帳號:guest(3.135.196.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳仲明
作者(外文):Wu, Chung-Ming
論文名稱(中文):在圖形顯示卡叢集上應用適應性網格加密晶格波茲曼法直接數值模擬壁面具噴流的平板渠道紊流
論文名稱(外文):Direct numerical simulations of turbulent channel flows with wall transpiration by utilizing adaptive mesh-refinement lattice Boltzmann methods on GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):劉通敏
牛仰堯
何正榮
吳毓庭
口試委員(外文):Liou, Tong-Miin
Niu, Yang-Yao
Ho, Jeng-Rong
Wu, Yu-Ting
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033808
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:56
中文關鍵詞:晶格波茲曼法多鬆弛時間適應性網格加密圖形處理器平板渠道紊流壁面噴流直接數值模擬
外文關鍵詞:Lattice Boltzmann method(LBM)multi-relaxation-time(MRT)adaptive mesh refinement(AMR)graphics processing unit(GPU)turbulent channel flowwall transpirationdirect numerical simulation(DNS)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
利用多鬆弛時間適應性網格加密晶格波茲曼法模型來直接數值模擬平板渠道紊流(Reτ = 180, 395, 640)。更進一步地,平板渠道紊流具壁面噴流(Reτ =150, v0/uτ = 0.05) 和 (Reτ = 250, v0/uτ = 0.05, 0.1, 0.16, 0.26)第一次用多鬆弛時間晶格波茲曼法來模擬。為了用直接數值方法來擷取近壁面邊界層的流場特性,一個利用高∆+階層加密程序被建立,用來捕捉近壁面流場快速變化的特性。對於目前實現的平板紊流而言,三個以壁面為單位∆+網格大小,大約是1, 2, 4。對於進階的平板紊流壁面具噴流(Reτ =150, v0/uτ = 0.05)而言,其三個∆+網格大小,大約是0.853, 1.705, and 3.409。對於另一個的平板紊流壁面具噴流的模擬(Reτ =250, v0/uτ =0.05,0.1, 0.16, 0.26),其三個∆+網格大小,大約是0.781, 1.563, and 3.125。由於晶格波茲曼法的數值顯示特性,此數值程序在圖形顯示卡叢集上執行以及在統一計算架構上實現。強標度律(strong scaling)顯示了現行模擬極佳的可擴展性。整體而言,純粹平板紊流(Reτ = 180, 395, 640) 在D3Q19和D3Q27模型下,模擬結果顯示幾乎沒有不同。和標準答案相比下,前述具有適應性網格的模擬,產生令人滿意的紊流量。更進一步,紊流能量收支也進行了討論。
Direct numerical simulations (DNS) of wall-bounded turbulent channel flows(Reτ =180, 395, 640) are conducted by utilizing multi-relaxation-time(MRT) adaptive mesh-refinement Lattice Boltzmann method(LBM) models. Furthermore, wall-bounded turbulent channel flows with wall transpiration(Reτ =150, v0/uτ = 0.05) and (Reτ = 250, v0/uτ = 0.05, 0.1, 0.16, 0.26) are also simulated with MRT LBM for the first time. In order to catch the flow property of the near-wall boundary layer with direct numerical simulations, a hierarchy refinement procedure that utilizes high ∆+ is built for capturing fast variation of near-wall flow properties. For the current implementation of wall-bounded turbulent channel flows, the three grid spacings in the wall unit are (∆+) ∼ 1, 2, and 4. For the advanced wall-bounded turbulent channel flows with wall transpiration (Reτ =150, v0/uτ =0.05), the three grid spacings are ∆+ ∼ 0.853, 1.705, and 3.409. For another wall-bounded turbulent channel flows with wall transpiration (Reτ =250,v0/uτ =0.05,
0.1, 0.16, 0.26), the three grid spacings are ∆+ ∼ 0.781, 1.563, and 3.125. Due to the Lattice Boltzmann numerical explicit property, the numerical procedure is conducted on the graphics processing unit(GPU) cluster and implemented on the compute unified device architecture(CUDA) framework. Strong scaling shows
excellent scalability of the current simulation. Overall, the present pure channel flows simulated results (Reτ =180, 395, and 640) with D3Q19 and D3Q27 models demonstrate slight differences. So, the advanced channel flows with wall transpiration(Reτ =150,v0/uτ =0.05) and (Reτ =250,v0/uτ =0.05, 0.1, 0.16, 0.26) are performed with D3Q19 model only. With adaptive mesh refinement, the precedent simulations produce satisfactory turbulent quantities when compared with the benchmark solutions. Furthermore, budgets of the turbulence kinetic energy are also discussed.
1 Introduction 1
1.1 The DNS channel flow with wall transpiration . . . . . . . . . . . . . 1
1.2 Turbulent DNS channel flow . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 LBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 AMR of LBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Methodology 7
2.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Energy k budget and Reynolds stress equation . . . . . . . . . . . . . 14
2.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Numerical results and discussion 17
3.1 Turbulent DNS channel flow without wall transpiration . . . . . . . . 17
3.1.1 Geometry and computational domain . . . . . . . . . . . . . . 17
3.1.2 Turbulent quantities . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Turbulent DNS channel flow with wall transpiration . . . . . . . . . . 31
3.2.1 Geometry and computational domain . . . . . . . . . . . . . . 31
3.2.2 Turbulent quantities . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Reynold stress equation . . . . . . . . . . . . . . . . . . . . . 39
iii
3.2.4 GPU performance . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Conclusions 46
4.1 Turbulent DNS channel flow without wall transpiration . . . . . . . . 46
4.2 Turbulent DNS channel flow with wall transpiration . . . . . . . . . . 47
4.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
[1] R.J. Goldstein, R.B. Rask, E.R.G. Eckert, ”Film cooling with helium injection into an incompressible air flow,” International Journal of Heat and Mass Transfer 9 (12) 13411350, (1966).
[2] F.T. Davidson, D.A. KistenMacher, D. G. Bogard, ”Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches,” Journal of Turbomachinery 136 (4) 041007 (2013).
[3] J. Deparday, K. Mulleners, ”Modeling the interplay between the shear layer and leading edge suction during dynamic stall,” Physics of Fluids 31 (10) 107104 (2019).
[4] G. He, J. Deparday, L. Siegel, A. Henning, K. Mulleners, ”Stall delay and leading-edge suction for a pitching airfoil with trailing-edge flap,” AIAA Journal 58 (12) 51465155 (2020).
[5] N.V. Nikitin and A.A. Pavel’ev, ”Turbulent Flow in a Channel with Permeable Walls Direct Numerical Simulation and Results of Three-Parameter Model,” Flu. Dyn., 33, 6, (1998).
[6] H. Kawamura, H. Abe, Y. Matsuo, ”DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects,” International Journal of Heat and Fluid Flow, 20, 196-207, (1999).
[7] Y. Sumitani and N. Kasagi, ”Direct Numerical Simulation of Turbulent Transport with Uniform Wall Injection and Suction,” AIAA. Jour., 33, 7, (1995).
[8] J. Kim, P. Moin, R. Moser, “Turbulence Statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133166 (1987).
[9] N.N. Mansour, J. Kim, P. Moin, “Reynolds-stress and dissipation-rate budgets in a turbulent channel flow,” J. Fluid Mech. 194, 1544 (1988).
[10] S. Hoyas, J. Jimnez, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003,” Phys. Fluids 18, 011702, 14, (2006).
[11] S. Pirozzoli, M. Bernardini, “Probing high-Reynolds-number effects in numerical boundary layers,” Phys. Fluids 25, 021704, 14 (2013).
[12] H.K. Myong , N. Kasagi, “A New approach to the improvement of k−turbulence model for wall-bounded shear flows.” JSME Int J 33, 6372 (1990).
[13] A. Sarkar, RMC. So, “A critical evaluation of near-wall two-equation models against direct numerical simulation data,” Int J Heat Fluid Flow 18, 197208 (1997).
[14] D.B. Degraaff, J.K. Eaton, “Reynolds-number scaling of the flat-plate turbulent boundary layer,” J. Fluid Mech 422, 319-346 (2000).
[15] I. Marusic, G.J. Kunkel, “Streamwise turbulence intensity formulation for flat-plate boundary layers.” Phys. Fluids 22, 051704 (2010).
[16] W. Rodi, “The prediction of free turbulent boundary layers by use of a two equation model of turbulence,” PhD thesis, University of London. (1972).
[17] W. Rodi, “A new algebraic relation for calculating the Reynolds stresses,” Z. Angew. Math. Mech. 56, T219221 (1976).
