|
[1] H. Borghaei, M. R. Smith, and K. S. Campbell, "Immunotherapy of cancer," European Journal of Pharmacology, vol. 625, no. 1, pp. 41-54, 2009/12/25/ 2009, doi: https://doi.org/10.1016/j.ejphar.2009.09.067. [2] J. P. Murad, O. A. Lin, E. V. P. Espinosa, and F. T. Khasawneh, "Current and experimental antibody-based therapeutics: insights, breakthroughs, setbacks and future directions," (in eng), Curr Mol Med, vol. 13, no. 1, pp. 165-178, 2013/01// 2013, doi: 10.2174/156652413804486322. [3] P. Sapra and B. Shor, "Monoclonal antibody-based therapies in cancer: advances and challenges," (in eng), Pharmacol Ther, vol. 138, no. 3, pp. 452-469, 2013/06// 2013, doi: 10.1016/j.pharmthera.2013.03.004. [4] G. KÖHler and C. Milstein, "Continuous cultures of fused cells secreting antibody of predefined specificity," Nature, vol. 256, no. 5517, pp. 495-497, 1975/08/01 1975, doi: 10.1038/256495a0. [5] M. Tomita and K. Tsumoto, "Hybridoma technologies for antibody production," Immunotherapy, vol. 3, no. 3, pp. 371-380, 2011, doi: 10.2217/imt.11.4. [6] M. M. Strioga et al., "Therapeutic Dendritic Cell−Based Cancer Vaccines: The State of the Art," vol. 33, no. 6, pp. 489-547, 2013-10-09 2013, doi: 10.1615/CritRevImmunol.2013008033. [7] K. Trevor et al., "Generation of dendritic cell–tumor cell hybrids by electrofusion for clinical vaccine application," (in English), Cancer Immunol Immunother, vol. 53, no. 8, pp. 705-714, 2004/08/01 2004, doi: 10.1007/s00262-004-0512-1. [8] W. M. Siders, K. L. Vergilis, C. Johnson, J. Shields, and J. M. Kaplan, "Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells," (in eng), Molecular therapy : the journal of the American Society of Gene Therapy, vol. 7, no. 4, pp. 498-505, 2003/04// 2003, doi: 10.1016/s1525-0016(03)00044-3. [9] E. Vacchelli et al., "Trial Watch," OncoImmunology, vol. 2, no. 9, p. e25595, 2013/09/01 2013, doi: 10.4161/onci.25595. [10] Y. Cao et al., "Study of high-throughput cell electrofusion in a microelectrode-array chip," Microfluidics and Nanofluidics, vol. 5, no. 5, pp. 669-675, 2008/11/01 2008, doi: 10.1007/s10404-008-0289-1. [11] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfluidic control of cell pairing and fusion," Nature Methods, vol. 6, no. 2, pp. 147-152, 2009/02/01 2009, doi: 10.1038/nmeth.1290. [12] P. G. A. Steenbakkers, H. A. J. M. Hubers, and A. W. M. Rijnders, "Efficient generation of monoclonal antibodies from preselected antigenspecific B cells," Molecular Biology Reports, vol. 19, no. 2, pp. 125-134, 1994/03/01 1994, doi: 10.1007/BF00997158. [13] G. van Duijn, J. P. M. Langedijk, M. de Boer, and J. M. Tager, "High yields of specific hybridomas obtained by electrofusion of murine lymphocytes immunized in vivo or in vitro," Experimental Cell Research, vol. 183, no. 2, pp. 463-472, 1989/08/01/ 1989, doi: https://doi.org/10.1016/0014-4827(89)90405-9. [14] T. C. Bakker Schut, Y. M. Kraan, W. Barlag, L. de Leij, B. G. de Grooth, and J. Greve, "Selective electrofusion of conjugated cells in flow," (in eng), Biophysical journal, vol. 65, no. 2, pp. 568-572, 1993/08// 1993, doi: 10.1016/s0006-3495(93)81128-7. [15] A. Strömberg et al., "Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion," Proceedings of the National Academy of Sciences, vol. 97, no. 1, p. 7, 2000, doi: 10.1073/pnas.97.1.7. [16] J. Olofsson, K. Nolkrantz, F. Ryttsén, B. A. Lambie, S. G. Weber, and O. Orwar, "Single-cell electroporation," Current Opinion in Biotechnology, vol. 14, no. 1, pp. 29-34, 2003/02/01/ 2003, doi: https://doi.org/10.1016/S0958-1669(02)00003-4. [17] Y. Zhan, J. Wang, N. Bao, and C. Lu, "Electroporation of Cells in Microfluidic Droplets," Analytical Chemistry, vol. 81, no. 5, pp. 2027-2031, 2009/03/01 2009, doi: 10.1021/ac9001172. [18] F. W. Y. Chiu, H. Bagci, A. G. Fisher, A. J. deMello, and K. S. Elvira, "A microfluidic toolbox for cell fusion," Journal of Chemical Technology & Biotechnology, vol. 91, no. 1, pp. 16-24, 2016, doi: https://doi.org/10.1002/jctb.4803. [19] G. Tresset and S. Takeuchi, "A microfluidic device for electrofusion of biological membranes," in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 25-29 Jan. 2004 2004, pp. 25-28, doi: 10.1109/MEMS.2004.1290513. [20] D. T. Chiu, "A microfluidics platform for cell fusion," Current Opinion in Chemical Biology, vol. 5, no. 5, pp. 609-612, 2001/10/01/ 2001, doi: https://doi.org/10.1016/S1367-5931(00)00242-8. [21] C. Yi, C.-W. Li, S. Ji, and M. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Analytica Chimica Acta, vol. 560, no. 1, pp. 1-23, 2006/02/23/ 2006, doi: https://doi.org/10.1016/j.aca.2005.12.037. [22] N. Bao, J. Wang, and C. Lu, "Recent advances in electric analysis of cells in microfluidic systems," Analytical and Bioanalytical Chemistry, vol. 391, no. 3, pp. 933-942, 2008/06/01 2008, doi: 10.1007/s00216-008-1899-x. [23] Y. Okada, "Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells: I. Microscopic observation of giant polynuclear cell formation," Experimental Cell Research, vol. 26, no. 1, pp. 98-107, 2// 1962, doi: http://dx.doi.org/10.1016/0014-4827(62)90205-7. [24] H. Harris and J. F. Watkins, "Hybrid Cells Derived from Mouse and Man : Artificial Heterokaryons of Mammalian Cells from Different Species," Nature, vol. 205, no. 4972, pp. 640-646, 1965/02/01 1965, doi: 10.1038/205640a0. [25] G. Pontecorvo, "Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment," (in English), Somat Cell Mol Genet, vol. 1, no. 4, pp. 397-400, 1975/10/01 1975, doi: 10.1007/BF01538671. [26] R. L. Davidson, K. A. O'Malley, and T. B. Wheeler, "Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration," Somat Cell Mol Genet, vol. 2, no. 3, pp. 271-280, 1976/05/01 1976, doi: 10.1007/BF01538965. [27] U. Zimmermann, "Electric field-mediated fusion and related electrical phenomena," Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol. 694, no. 3, pp. 227-277, 11/30/ 1982, doi: http://dx.doi.org/10.1016/0304-4157(82)90007-7. [28] J. Moorthy and D. J. Beebe, "In situ fabricated porous filters for microsystems," Lab on a Chip, vol. 3, no. 2, pp. 62-66, 2003, doi: 10.1039/b300450c. [29] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous particle separation through deterministic lateral displacement," Science, vol. 304, no. 5673, pp. 987-990, May 2004, doi: 10.1126/science.1094567. [30] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, "Development of a rare cell fractionation device: Application for cancer detection," Ieee Transactions on Nanobioscience, vol. 3, no. 4, pp. 251-256, Dec 2004, doi: 10.1109/tnb.2004.837903. [31] L. Zhu, Q. Zhang, H. H. Feng, S. Ang, F. S. Chauc, and W. T. Liu, "Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells," Lab on a Chip, vol. 4, no. 4, pp. 337-341, 2004, doi: 10.1039/b401834f. [32] A. Revzin, R. G. Tompkins, and M. Toner, "Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass," Langmuir, vol. 19, no. 23, pp. 9855-9862, Nov 2003, doi: 10.1021/la035129b. [33] A. Khademhosseini et al., "Molded polyethylene glycol microstructures for capturing cells within microfluidic channels," Lab on a Chip, vol. 4, no. 5, pp. 425-430, 2004, doi: 10.1039/b404842c. [34] H. Tani, K. Maehana, and T. Kamidate, "Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network," Analytical Chemistry, vol. 76, no. 22, pp. 6693-6697, Nov 2004, doi: 10.1021/ac049401d. [35] N. Chronis and L. P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 857-863, Aug 2005, doi: 10.1109/jmems.2005.845445. [36] M. S. Yang, C. W. Li, and J. Yang, "Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device," Analytical Chemistry, vol. 74, no. 16, pp. 3991-4001, Aug 2002, doi: 10.1021/ac025536c. [37] C. W. Li, C. N. Cheung, J. Yang, C. H. Tzang, and M. S. Yang, "PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters," Analyst, vol. 128, no. 9, pp. 1137-1142, 2003, doi: 10.1039/b304354a. [38] C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Analytica Chimica Acta, vol. 560, no. 1-2, pp. 1-23, Feb 2006, doi: 10.1016/j.aca.2005.12.037. [39] P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena, "Antigen Presentation and T Cell Stimulation by Dendritic Cells," Annual Review of Immunology, vol. 20, no. 1, pp. 621-667, 2002/04/01 2002, doi: 10.1146/annurev.immunol.20.100301.064828. [40] G. Schuler, B. Schuler-Thurner, and R. M. Steinman, "The use of dendritic cells in cancer immunotherapy," Current Opinion in Immunology, vol. 15, no. 2, pp. 138-147, 2003/04/01/ 2003, doi: https://doi.org/10.1016/S0952-7915(03)00015-3. [41] E. W. M. Kemna, F. Wolbers, I. Vermes, and A. van den Berg, "On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation," Electrophoresis, vol. 32, no. 22, pp. 3138-3146, 2011, doi: 10.1002/elps.201100227. [42] K.-I. Wada, K. Hosokawa, E. Kondo, Y. Ito, and M. Maeda, "Cell fusion through a microslit between adhered cells and observation of their nuclear behavior," Biotechnology and Bioengineering, vol. 111, no. 7, pp. 1464-1468, 2014, doi: https://doi.org/10.1002/bit.25190. [43] A. Ashkin and J. M. Dziedzic, "OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA," Science, vol. 235, no. 4795, pp. 1517-1520, Mar 1987, doi: 10.1126/science.3547653. [44] J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, "Review of cell and particle trapping in microfluidic systems," Analytica Chimica Acta, vol. 649, no. 2, pp. 141-157, Sep 2009, doi: 10.1016/j.aca.2009.07.017. [45] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, no. 7049, pp. 370-372, Jul 2005, doi: 10.1038/nature03831. [46] P.-F. Yang, C.-H. Wang, and G.-B. Lee, "Optically-Induced Cell Fusion on Cell Pairing Microstructures," Scientific Reports, vol. 6, no. 1, p. 22036, 2016/02/25 2016, doi: 10.1038/srep22036. [47] Y.-C. Hsiao, C.-H. Wang, W.-B. Lee, and G.-B. Lee, "Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip," Biomicrofluidics, vol. 12, no. 3, p. 034108, 2018, doi: 10.1063/1.5028158. [48] H. A. Pohl, "THE MOTION AND PRECIPITATION OF SUSPENSOIDS IN DIVERGENT ELECTRIC FIELDS," Journal of Applied Physics, vol. 22, no. 7, pp. 869-871, 1951, doi: 10.1063/1.1700065. [49] H. B. Li and R. Bashir, "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes," Sensors and Actuators B-Chemical, vol. 86, no. 2-3, pp. 215-221, Sep 2002, doi: 10.1016/s0925-4005(02)00172-7. [50] H. Sedgwick, F. Caron, P. B. Monaghan, W. Kolch, and J. M. Cooper, "Lab-on-a-chip technologies for proteomic analysis from isolated cells," Journal of the Royal Society Interface, vol. 5, pp. S123-S130, Oct 2008, doi: 10.1098/rsif.2008.0169.focus. [51] M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera, and M. Washizu, "Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array," Biomicrofluidics, vol. 4, no. 2, p. 022808, 2010, doi: 10.1063/1.3422544. [52] Y. Kimura, M. Gel, B. Techaumnat, H. Oana, H. Kotera, and M. Washizu, "Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet," Electrophoresis, vol. 32, no. 18, pp. 2496-2501, 2011, doi: 10.1002/elps.201100129. [53] M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, and T. Matsue, "Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes," Lab on a Chip, 10.1039/C3LC50561H vol. 13, no. 18, pp. 3650-3652, 2013, doi: 10.1039/C3LC50561H. [54] C.-H. Wu, R. Chen, Y. Liu, Z.-M. Yu, Y.-W. Jiang, and X. Cheng, "A planar dielectrophoresis-based chip for high-throughput cell pairing," Lab on a Chip, vol. 17, no. 23, pp. 4008-4014, 2017, doi: http://dx.doi.org/10.1039/C7LC01082F. [55] W. He, L. Huang, Y. Feng, F. Liang, W. Ding, and W. Wang, "Highly integrated microfluidic device for cell pairing, fusion and culture," Biomicrofluidics, vol. 13, no. 5, p. 054109, 2019/09/01 2019, doi: 10.1063/1.5124705. [56] R. M. Schoeman, W. T. E. van den Beld, E. W. M. Kemna, F. Wolbers, J. C. T. Eijkel, and A. van den Berg, "Electrofusion of single cells in picoliter droplets," Scientific Reports, vol. 8, no. 1, p. 3714, 2018/02/27 2018, doi: 10.1038/s41598-018-21993-8. [57] B. H. Lapizco-Encinas, R. V. Davalos, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, "An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water," Journal of Microbiological Methods, vol. 62, no. 3, pp. 317-326, 2005/09/01/ 2005, doi: https://doi.org/10.1016/j.mimet.2005.04.027. [58] C. Chia-Fu and F. Zenhausern, "Electrodeless dielectrophoresis for micro total analysis systems," IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 6, pp. 62-67, 2003, doi: 10.1109/MEMB.2003.1266048. [59] U. N. G. A. Zimmermann, Electromanipulation of cells. Boca Raton, Fla.: CRC Press (in English), 1996. [60] J. J. Schmitt, U. Zimmermann, and P. Geßner, "Electrofusion of osmotically treated cells," Naturwissenschaften, vol. 76, no. 3, pp. 122-123, 1989/03/01 1989, doi: 10.1007/BF00366604. [61] U. Zimmermann and J. Vienken, "Electric field-induced cell-to-cell fusion," The Journal of Membrane Biology, vol. 67, no. 1, pp. 165-182, 1982/12/01 1982, doi: 10.1007/BF01868659. [62] U. Zimmermann, G. Pilwat, and H. A. Pohl, "Electric field-mediated cell fusion," Journal of Biological Physics, vol. 10, no. 1, pp. 43-50, 1982/03/01 1982, doi: 10.1007/BF01988467. [63] U. Zimmermann, "Electrofusion of cells: principles and industrial potential," Trends in Biotechnology, vol. 1, no. 5, pp. 149-155, 1983/11/01/ 1983, doi: https://doi.org/10.1016/0167-7799(83)90006-9. [64] S. J. MacDonald, P. S. Bodger, and P. A. Elder, "Biological cell alignment for electrofusion," IEE Proceedings A (Science, Measurement and Technology), vol. 139, no. 3, pp. 112-116. [65] D. Gross, "Electromobile surface charge alters membrane potential changes induced by applied electric fields," Biophysics journal, vol. 54, no. 5, pp. 879-884, 1988. [66] D. C. Chang, J. A. Saunders, B. M. Chassy, and A. E. Sowers, "1 - Overview of Electroporation and Electrofusion," in Guide to Electroporation and Electrofusion, D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers Eds. San Diego: Academic Press, 1992, pp. 1-6. [67] U. Pliquett, R. P. Joshi, V. Sridhara, and K. H. Schoenbach, "High electrical field effects on cell membranes," Bioelectrochemistry, vol. 70, no. 2, pp. 275-282, 2007/05/01/ 2007, doi: https://doi.org/10.1016/j.bioelechem.2006.10.004. [68] A. E. Sowers, "8 - Mechanisms of Electroporation and Electrofusion," in Guide to Electroporation and Electrofusion, D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers Eds. San Diego: Academic Press, 1992, pp. 119-138. [69] M. Washizu and B. Techaumnat, "Polarisation and membrane voltage of ellipsoidal particle with a constant membrane thickness: a series expansion approach," IET Nanobiotechnology, vol. 2, no. 3, pp. 62-71. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-nbt_20080003 [70] J. Ju, J.-M. Ko, H.-C. Cha, J. Y. Park, C.-H. Im, and S.-H. Lee, "An electrofusion chip with a cell delivery system driven by surface tension," Journal of Micromechanics and Microengineering, vol. 19, no. 1, p. 015004, 2008/11/27 2008, doi: 10.1088/0960-1317/19/1/015004. [71] B. Techaumnat, K. Tsuda, O. Kurosawa, G. Murat, H. Oana, and M. Washizu, "High-yield electrofusion of biological cells based on field tailoring by microfabricated structures," IET Nanobiotechnology, vol. 2, no. 4, pp. 93-99. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-nbt_20080008 [72] J. Wang and C. Lu, "Microfluidic cell fusion under continuous direct current voltage," Applied Physics Letters, vol. 89, no. 23, p. 234102, 2006, doi: 10.1063/1.2402122. [73] R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, and H. A. Stone, "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels," Applied Physics Letters, vol. 76, no. 17, pp. 2376-2378, 2000/04/24 2000, doi: 10.1063/1.126351. [74] F. Wolbers et al., "Viability study of HL60 cells in contact with commonly used microchip materials," Electrophoresis, vol. 27, no. 24, pp. 5073-5080, 2006/12/01 2006, doi: https://doi.org/10.1002/elps.200600203. [75] P. Marszalek, D. S. Liu, and T. Y. Tsong, "Schwan equation and transmembrane potential induced by alternating electric field," (in eng), Biophysical journal, vol. 58, no. 4, pp. 1053-1058, 1990, doi: 10.1016/S0006-3495(90)82447-4. [76] N. H. A. Mamun and P. Dutta, "Patterning of platinum microelectrodes in polymeric microfluidic chips," Journal of Micro-nanolithography Mems and Moems, vol. 5, p. 039701, 2006. [77] C. Gabriel, S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, vol. 41, no. 11, pp. 2231-2249, 1996/11/01 1996, doi: 10.1088/0031-9155/41/11/001. [78] L. Huang, Y. Chen, W. Huang, and H. Wu, "Cell pairing and polyethylene glycol (PEG)-mediated cell fusion using two-step centrifugation-assisted single-cell trapping (CAScT)," Lab on a Chip, 10.1039/C7LC01131H vol. 18, no. 7, pp. 1113-1120, 2018, doi: 10.1039/C7LC01131H. [79] J. Zhu, Y. Wang, P. Chen, H. Su, W. Du, and B.-F. Liu, "Highly efficient microfluidic device for cell trapping and pairing towards cell-cell communication analysis," Sensors and Actuators B: Chemical, vol. 283, pp. 685-692, 2019/03/15/ 2019, doi: https://doi.org/10.1016/j.snb.2018.12.078.
|