主要原因。過去,免疫療法是治療特定類型癌症的 關鍵。探索更新類型的免疫療法將對未來癌症的治療方式產生影響,免疫療法 包括多種治療方式,有些使用補充劑在廣義上增強了身體的免疫系統,或是幫 助調節免疫系統以特別攻擊癌細胞。免疫系統記憶了在體內發現的所有化學物 質,一旦免疫系統識別到任何新物質都會觸發警報,促使免疫系統對其進行攻 擊。然而,免疫系統難以輕易攻擊癌細胞,這是因為癌症即是體內細胞發生突 變並開始不受控制地生長,所以癌細胞通常不被免疫系統識別為外來細胞。因 此,免疫系統自身對抗癌症的能力是有限的,導致許多免疫系統健康的人仍然 會患上癌症。有時,免疫系統不會將癌細胞識別為外來細胞,因為它們與正常 細胞的區別不夠明顯;有時,免疫系統會識別癌細胞,但反應不足以根除癌細胞。 為了解決這個問題,研究人員發現了許多增強免疫系統反應的方法,使其能夠 消除癌症細胞,在眾多方法中,細胞融合作為癌症免疫治療的方法引起了研究 人員的興趣,而微流體技術在實現融合細胞上發揮了關鍵作用。基於微流體晶 片讓研究人員能對細胞進行精確操作,從而實現細胞的一對一配對,在電極之 間施加電場來融合細胞,並能將融合的細胞取出進行更近一步的實驗。
此篇論文提出了一種能用於高流量細胞操作的微流體介電泳實驗室晶片。利用 聚二甲基矽氧烷 (PDMS),一種不導電的聚合物作為絕緣體。利用剝離技術在 ITO 基板上形成具有大量孔洞排列的PDMS薄膜。施加交流電場後,PDMS 薄膜 會在兩個 ITO 玻璃之間產生介電泳力所需的空間不均勻性,絕緣結構在 iDEP 器 件中產生電場梯度使得非均勻場充滿整個體介質,而 ITO 的透明特性使其成為 光學量化的理想選擇。該晶片的優勢是僅經由調整三個參數進行優化以適應任 何細胞大小:PDMS 厚度、微孔直徑和電場。此種微流控晶片解決了一些缺點, 例如 (i) 晶片處理:此研究晶片在操作過程中易於處理,因為只有一個入口和一 個出口,(ii) 高吞吐量:此研究晶片可以擴展用以融合更多細胞數量 ,(iii) 複雜 性:晶片的可訪問性設計使細胞配對和融合過程更容易,(iv) 兼容性:此研究 晶片可以根據所需的細胞類型進行修改。我們建立了CT26 和 BMDC 之間的細 胞模式和融合。在精確配對的細胞中,我們實現了高達 70%(3000-3500 個細胞)
的融合效率。四天後,對融合細胞進行細胞活力調查,以評估此研究晶片是否 具有生物相容性且不受暴露電場的影響,我們觀察到了 60%(1800-2200 個細胞) 的活細胞。此外,我們從細胞生物學的角度研究了融合細胞的特徵,包括來自 CT26 和 BMDC 的組合熒光標記細胞內成分、混合細胞形態。
Globally, cancer has been the main cause of mortality. Immunotherapy has been a critical component of treating certain types of cancer over the previous few decades. Newer types of immune therapies are now being explored, and they will have an impact on how cancer is treated in the future. Immunotherapy encompasses a variety of treatment modalities. Certain supplements strengthen the body's immune system in a broad sense. Others assist in conditioning the immune system to particularly attack cancer cells. The immune system contains a record of all chemicals discovered in the body. Any novel substance recognized by the immune system triggers an alarm, prompting the immune system to attack it. However, the immune system has a more difficult time attacking cancer cells. This is because cancer begins when cells undergo mutations and begin to grow uncontrollably. Cancer cells are not usually recognized as a foreign body by the immune system. Clearly, the immune system's ability to fight cancer on its own is limited, as seen by the fact that many people with healthy immune systems nevertheless develop cancer. Occasionally, the immune system does not recognize cancer cells as foreign material because they are not sufficiently distinct from normal cells. Occasionally, the immune system recognizes cancer cells, but the response is insufficient to eradicate the tumor. To combat this, researchers have discovered ways to boost the immune system's response, allowing it to eliminate them.
Cell fusion could be an answer to this approach. Cell fusion has triggered interest among researchers in the last few decades as a promising tool for cancer immunotherapy. In recent years, microfluidics has played a key role in the development of fused cells. The microfluidics-based devices offer precise manipulation of cells, thereby achieving one-on-one cell pairing of desired cells. The cells are fused using the applied electric field between a pair of electrodes. The fused cells are collected from the chip, and a further study can be performed.
We demonstrate an insulator-based dielectrophoretic lab-chip (iDEP-LC) for highly efficient cell trapping, pairing and fusion. Polydimethylsiloxane (PDMS) has been used as an insulator. We present a lift-off approach for forming a thin PDMS layer on ITO glass with an array of holes. The presence of a PDMS layer generates non uniform electric field required to generate dielectrophoretic force between two ITO glasses. Due to transparent nature of ITO, is an excellent choice as it enables optical quantification. The proposed design can be reconfigured for any cell size by optimizing membrane thickness, diameter of microwell, and electric field. The chip addresses commonly faced problems such as (i) handling: presence of single inlet/outlet makes it easy to operate, (ii) high throughput: the chip is scalable for high fused cell number, (iii) complexity: the chip is simple in design and thus easy to use, (iv) chip compatibility: the chip can be reconfigured for different cell types.
Cell pairing and fusion among BMDC and CT26 cells has been demonstrated. The fusion efficiency of 70% (3000-3500 cells) was observed between correctly paired cells. The biocompatibility of device fabricated using lift-off process was also carried out. A study related to effect of electric field on cell viability was also carried out. A 4-day cell viability analysis revealed that 60 % (1800-2200 cells) of cells are viable. Additionally, we evaluated the biological characteristics of fused cells, including combined fluorescence-labeled intracellular components from CT26 and BMDC, mixed cell morphology.
ABSTRACT i
摘要 iii
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xvii
ACKNOWLEDGEMENT xviii
ABBREVIATIONS xx
CHAPTER 1 INTRODUCTION 1
1.1 History 2
1.2 Cell fusion 2
1.2.1 Conventional electrofusion 2
1.2.2 Why the move towards microfluidics-based electrofusion devices? 3
1.3 Thesis Outline 4
1.4 Electrofusion principle 5
1.5 Cell fusion technology 7
1.5.1 Virus mediated fusion 7
1.5.2 Chemical method (PEG) 8
1.5.3 Physical method (Electrofusion) 8
1.6 Conclusion 17
CHAPTER 2 CELL ELECTROFUSION: CONDITIONS AND CHIP REQUIREMENTS 18
2.1 Buffer parameters affecting cell fusion 18
2.1.1 Cell types 18
2.1.2 Osmolality of buffer solution 19
2.1.3 Conductivity of buffer 19
2.2 Electrical parameters affecting cell fusion 19
2.2.1 Geometry of electrode 19
2.3 Chip parameters 20
2.3.1 Chip material 20
2.3.2 Electrode material and configuration 20
2.4 Fusion process visualization 21
CHAPTER 3 MICROFLUIDIC FLIP-CHIP 22
3.1 Materials and Methods 22
3.1.1 Device design 22
3.1.2 Device fabrication 23
3.1.3 PDMS membrane optimization 24
3.1.4 Modeling and simulation 25
3.1.5 Cell preparation 27
3.1.6 Experimental setup 28
3.1.7 Device operation 29
3.2 Image acquisition and analysis 31
3.3 Results 31
3.3.1 Cell pairing 31
3.3.2 Cell electrofusion 31
3.3.3 Effect of electric field on fusion efficiency 33
3.3.4 Effect of membrane thickness 34
3.3.5 Effect of washing flow rate 35
3.3.6 Characterization of fused cells 35
3.3.7 Cell viability in 96-well plate 37
3.4 Discussion 38
CHAPTER 4 iDEP CHIP: DESIGN AND FABRICATION 39
4.1 Need for iDEP chip 39
4.2 Polarization of cells in the presence of electric field 39
4.3 Dielectrophoretic force (DEP) 40
4.3.1 Transmembrane potential 42
4.4 iDEP device design 43
4.5 Numerical simulations 44
4.5.1 FEM Simulation using COMSOL Multiphysics 44
4.5.2 Analysis of transmembrane potential 47
4.6 Device fabrication 50
CHAPTER 5 MATERIALS AND METHODS 52
5.1 Cell culture medium preparation 52
5.1.1 Medium for CT26 cells 52
5.1.2 Medium for Bone marrow derived dendritic cells (BMDC) 52
5.2 DEP buffer protocol 53
5.3 Cell culture and preparation 54
5.3.1 Bone marrow derived dendritic cells (BMDC) 54
5.3.2 CT26 cells 54
5.4 Pretreatment of microfluidic chip 55
5.5 Cell preparation for DEP manipulation 56
5.6 Experimental setup 56
5.7 Device operation 57
5.7.1 Cell pairing 57
5.7.2 Cell fusion 58
5.8 PrestoBlue Assay 59
CHAPTER 6 RESULTS AND DISCUSSION 60
6.1 PDMS membrane optimization 60
6.2 Step-by-step process of cell electrofusion 61
6.2.1 Cell trapping 61
6.2.2 Cell pairing 63
6.2.3 Cell electrofusion 64
6.3 Time-series imaging of cell-electrofusion process 66
6.4 Effect of flow rate on trapping efficiencies 67
6.4.1 Flow rate optimization for CT26 67
6.4.2 Effect of washing flow rate on CT26 cells 68
6.4.3 Flow rate optimization for BMDC 69
6.4.4 Effect of washing flow rate on BMDC 69
6.5 Effect of Electric field on fusion efficiency 70
6.6 Characterization of fused cells 71
6.7 Cell viability using PrestoBlue assay 73
CHAPTER 7 CONCLUSION AND FUTURE SCOPE 75
7.1 Future scope 77
7.1.1 A step closer to standardization of microfluidic chip: Use of glass microfluidics 77
7.1.2 Single cell encapsulation 78
LIST OF PUBLICATIONS 80
BIBLIOGRAPHY 83
[1] H. Borghaei, M. R. Smith, and K. S. Campbell, "Immunotherapy of cancer," European Journal of Pharmacology, vol. 625, no. 1, pp. 41-54, 2009/12/25/ 2009, doi: https://doi.org/10.1016/j.ejphar.2009.09.067.
[2] J. P. Murad, O. A. Lin, E. V. P. Espinosa, and F. T. Khasawneh, "Current and experimental antibody-based therapeutics: insights, breakthroughs, setbacks and future directions," (in eng), Curr Mol Med, vol. 13, no. 1, pp. 165-178, 2013/01// 2013, doi: 10.2174/156652413804486322.
[3] P. Sapra and B. Shor, "Monoclonal antibody-based therapies in cancer: advances and challenges," (in eng), Pharmacol Ther, vol. 138, no. 3, pp. 452-469, 2013/06// 2013, doi: 10.1016/j.pharmthera.2013.03.004.
[4] G. KÖHler and C. Milstein, "Continuous cultures of fused cells secreting antibody of predefined specificity," Nature, vol. 256, no. 5517, pp. 495-497, 1975/08/01 1975, doi: 10.1038/256495a0.
[5] M. Tomita and K. Tsumoto, "Hybridoma technologies for antibody production," Immunotherapy, vol. 3, no. 3, pp. 371-380, 2011, doi: 10.2217/imt.11.4.
[6] M. M. Strioga et al., "Therapeutic Dendritic Cell−Based Cancer Vaccines: The State of the Art," vol. 33, no. 6, pp. 489-547, 2013-10-09 2013, doi: 10.1615/CritRevImmunol.2013008033.
[7] K. Trevor et al., "Generation of dendritic cell–tumor cell hybrids by electrofusion for clinical vaccine application," (in English), Cancer Immunol Immunother, vol. 53, no. 8, pp. 705-714, 2004/08/01 2004, doi: 10.1007/s00262-004-0512-1.
[8] W. M. Siders, K. L. Vergilis, C. Johnson, J. Shields, and J. M. Kaplan, "Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells," (in eng), Molecular therapy : the journal of the American Society of Gene Therapy, vol. 7, no. 4, pp. 498-505, 2003/04// 2003, doi: 10.1016/s1525-0016(03)00044-3.
[9] E. Vacchelli et al., "Trial Watch," OncoImmunology, vol. 2, no. 9, p. e25595, 2013/09/01 2013, doi: 10.4161/onci.25595.
[10] Y. Cao et al., "Study of high-throughput cell electrofusion in a microelectrode-array chip," Microfluidics and Nanofluidics, vol. 5, no. 5, pp. 669-675, 2008/11/01 2008, doi: 10.1007/s10404-008-0289-1.
[11] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfluidic control of cell pairing and fusion," Nature Methods, vol. 6, no. 2, pp. 147-152, 2009/02/01 2009, doi: 10.1038/nmeth.1290.
[12] P. G. A. Steenbakkers, H. A. J. M. Hubers, and A. W. M. Rijnders, "Efficient generation of monoclonal antibodies from preselected antigenspecific B cells," Molecular Biology Reports, vol. 19, no. 2, pp. 125-134, 1994/03/01 1994, doi: 10.1007/BF00997158.
[13] G. van Duijn, J. P. M. Langedijk, M. de Boer, and J. M. Tager, "High yields of specific hybridomas obtained by electrofusion of murine lymphocytes immunized in vivo or in vitro," Experimental Cell Research, vol. 183, no. 2, pp. 463-472, 1989/08/01/ 1989, doi: https://doi.org/10.1016/0014-4827(89)90405-9.
[14] T. C. Bakker Schut, Y. M. Kraan, W. Barlag, L. de Leij, B. G. de Grooth, and J. Greve, "Selective electrofusion of conjugated cells in flow," (in eng), Biophysical journal, vol. 65, no. 2, pp. 568-572, 1993/08// 1993, doi: 10.1016/s0006-3495(93)81128-7.
[15] A. Strömberg et al., "Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion," Proceedings of the National Academy of Sciences, vol. 97, no. 1, p. 7, 2000, doi: 10.1073/pnas.97.1.7.
[16] J. Olofsson, K. Nolkrantz, F. Ryttsén, B. A. Lambie, S. G. Weber, and O. Orwar, "Single-cell electroporation," Current Opinion in Biotechnology, vol. 14, no. 1, pp. 29-34, 2003/02/01/ 2003, doi: https://doi.org/10.1016/S0958-1669(02)00003-4.
[17] Y. Zhan, J. Wang, N. Bao, and C. Lu, "Electroporation of Cells in Microfluidic Droplets," Analytical Chemistry, vol. 81, no. 5, pp. 2027-2031, 2009/03/01 2009, doi: 10.1021/ac9001172.
[18] F. W. Y. Chiu, H. Bagci, A. G. Fisher, A. J. deMello, and K. S. Elvira, "A microfluidic toolbox for cell fusion," Journal of Chemical Technology & Biotechnology, vol. 91, no. 1, pp. 16-24, 2016, doi: https://doi.org/10.1002/jctb.4803.
[19] G. Tresset and S. Takeuchi, "A microfluidic device for electrofusion of biological membranes," in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 25-29 Jan. 2004 2004, pp. 25-28, doi: 10.1109/MEMS.2004.1290513.
[20] D. T. Chiu, "A microfluidics platform for cell fusion," Current Opinion in Chemical Biology, vol. 5, no. 5, pp. 609-612, 2001/10/01/ 2001, doi: https://doi.org/10.1016/S1367-5931(00)00242-8.
[21] C. Yi, C.-W. Li, S. Ji, and M. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Analytica Chimica Acta, vol. 560, no. 1, pp. 1-23, 2006/02/23/ 2006, doi: https://doi.org/10.1016/j.aca.2005.12.037.
[22] N. Bao, J. Wang, and C. Lu, "Recent advances in electric analysis of cells in microfluidic systems," Analytical and Bioanalytical Chemistry, vol. 391, no. 3, pp. 933-942, 2008/06/01 2008, doi: 10.1007/s00216-008-1899-x.
[23] Y. Okada, "Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells: I. Microscopic observation of giant polynuclear cell formation," Experimental Cell Research, vol. 26, no. 1, pp. 98-107, 2// 1962, doi: http://dx.doi.org/10.1016/0014-4827(62)90205-7.
[24] H. Harris and J. F. Watkins, "Hybrid Cells Derived from Mouse and Man : Artificial Heterokaryons of Mammalian Cells from Different Species," Nature, vol. 205, no. 4972, pp. 640-646, 1965/02/01 1965, doi: 10.1038/205640a0.
[25] G. Pontecorvo, "Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment," (in English), Somat Cell Mol Genet, vol. 1, no. 4, pp. 397-400, 1975/10/01 1975, doi: 10.1007/BF01538671.
[26] R. L. Davidson, K. A. O'Malley, and T. B. Wheeler, "Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration," Somat Cell Mol Genet, vol. 2, no. 3, pp. 271-280, 1976/05/01 1976, doi: 10.1007/BF01538965.
[27] U. Zimmermann, "Electric field-mediated fusion and related electrical phenomena," Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol. 694, no. 3, pp. 227-277, 11/30/ 1982, doi: http://dx.doi.org/10.1016/0304-4157(82)90007-7.
[28] J. Moorthy and D. J. Beebe, "In situ fabricated porous filters for microsystems," Lab on a Chip, vol. 3, no. 2, pp. 62-66, 2003, doi: 10.1039/b300450c.
[29] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous particle separation through deterministic lateral displacement," Science, vol. 304, no. 5673, pp. 987-990, May 2004, doi: 10.1126/science.1094567.
[30] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, "Development of a rare cell fractionation device: Application for cancer detection," Ieee Transactions on Nanobioscience, vol. 3, no. 4, pp. 251-256, Dec 2004, doi: 10.1109/tnb.2004.837903.
[31] L. Zhu, Q. Zhang, H. H. Feng, S. Ang, F. S. Chauc, and W. T. Liu, "Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells," Lab on a Chip, vol. 4, no. 4, pp. 337-341, 2004, doi: 10.1039/b401834f.
[32] A. Revzin, R. G. Tompkins, and M. Toner, "Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass," Langmuir, vol. 19, no. 23, pp. 9855-9862, Nov 2003, doi: 10.1021/la035129b.
[33] A. Khademhosseini et al., "Molded polyethylene glycol microstructures for capturing cells within microfluidic channels," Lab on a Chip, vol. 4, no. 5, pp. 425-430, 2004, doi: 10.1039/b404842c.
[34] H. Tani, K. Maehana, and T. Kamidate, "Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network," Analytical Chemistry, vol. 76, no. 22, pp. 6693-6697, Nov 2004, doi: 10.1021/ac049401d.
[35] N. Chronis and L. P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 857-863, Aug 2005, doi: 10.1109/jmems.2005.845445.
[36] M. S. Yang, C. W. Li, and J. Yang, "Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device," Analytical Chemistry, vol. 74, no. 16, pp. 3991-4001, Aug 2002, doi: 10.1021/ac025536c.
[37] C. W. Li, C. N. Cheung, J. Yang, C. H. Tzang, and M. S. Yang, "PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters," Analyst, vol. 128, no. 9, pp. 1137-1142, 2003, doi: 10.1039/b304354a.
[38] C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Analytica Chimica Acta, vol. 560, no. 1-2, pp. 1-23, Feb 2006, doi: 10.1016/j.aca.2005.12.037.
[39] P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena, "Antigen Presentation and T Cell Stimulation by Dendritic Cells," Annual Review of Immunology, vol. 20, no. 1, pp. 621-667, 2002/04/01 2002, doi: 10.1146/annurev.immunol.20.100301.064828.
[40] G. Schuler, B. Schuler-Thurner, and R. M. Steinman, "The use of dendritic cells in cancer immunotherapy," Current Opinion in Immunology, vol. 15, no. 2, pp. 138-147, 2003/04/01/ 2003, doi: https://doi.org/10.1016/S0952-7915(03)00015-3.
[41] E. W. M. Kemna, F. Wolbers, I. Vermes, and A. van den Berg, "On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation," Electrophoresis, vol. 32, no. 22, pp. 3138-3146, 2011, doi: 10.1002/elps.201100227.
[42] K.-I. Wada, K. Hosokawa, E. Kondo, Y. Ito, and M. Maeda, "Cell fusion through a microslit between adhered cells and observation of their nuclear behavior," Biotechnology and Bioengineering, vol. 111, no. 7, pp. 1464-1468, 2014, doi: https://doi.org/10.1002/bit.25190.
[43] A. Ashkin and J. M. Dziedzic, "OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA," Science, vol. 235, no. 4795, pp. 1517-1520, Mar 1987, doi: 10.1126/science.3547653.
[44] J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, "Review of cell and particle trapping in microfluidic systems," Analytica Chimica Acta, vol. 649, no. 2, pp. 141-157, Sep 2009, doi: 10.1016/j.aca.2009.07.017.
[45] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, no. 7049, pp. 370-372, Jul 2005, doi: 10.1038/nature03831.
[46] P.-F. Yang, C.-H. Wang, and G.-B. Lee, "Optically-Induced Cell Fusion on Cell Pairing Microstructures," Scientific Reports, vol. 6, no. 1, p. 22036, 2016/02/25 2016, doi: 10.1038/srep22036.
[47] Y.-C. Hsiao, C.-H. Wang, W.-B. Lee, and G.-B. Lee, "Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip," Biomicrofluidics, vol. 12, no. 3, p. 034108, 2018, doi: 10.1063/1.5028158.
[48] H. A. Pohl, "THE MOTION AND PRECIPITATION OF SUSPENSOIDS IN DIVERGENT ELECTRIC FIELDS," Journal of Applied Physics, vol. 22, no. 7, pp. 869-871, 1951, doi: 10.1063/1.1700065.
[49] H. B. Li and R. Bashir, "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes," Sensors and Actuators B-Chemical, vol. 86, no. 2-3, pp. 215-221, Sep 2002, doi: 10.1016/s0925-4005(02)00172-7.
[50] H. Sedgwick, F. Caron, P. B. Monaghan, W. Kolch, and J. M. Cooper, "Lab-on-a-chip technologies for proteomic analysis from isolated cells," Journal of the Royal Society Interface, vol. 5, pp. S123-S130, Oct 2008, doi: 10.1098/rsif.2008.0169.focus.
[51] M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera, and M. Washizu, "Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array," Biomicrofluidics, vol. 4, no. 2, p. 022808, 2010, doi: 10.1063/1.3422544.
[52] Y. Kimura, M. Gel, B. Techaumnat, H. Oana, H. Kotera, and M. Washizu, "Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet," Electrophoresis, vol. 32, no. 18, pp. 2496-2501, 2011, doi: 10.1002/elps.201100129.
[53] M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, and T. Matsue, "Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes," Lab on a Chip, 10.1039/C3LC50561H vol. 13, no. 18, pp. 3650-3652, 2013, doi: 10.1039/C3LC50561H.
[54] C.-H. Wu, R. Chen, Y. Liu, Z.-M. Yu, Y.-W. Jiang, and X. Cheng, "A planar dielectrophoresis-based chip for high-throughput cell pairing," Lab on a Chip, vol. 17, no. 23, pp. 4008-4014, 2017, doi: http://dx.doi.org/10.1039/C7LC01082F.
[55] W. He, L. Huang, Y. Feng, F. Liang, W. Ding, and W. Wang, "Highly integrated microfluidic device for cell pairing, fusion and culture," Biomicrofluidics, vol. 13, no. 5, p. 054109, 2019/09/01 2019, doi: 10.1063/1.5124705.
[56] R. M. Schoeman, W. T. E. van den Beld, E. W. M. Kemna, F. Wolbers, J. C. T. Eijkel, and A. van den Berg, "Electrofusion of single cells in picoliter droplets," Scientific Reports, vol. 8, no. 1, p. 3714, 2018/02/27 2018, doi: 10.1038/s41598-018-21993-8.
[57] B. H. Lapizco-Encinas, R. V. Davalos, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, "An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water," Journal of Microbiological Methods, vol. 62, no. 3, pp. 317-326, 2005/09/01/ 2005, doi: https://doi.org/10.1016/j.mimet.2005.04.027.
[58] C. Chia-Fu and F. Zenhausern, "Electrodeless dielectrophoresis for micro total analysis systems," IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 6, pp. 62-67, 2003, doi: 10.1109/MEMB.2003.1266048.
[59] U. N. G. A. Zimmermann, Electromanipulation of cells. Boca Raton, Fla.: CRC Press (in English), 1996.
[60] J. J. Schmitt, U. Zimmermann, and P. Geßner, "Electrofusion of osmotically treated cells," Naturwissenschaften, vol. 76, no. 3, pp. 122-123, 1989/03/01 1989, doi: 10.1007/BF00366604.
[61] U. Zimmermann and J. Vienken, "Electric field-induced cell-to-cell fusion," The Journal of Membrane Biology, vol. 67, no. 1, pp. 165-182, 1982/12/01 1982, doi: 10.1007/BF01868659.
[62] U. Zimmermann, G. Pilwat, and H. A. Pohl, "Electric field-mediated cell fusion," Journal of Biological Physics, vol. 10, no. 1, pp. 43-50, 1982/03/01 1982, doi: 10.1007/BF01988467.
[63] U. Zimmermann, "Electrofusion of cells: principles and industrial potential," Trends in Biotechnology, vol. 1, no. 5, pp. 149-155, 1983/11/01/ 1983, doi: https://doi.org/10.1016/0167-7799(83)90006-9.
[64] S. J. MacDonald, P. S. Bodger, and P. A. Elder, "Biological cell alignment for electrofusion," IEE Proceedings A (Science, Measurement and Technology), vol. 139, no. 3, pp. 112-116.
[65] D. Gross, "Electromobile surface charge alters membrane potential changes induced by applied electric fields," Biophysics journal, vol. 54, no. 5, pp. 879-884, 1988.
[66] D. C. Chang, J. A. Saunders, B. M. Chassy, and A. E. Sowers, "1 - Overview of Electroporation and Electrofusion," in Guide to Electroporation and Electrofusion, D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers Eds. San Diego: Academic Press, 1992, pp. 1-6.
[67] U. Pliquett, R. P. Joshi, V. Sridhara, and K. H. Schoenbach, "High electrical field effects on cell membranes," Bioelectrochemistry, vol. 70, no. 2, pp. 275-282, 2007/05/01/ 2007, doi: https://doi.org/10.1016/j.bioelechem.2006.10.004.
[68] A. E. Sowers, "8 - Mechanisms of Electroporation and Electrofusion," in Guide to Electroporation and Electrofusion, D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers Eds. San Diego: Academic Press, 1992, pp. 119-138.
[69] M. Washizu and B. Techaumnat, "Polarisation and membrane voltage of ellipsoidal particle with a constant membrane thickness: a series expansion approach," IET Nanobiotechnology, vol. 2, no. 3, pp. 62-71. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-nbt_20080003
[70] J. Ju, J.-M. Ko, H.-C. Cha, J. Y. Park, C.-H. Im, and S.-H. Lee, "An electrofusion chip with a cell delivery system driven by surface tension," Journal of Micromechanics and Microengineering, vol. 19, no. 1, p. 015004, 2008/11/27 2008, doi: 10.1088/0960-1317/19/1/015004.
[71] B. Techaumnat, K. Tsuda, O. Kurosawa, G. Murat, H. Oana, and M. Washizu, "High-yield electrofusion of biological cells based on field tailoring by microfabricated structures," IET Nanobiotechnology, vol. 2, no. 4, pp. 93-99. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-nbt_20080008
[72] J. Wang and C. Lu, "Microfluidic cell fusion under continuous direct current voltage," Applied Physics Letters, vol. 89, no. 23, p. 234102, 2006, doi: 10.1063/1.2402122.
[73] R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, and H. A. Stone, "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels," Applied Physics Letters, vol. 76, no. 17, pp. 2376-2378, 2000/04/24 2000, doi: 10.1063/1.126351.
[74] F. Wolbers et al., "Viability study of HL60 cells in contact with commonly used microchip materials," Electrophoresis, vol. 27, no. 24, pp. 5073-5080, 2006/12/01 2006, doi: https://doi.org/10.1002/elps.200600203.
[75] P. Marszalek, D. S. Liu, and T. Y. Tsong, "Schwan equation and transmembrane potential induced by alternating electric field," (in eng), Biophysical journal, vol. 58, no. 4, pp. 1053-1058, 1990, doi: 10.1016/S0006-3495(90)82447-4.
[76] N. H. A. Mamun and P. Dutta, "Patterning of platinum microelectrodes in polymeric microfluidic chips," Journal of Micro-nanolithography Mems and Moems, vol. 5, p. 039701, 2006.
[77] C. Gabriel, S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, vol. 41, no. 11, pp. 2231-2249, 1996/11/01 1996, doi: 10.1088/0031-9155/41/11/001.
[78] L. Huang, Y. Chen, W. Huang, and H. Wu, "Cell pairing and polyethylene glycol (PEG)-mediated cell fusion using two-step centrifugation-assisted single-cell trapping (CAScT)," Lab on a Chip, 10.1039/C7LC01131H vol. 18, no. 7, pp. 1113-1120, 2018, doi: 10.1039/C7LC01131H.
[79] J. Zhu, Y. Wang, P. Chen, H. Su, W. Du, and B.-F. Liu, "Highly efficient microfluidic device for cell trapping and pairing towards cell-cell communication analysis," Sensors and Actuators B: Chemical, vol. 283, pp. 685-692, 2019/03/15/ 2019, doi: https://doi.org/10.1016/j.snb.2018.12.078.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *