|
[1] J. Wang, “System-level fail-safe,” Safety Theory and Control Technology of High-Speed Train Operation, Cambridge, Massachusetts: Academic Press, 2018. [2] T. Schmid, S. Schraufstetter, S. Wagner, and D. Hellhake, “A safety argumentation for fail-operational automotive systems in compliance with ISO 26262,” Int. Conf. Syst. Reliab. Saf., pp. 484–493, 2019. [3] Road vehicles – cybersecurity engineering, ISO SAE 21434, 2022. [4] W. Waag, C. Fleischer, and D. U. Sauer, “Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles,” J. Power Sources, vol. 258, pp. 321–339, 2014. [5] W. Cao, A. A. S. Bukhari, and L. Aarniovuori, “Review of electrical motor drives for electric vehicle applications,” Mehran Univ. Res. J. Eng. Technol., vol. 38, no. 3, pp. 525–540, 2019. [6] P. Sun, R. Bisschop, H. Niu, and X. Huang, “A review of battery fires in electric vehicles,” Fire Technol., vol. 56, pp. 1361–1410, 2020. [7] V. Bandur, G. Selim, V. Pantelic, and M. Lawford, “Making the case for centralized automotive E/E architectures,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1230–1245, 2021. [8] H. Zhu, W. Zhou, Z. Li, L. Li, and T. Huang, “Requirements-driven automotive electrical/electronic architecture: A survey and prospective trends,” IEEE Access, vol. 9, pp. 100096–100112, 2021. [9] L. LoBello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances and trends in on-board embedded and networked automotive systems,” IEEE Trans. Ind. Informatics, vol. 15, no. 2, pp. 1038–1051, 2019. [10] V. Bandur, V. Pantelic, M. Dawson, A. Schaap, B. Wasacz, and M. Lawford, “A domain-centralized automotive powertrain E/E architecture,” Int. Conf. on Dependable Systems and Networks Workshops, pp. 67-70, 2021. [11] R. Krishnan, “Permanent magnets and machines,” Permanent Magnet Synchronous and Brushless DC Motor Drives, Florida, USA: CRC Press, 2017. [12] B. Boazzo and G. Pellegrino, “Model-based direct flux vector control of permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3126–3136, 2015. [13] G. Pellegrino, E. Armando, and P. Guglielmi, “Direct-flux vector control of IPM motor drives in the maximum torque per voltage speed range,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3780–3788, 2012. [14] G. Pellegrino, R. I. Bojoi, and P. Guglielmi, “Unified direct-flux vector control for AC motor drives,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2093–2102, 2011. [15] X. Z. Zhang and Y. N. Wang, “A novel position-sensorless control method for brushless DC motors,” Energy Convers. Manag., vol. 52, no. 3, pp. 1669–1676, 2011. [16] C. H. DeAngelo, G. R. Bossio, J. A. Solsona, G. O. García, and M. I.Valla, “Sensorless speed control of permanent magnet motors driving an unknown load,” IEEE Int. Symp. Ind. Electron., vol. I, no. 2, pp. 617–620, 2003. [17] C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 373–378, 2006. [18] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288–295, 2003. [19] J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, and M. Sawamura, “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1031–1039, 2003. [20] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1241–1248, 2006. [21] P. L. Xu and Z. Q. Zhu, “Novel square-wave signal injection method using zero-sequence voltage for sensorless control of PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7444–7454, 2016. [22] J. I. Ha, “Current prediction in vector-controlled PWM inverters using single DC-link current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 716–726, 2010. [23] H. Kim and T. M. Jahns, “Phase current reconstruction for ac motor drives using a dc link single current sensor and measurement voltage vectors,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1413–1419, 2006. [24] Y. Gu, F. Ni, D. Yang, and H. Liu, “Switching-state phase shift method for three-phase-current reconstruction with a single dc-link current sensor,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5186–5194, 2011. [25] M. A. Rodriguez-Blanco, A. Vazquez-Perez, L. Hernandez-Gonzalez, V. Golikov, J. Aguayo-Alquicira, and M. May-Alarcon, “Fault detection for IGBT using adaptive thresholds during the turn-on transient,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1975–1983, 2015. [26] X. Zhang, G. Foo, M. D. Vilathgamuwa, K. J. Tseng, B. S. Bhangu, and C. Gajanayake, “Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives,” IET Electr. Power Appl., vol. 7, no. 7, pp. 607–617, 2013. [27] G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485–3495, 2013. [28] Y. Wang, Y. Lin, and R. Chen, “A Multi fault tolerant control architecture in starter generator system,” IEEE Int. Symp. Ind. Electron., pp. 434–439, 2019. [29] M. Li, D. Yu, Z. Chen, K. Xiahou, T. Ji, and Q. H. Wu, “A data-driven residual-based method for fault diagnosis and isolation in wind turbines,” IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 895–904, 2019. [30] B. Cai, Y. Zhao, H. Liu, and M. Xie, “A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5590–5600, 2017. [31] X. Luo, L. Kang, C. Lu, J. Linghu, H. Lin, and B. Hu, “An enhanced multicell-to-multicell battery equalizer based on bipolar-resonant LC converter,” Electron., vol. 10, no. 3, pp. 1–20, 2021. [32] Y. Ko and W. Choi, “A new soc estimation for lfp batteries: Application in a 10 ah cell (hw 38120 l/s) as a hysteresis case study,” Electron., vol. 10, no. 6, pp. 1–14, 2021. [33] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” J. Power Sources, vol. 226, pp. 272–288, 2013. [34] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. VanMierlo, and P. Van DenBossche, “Critical review of state of health estimation methods of Li-ion batteries for real applications,” Renew. Sustain. Energy Rev., vol. 56, pp. 572–587, 2016. [35] A. Farmann and D. U. Sauer, “A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles,” J. Power Sources, vol. 329, pp. 123–137, 2016. [36] M. Lelie et al., “Battery management system hardware concepts: An overview,” Appl. Sci., vol. 8, no. 4, 2018. [37] Y. Xing, E. W. M. Ma, K. L. Tsui, and M. Pecht, “Battery management systems in electric and hybrid vehicles,” Energies, vol. 4, no. 11, pp. 1840–1857, 2011. [38] J. Kim and B. H. Cho, “State-of-charge estimation and state-of-health prediction of a Li-Ion degraded battery based on an EKF combined with a per-unit system,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4249–4260, 2011. [39] M. K. Tran and M. Fowler, “A Review of lithium-ion battery fault diagnostic algorithms: current progress and future challenges,” Algorithms, vol. 13, no. 3, pp. 1–16, 2020. [40] D. Lyu, B. Ren, and S. Li, “Failure modes and mechanisms for rechargeable lithium-based batteries: a state-of-the-art review,” Acta Mech., vol. 230, no. 3, pp. 701–727, 2019. [41] Q. Ahmed and G. Rizzoni, “Fault detection and isolation for lithium-ion battery system using,” Proc. ASME 2014 Dyn. Syst. Control Conf., pp. 1–10, 2014. [42] O. Aiello, “Electromagnetic susceptibility of battery management systems’ ICs for electric vehicles: Experimental study,” Electron., vol. 9, no. 3, 2020. [43] S. Dey, S. Mohon, P. Pisu, and B. Ayalew, “Sensor fault detection, isolation, and estimation in lithium-ion batteries,” IEEE Trans. Control Syst. Technol., vol. 24, no. 6, pp. 2141–2149, 2016. [44] R. Xiong, Q. Yu, W. Shen, C. Lin, and F. Sun, “A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9709–9718, 2019. [45] M. K. Tran and M. Fowler, “Sensor fault detection and isolation for degrading lithium-ion batteries in electric vehicles using parameter estimation with recursive least squares,” Batteries, vol. 6, no. 1, pp. 1–16, 2020. [46] Industrial communication networks – network and system security, IEC 62443, 2018. [47] I. Agirre, I. Yarza, I. Mugarza, J. Binchi, P. Onaindia, T. Poggi, F. J. Cazorla, L. Kosmidis, K. Grüttner, P. Uven, M. Abuteir, J. Loewe, J. M. Orbegozo and S. Botta, “Safe and secure software updates on high-performance mixed-criticality systems: The UP2DATE approach,” Microprocess. Microsyst., vol. 87, p. 104351, 2021. [48] T. Placho, C. Schmittner, A. Bonitz, and O. Wana, “Management of automotive software updates,” Microprocess. Microsyst., vol. 78, p. 103257, 2020. [49] I. Mugarza, I. Yarza, I. Agirre, F. Lussiana, and S. Botta, “Safety and security concept for software updates on mixed-criticality systems,” Int. Conf. on Syst. Reliability and Safety, pp. 171–180, 2021. [50] S. Halder, A. Ghosal, and M. Conti, “Secure OTA software updates in connected vehicles: A survey,” 2019, [Online]. Available: https://arxiv.org/abs/1904.00685. [51] S. M. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in an intelligent vehicle via wireless communication links,” IEEE Intell. Veh. Symp. Proc., pp. 588–593, 2005. [52] Mayilsamy, N. Ramachandran, and V. Sunder Raj, “An integrated approach for data security in vehicle diagnostics over internet protocol and software update over the air,” Comput. Electr. Eng., vol. 71, pp. 578–593, 2018. [53] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air in intelligent vehicles,” IEEE Int. Conf. Commun., pp. 380–384, 2008. [54] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and O. Henniger, “Secure automotive on-board protocols: A case of over-the-air firmware updates,” Lecture Notes in Computer Science, vol. 6596, Berlin, Heidelberg: Springer, 2011. [55] H. Guissouma, A. Lauber, A. Mkadem, and E. Sax, “Virtual test environment for efficient verification of software updates for variant-rich automotive systems,” IEEE Int. Syst. Conf., 2019. [56] W. Li, A. Monti, and F. Ponci, “Fault detection and classification in medium voltage dc shipboard power systems with wavelets and artificial neural networks,” IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp. 2651–2665, 2014. [57] H. Bernardes, M. Tonelli-Neto, and C. R. Minussi, “Fault classification in power distribution systems using multiresolution analysis and a Fuzzy-ARTMAP neural network analysis and a Fuzzy-ARTMAP neural network,” IEEE Lat. Am. Trans., vol. 19, no. 11, pp. 1824–1831, 2021. [58] A. Jiang et al., “A hybrid framework for fault detection, classification, and location-Part I: Concept, structure, and methodology,” IEEE Trans. Power Deliv., vol. 26, no. 3, pp. 1988–1998, 2011. [59] F. Cheng, Y. Peng, L. Qu, and W. Qiao, “Current-based fault detection and identification for wind turbine drivetrain gearboxes,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 878–887, 2017. [60] S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless sensor networks through SVM classifier,” IEEE Sens. J., vol. 18, no. 1, pp. 340–347, 2018. [61] Seera, C. P. Lim, and C. K. Loo, “Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning,” J. Intell. Manuf., vol. 27, no. 6, pp. 1273–1285, 2016. [62] V. T. Tran, B. S. Yang, M. S. Oh, and A. C. C. Tan, “Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference,” Expert Syst. Appl., vol. 36, no. 2, pp. 1840–1849, 2009. [63] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001. [64] B. S. Yang, X. Di, and T. Han, “Random forests classifier for machine fault diagnosis,” J. Mech. Sci. Technol., vol. 22, no. 9, pp. 1716–1725, 2008. [65] P. Ostojic, A. Banerjee, D. C. Patel, W. Basu, and S. Ali, “Advanced motor monitoring and diagnostics,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3120–3127, 2014. [66] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” J. Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. [67] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, “Industrial big data for fault diagnosis: taxonomy, review, and applications,” IEEE Access, vol. 5, pp. 17368–17380, 2017. [68] D. Park, S. Kim, Y. An, and J. Y. Jung, “Lired: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks,” Sensors (Switzerland), vol. 18, no. 7, 2018. [69] H. Zhao, S. Sun, and B. Jin, “Sequential fault diagnosis based on LSTM neural network,” IEEE Access, vol. 6, pp. 12929–12939, 2018. [70] Arbeitskreis, “Standardized E-Gas monitoring concept for gasoline and diesel engine control units,” Report Version 6.0, 2015. [71] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree analysis, methods, and applications - A review,” IEEE Trans. Reliab., vol. R-34, no. 3, pp. 194–203, 1985. [72] F. Rahman, L. Zhong, M. E. Haque, and M. A. Rahman, “A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 17–22, 2003. [73] M. A. Amutio, J. Candau, and J. Antonio, “MAGERIT - version 3.0. Methodology for Information Systems Risk Analysis and Management - The Method,” 2014. [Online]. Available: https://administracionelectronica.gob.es [74] M. Štulrajter, V. Hrabovcová, and M. Franko, “Permanent magnets synchronous motor control theory,” J. Electr. Eng., vol. 58, no. 2, pp. 79–84, 2007. [75] H. Kim and T. M. Jahns, “Current control for AC motor drives using a single DC-link current sensor and measurement voltage vectors,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1539–1547, 2006. [76] H. Yan, Y. Xu, and J. Zou, “A phase current reconstruction approach for three-phase permanent-magnet synchronous motor drive,” Energies, vol. 9, no. 10, pp. 1–16, 2016. [77] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification,” J. Power Sources, vol. 134, no. 2, pp. 262–276, 2004. [78] J. Lee, O. Nam, and B. H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” J. Power Sources, vol. 174, no. 1, pp. 9–15, 2007. [79] C. Zhang, W. Allafi, Q. Dinh, P. Ascencio, and J. Marco, “Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique,” Energy, vol. 142, pp. 678–688, 2018. [80] F. Kazhamiaka, S. Keshav, C. Rosenberg, and K. H. Pettinger, “Simple spec-based modeling of lithium-ion batteries,” IEEE Trans. Energy Convers., vol. 33, no. 4, pp. 1757–1765, 2018. [81] R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986. [82] R. Begg, M. Palaniswami, S. Member, and B. Owen, “Support vector machines for automated gait classificatio,” IEEE Trans. Biomed. Eng., vol. 52, no. 5, pp. 828–838, 2005. [83] Y. Rahulamathavan, R. C. W.Phan, S. Veluru, K. Cumanan, and M. Rajarajan, “Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud,” IEEE Trans. Dependable Secur. Comput., vol. 11, no. 5, pp. 467–479, 2014. [84] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full AES,” Lecture Notes in Computer Science, vol 7073, Berlin, Heidelberg: Springer, 2011. [85] S. Nisha and M. Farik, “RSA public key cryptography algorithm - A Review,” Int. J. Sci. Technol. Res., vol. 6, no. 07, p. 7, 2017. [86] S. Narayan, “A review on elliptic curve cryptography,” Int. J. Emerg. Technol. Innov. Eng., vol. 4, no. 12, pp. 132–138, 2018. [87] H. Handschuh and B. Preneel, “Key-recovery attacks on universal hash function based MAC algorithms,” Lecture Notes in Computer Science vol 5157, Berlin, Heidelberg: Springer, 2008. [88] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-hashing for message authentication, RFC2104, [Online]. Available: https://www.rfc-editor.org/info/rfc2104 [89] J. V. Barreras et al., “An advanced HIL simulation battery model for battery management system testing,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 5086–5099, 2016. [90] F. Ju, J. Wang, J. Li, G. Xiao, and S. Biller, “Virtual battery: A battery simulation framework for electric vehicles,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 1, pp. 5–15, 2013. [91] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “Simplified extended Kalman filter observer for SOC estimation of commercial power-oriented LFP lithium battery cells,” SAE Tech. Pap., vol. 2, 2013. [92] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells,” IEEE International Electric Vehicle Conference, pp. 1–8, 2012. [93] D. Hu and L. Xu, “Characterizing the torque lookup table of an IPM machine for automotive application,” IEEE Conf. Expo Transp. Electrif. Asia-Pacific, pp. 1–6, 2014. [94] S. N. Motapon, A. Lupien-Bedard, L. A. Dessaint, H. Fortin-Blanchette, and K. Al-Haddad, “A Generic electrothermal Li-ion battery model for rapid evaluation of cell temperature temporal evolution,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 998–1008, 2017. [95] J. Karthik et al., “Uptane: securing software updates for automobiles,” 14th escar Eur., pp. 471–481, 2016. [96] M. Vandervoord, M. Karlesky and G. Williams, “Throw the switch,” 2015. [Online]. Available: http://www.throwtheswitch.org/unity
|