[18] S. Wallin and A.V. Johansson, “An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows,” J. Fluid Mech. 403, 89132 (2000).
[19] G.R. McNamara, and G. Zanetti, “Use of the Boltzmann equation to simulate lattice-gas automata,” Phys. Rev. Lett. 61, 2332, (1988).
[20] F.J. Higuera, and J. Jim´enez, “Boltzmann approach to lattice gas simulations,” Europhys. Lett. 9, 663, (1989).
[21] S. Chen, H. Chen, D.O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnethydrodynamics,” Phys. Rev. Lett. 67, 3776, (1991).
[22] H. Chen, S. Chen, and W.H. Matthaeus, “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method,” Phys. Rev. A. 45, 5339, (1992).
[23] Y.H. Qian, D. d’Humi`eres, and P. Lallemand, “Lattice BGK models for NavierStokes equation,” Europhys. Lett. 17, 479, (1992).
[24] P.L. Bhatnagar, E.P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,” Physics Reviews E 94, 511, (1954).
[25] S. Hou, “Lattice Boltzmann Method for Incompressible, Viscous Flow,“ Ph.D. Thesis, Department of Mechanical Engineering, Kansas State University, (1995).
[26] D. d’Humi`eres, “Generalized lattice Boltzmann equation,“ In Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, 159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992).
[27] P. Lallemand, and L.S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev. E 61, 6546, (2000).
[28] P. Lammers, K.N. Beronov, R. Volkert, G. Brenner, F. Durst, ”Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow,” Computers & Fluids, 35, 1137, 2006.
[29] K.N. Premnath, M.J. Pattison, S. Banerjee,“Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows,” Physical Review E 79, 026703, 2009.
[30] C.K. Aidun, J.R. Clausen, “Lattice-Boltzmann method for complex flows,” Annu Rev Fluid Mech, 42, 439. (2009).
[31] S.K. Kang, Y.A. Hassan, “The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows,” J. Comput. Phys. 232 1, 100117, (2013).
[32] K. Suga, Y. Kuwata, K. Takashima, R. Chikasue, ”A D3Q27 multiplerelaxation-time lattice Boltzmann method for turbulent flows,” Computers and Mathematics with Applications 69, 518, (2015).
[33] Y.H. Lee, L.M. Huang, Y.S. Zou, S.C. Huang, C.A. Lin, ”Simulations of turbulent duct flow with lattice Boltzmann method on GPU cluster,” Computers & Fluids, 168, 14, (2018).
[34] O. Filippova, D. H¨anel, ”Grid refinement for lattice-BGK models,” Journal of Computational Physics, 147, 219, (1998).
[35] A. Dupuis, B. Chopard, ”Theory and applications of an alternative lattice Boltzmann grid refinement algorithm,” Physical Review E, 67, 066707, (2003).
[36] D. Yu, R. Mei, W. Shyy, ”A multi-block lattice Boltzmann method for viscous fluid flows,” Int. J. Numer. Methods Fluids 39, 99, (2002).
[37] A. Fakhari, T. Lee, ”Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique,” Physical Review E, 89, 033310, (2014).
[38] M. Rohde, D. Kandhai, J.J. Derksen, H.E.A. van den Akker, ”A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes,” Int. J. Numer. Meth. Fluids, 51, 439, (2006).
[39] H. Touil, D. Ricot, E. Lvque, ”Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method,” Journal of Computational Physics, 256, 220, (2014).
[40] Y. Kuwata, K. Suga, ”Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations,” Journal of Computational Physics, 311, 348, (2016).
[41] X. He, Q. Zou, L.S. Luo, M. Dembo, “Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmannm BGK model,” Journal of Statisticl Physics 87, pp. 115-136 (1997).
[42] Z. Chai, B. Shi, Z. Guo, F. Rong, ”Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows,” J. Non-Newtonian Fluid Mech., 166, 332, (2011).
[43] P.Y. Hong, L.M. Huang, C.Y. Chang and C.A. Lin,“Lattice Boltzmann Simulations of Cavity Flows on Graphic Processing Unit with Memory Management,” Journal of Mechanics, Access, 33, 6, 863 (2017).
[44] P.Y. Hong, L.M. Huang, L.S. Lin, C.A. Lin, “Scalable multi-relaxation-time lattice Boltzmann simulations on multi-GPU cluster,” Computers & Fluids. 110, 1-8 (2015).
[45] X. Wang, T. Aoki, ”Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster,” Parallel Comput., 37, 521, (2011).
[46] C.B. Hwang, C.A. Lin, ”An improved Low-Reynolds-Number k-e model based on Direct Numerical Simulation Data,” AIAA J., 36, 38, (1998).
[47] S.W. Hsu, J.B. Hsu, W., Lo, C.A. Lin, ”Large eddy simulations of turbulent Couette-Poiseuille and Couette Flows inside a square duct,” J. Fluid Mechanics, 702, 89, (2012).
[48] R. Moser, J. Kim, N.N. Mansour,“Direct numerical simulation of turbulent channel flow up to Reτ = 590,” Phys. Fluids, 11, 943-945, (1999).
[49] D. d’Humi`eres, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, ”Multirelaxation-time lattice Boltzmann models in three dimensions,” Phil. Trans. R. Soc. Lond. A, 360, 437, (2002).
[50] A. Fakharia, D. Bolstera, Li. Luo, ”A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades,” Journal of Computational Physics, (2017).
[51] Z. Guo, C. Zheng, B. Shi, ”Discrete lattice effects on the forcing term in the lattice Boltzmann method,” The American Physical Society, 65, 046308, (2002).
[52] H. Yu, L.S. Luo, S.S. Girimaji, ”LES of turbulent square jet flow using an MRT lattice Boltzmann model,” Computers & Fluids, 35, 957, (2006).
[53] A. Fakharia, M. Geier, T. Lee, ”A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows,” Journal of Computational Physics, 315, 434, (2016).
[54] A. Scotti , U. Piomelli, “Numerical simulation of pulsating turbulent channel flow,” Phys Fluids 13, 136784 (2001).
[55] V. Avsarkisov, M. Oberlack, S. Hoyas,”New scaling laws for turbulent Poiseuille flow with wall transpiration,” J. Fluid Mech., 746, 99-122, (2014).
[56] H. Abe, H. Kawamura, and Y. Matsuo,“Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence,” ASME Journal of Fluids Engineering, 123, 382, (2001).
[57] J. Bolz, I. Farmer, E. Grinspun, P. Schrder. “Sparse matrix solvers on the GPU: conjugate gradients and multigrid,” ACM Trans. Graph. (SIGGRAPH) 22(3), 917924 (2003).
[58] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan.“Brook for GPUs: Stream Computing on Graphics Hardware,” ACM Trans. Graph. 23, 777786 (2004).
[59] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y.C. Kuo, A. Kaufman, K. Mueller, “Visual simulation of heat shimmering and mirage,” IEEE Trans. Vis. Comput. Graph. 13(1), 179189 (2007).
[60] Y. Zhao, L. Wang, Z. Fan, F. Qiu, A. Kaufman, K. Mueller, “Melting and flowing in multiphase environments,” Comput. Graph. 30(4), 519528 (2006).
[61] H. Zhu, X. Liu, Y. Liu, E. Wu, “Simulation of miscible binary mixtures based on lattice Boltzmann method,” Comp. Anim. Virtual Worlds 17, 403410 (2006).
[62] J. T¨olke, “Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA,” Comput. Visual Sci. 13, 29, (2010).
[63] C. Obrecht, F. Kuznik, B. Tourancheau, and J.J. Roux, “A new approach to the lattice Boltzmann method for graphics processing units,” Comput. Math. Appl. 61, 3628, (2011).
[64] Cuda C Programming Guide 5.0, http://developer.nvidia.com/cuda-gpus (2012).
[65] L.S. Lin, H.W. Chang, C.A. Lin“Multi relaxation time lattice Boltzmann simulations of transition in deep 2d lid driven cavity using GPU,” Comput Fluids, 80, 381 (2013).
[66] C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, “Multi-GPU
implementation of the lattice Boltzmann method,” Comput. Fluids 65, 252, (2013).
[67] C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, “Scalable lattice Boltzmann solvers for CUDA GPU clusters,” Comput Fluids 39, 259, (2013).
[68] H.W. Chang, P.Y. Hong, L.S. Lin, C.A. Lin , Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units, Comput. Fluids 88, 866, (2013).
[69] C.M. Wu, Y.S. Zhou, C.A. Lin, Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster, Comput. Fluids 210, 104647, (2020).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *