帳號:guest(3.135.220.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王詠辰
作者(外文):Wang, Yung-Chen
論文名稱(中文):高度可靠的整合式電池與電機控制系統架構
論文名稱(外文):A Highly Reliable Integrated Battery Management and Motor Control System Architecture
指導教授(中文):陳榮順
指導教授(外文):Chen, Rong-shun
口試委員(中文):陳柏全
白明憲
林昱成
林明璋
口試委員(外文):Chen, Bo-Chiuan
Bai, Ming-Sian
Lin, Yu-Chen
Lin, Ming-Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033803
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:136
中文關鍵詞:功能安全資訊安全容錯控制車輛電池管理系統車輛電機控制器
外文關鍵詞:Functional SafetyInformation SecurityFault-tolerantBattery Management SystemMotor Controller
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究提出一種新的可運用在移動載具的電池與電機安全控制系統,重新建構動力域中電池管理和電機控制系統的軟硬體組成,透過虛擬機管理技術,在單一嵌入式晶片上執行功能控制器、安全控制器以及開機引導程序,並結合異質感測器融合和訊號仲裁演算法的技術,使提出的系統可以在部分元件失效時,仍可運作且符合安全的需求。本研究提出新的V-T開發模型,原始的V模型對應開發階段,新增的T模型則是負責維運階段,T模型新增虛擬目標驗證與映像檔功能驗證,讓具有遠端更新功能的控制器開發維運流程更加完善。透過不可改寫虛擬模型來實現所提出的概念,本研究作為硬體根信任的延伸,確保被更新程式的正確性,當映像檔被惡意破壞時可以即時的發現。在軟體的部分則是採用域控制器與中央電腦來實現,利用虛擬驗證技術與虛實整合驗證技術驗證本研究所提出的系統,並透過注入錯誤的方式來評估診斷錯誤的時間以及系統響應。本研究針對不同分類的算法所需要的運算資源進行比對,遠端更新的部分則是透過人為操作修改映像檔和偽造金鑰的方式來進行錯誤注入,確保系統可以發現異常並進行程式回滾。本研究所提出的軟硬體系統,在不增加感測器成本的狀態下,可以診斷感測器不同的失效行為,並同時可容許三個感測器的錯誤。所採用多核心的運算晶片可以避免單一核心崩潰之後的危害,不可改寫的虛擬模型驗證技術,則能偵測到映像檔數位簽證與完整性均正確下的數據異常行為。
For use in safety-related mobile vehicles, this study proposes a new battery and motor control architecture, which reconstructs the hardware and software components of a battery management and motor control system in the powertrain domain. Through using virtual machine management technology, the function controller, safety controller, and bootloader are running on a single embedded chip system. With the integration of heterogeneous sensors and signal arbitration algorithm, the developed system can meet the requirements of fail-operational of vehicle functions. This study proposes a novel V–T model, in whuch the original V model is used in the development stage, while the added T model is used in the maintenance stage. The newly T model includes virtual target verification and image file function verification to improve the integrity of the development, and to maintenance processes of automotive electronic controller with a remote update function. The V–T model can be implemented using the immutable virtual model, which is an extension of the root trust of hardware to ensure the validity of program updates. When an image file is maliciously damaged, it is immediately detectable. Domain controller and central computer unit are used in the software implementation, and virtual verification technology and hybrid verification technology are used to test the proposed architecture in this research. By injecting faults, the time of fault diagnosis and system response are evaluated, and the computing resources required by various types of algorithms are compared. Fault injection is performed as part of remote update by manually modifying image files and digital signature, allowing the system to detect anomalies and roll back programs. The architecture proposed in this study can diagnose different sensor failure behaviors without increasing sensor costs, and detect the faults up to three sensors at the same time. Multi-core computing architecture can avoid the harm of a single core crash, and immutable virtual model verification technology can detect abnormal data behaviors when the digital signature and integrity of image files are correct.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 車用電器與電子架構技術 3
1.2.2 馬達控制與容錯技術 6
1.2.3 電池管理系統與容錯技術 8
1.2.4 遠端更新技術 9
1.2.5 訊號仲裁技術 10
1.2.6 控制器失效診斷技術 11
1.3 本文架構 12
第2章 系統分析與架構設計 13
2.1 傳統動力系統架構 13
2.2 基於三層安全架構規範的概念設計與改善 14
2.3 本研究之系統架構 15
2.4 軟體架構 17
2.5 資產定義 20
2.6 功能安全分析 21
2.6.1 失效與危害 22
2.6.2 失效樹之架構改善 24
2.7 資訊安全風險分析 28
2.7.1 影響性分析 28
2.7.2 威脅的可實施性分析 30
2.7.3 風險評估 34
2.7.4 風險對策 35
2.8 小結 38
第3章 演算法設計與開發 39
3.1 永磁馬達模型與控制演算法 39
3.1.1 永磁馬達模型 40
3.1.2 磁場導向控制 42
3.1.3 馬達控制器訊號估測 43
3.1.4 馬達控制器訊號估測模擬 48
3.1.5 馬達控制器訊號重建 50
3.1.6 馬達控制器訊號重建模擬 53
3.2 電池模型與狀態估測演算法 56
3.2.1 基於庫倫積分法電池狀態估測 56
3.2.2 基於EKF的電池狀態估測 57
3.2.3 電池可輸出最大電流狀態估測 59
3.3 分類預測演算法 59
3.3.1 決策樹模型 61
3.3.2 支援向量機模型 63
3.3.3 隨機森林模型 63
3.4 錯誤識別與容錯再配置 64
3.4.1 運行階段異常偵測與訊號再配置流程 65
3.4.2 模型訓練與部屬 69
3.5 遠端更新與離線監控機制 71
3.5.1 遠端更新架構 71
3.5.2 對稱加密與非對稱加密 74
3.5.3 映像檔的完整性與可信任性 77
3.5.4 根信任機制 80
3.5.5 遠端更新整合不可複寫虛擬模型與離線監控 81
3.6 控制器實現方法 85
3.6.1 基於域控制器的實現方式 86
3.6.2 基於中央電腦的實現方式 89
3.7 小結 90
第4章 系統實現與驗證結果分析 91
4.1 虛擬驗證技術 91
4.1.1 電池建模 92
4.1.2 電機建模 95
4.2 虛實整合驗證技術 100
4.2.1 Bluebox所實現的馬達模擬與IBMU控制器 102
4.2.2 電池模擬系統與軟硬體驗證 104
4.2.3 OTA遠端更新的服務器 107
4.3 馬達與電池管理系統驗證 108
4.3.1 基準參考線 108
4.3.2 相電流傳感器故障 111
4.3.3 直流端電壓傳感器故障 112
4.3.4 直流端電流傳感器故障 114
4.3.5 電池芯電壓傳感器故障 115
4.3.6 多傳感器故障 117
4.4 遠端更新與離線監控系統驗證 120
4.4.1 映像檔加密與完整性異常偵測 120
4.4.2 映像檔功能異常偵測 122
4.5 小結 124
第5章 結論與未來工作 125
5.1 結論 125
5.2 未來工作 126
參考文獻 128
附錄A. 電池模型建立程式碼 136

[1] J. Wang, “System-level fail-safe,” Safety Theory and Control Technology of High-Speed Train Operation, Cambridge, Massachusetts: Academic Press, 2018.
[2] T. Schmid, S. Schraufstetter, S. Wagner, and D. Hellhake, “A safety argumentation for fail-operational automotive systems in compliance with ISO 26262,” Int. Conf. Syst. Reliab. Saf., pp. 484–493, 2019.
[3] Road vehicles – cybersecurity engineering, ISO SAE 21434, 2022.
[4] W. Waag, C. Fleischer, and D. U. Sauer, “Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles,” J. Power Sources, vol. 258, pp. 321–339, 2014.
[5] W. Cao, A. A. S. Bukhari, and L. Aarniovuori, “Review of electrical motor drives for electric vehicle applications,” Mehran Univ. Res. J. Eng. Technol., vol. 38, no. 3, pp. 525–540, 2019.
[6] P. Sun, R. Bisschop, H. Niu, and X. Huang, “A review of battery fires in electric vehicles,” Fire Technol., vol. 56, pp. 1361–1410, 2020.
[7] V. Bandur, G. Selim, V. Pantelic, and M. Lawford, “Making the case for centralized automotive E/E architectures,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1230–1245, 2021.
[8] H. Zhu, W. Zhou, Z. Li, L. Li, and T. Huang, “Requirements-driven automotive electrical/electronic architecture: A survey and prospective trends,” IEEE Access, vol. 9, pp. 100096–100112, 2021.
[9] L. LoBello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances and trends in on-board embedded and networked automotive systems,” IEEE Trans. Ind. Informatics, vol. 15, no. 2, pp. 1038–1051, 2019.
[10] V. Bandur, V. Pantelic, M. Dawson, A. Schaap, B. Wasacz, and M. Lawford, “A domain-centralized automotive powertrain E/E architecture,” Int. Conf. on Dependable Systems and Networks Workshops, pp. 67-70, 2021.
[11] R. Krishnan, “Permanent magnets and machines,” Permanent Magnet Synchronous and Brushless DC Motor Drives, Florida, USA: CRC Press, 2017.
[12] B. Boazzo and G. Pellegrino, “Model-based direct flux vector control of permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3126–3136, 2015.
[13] G. Pellegrino, E. Armando, and P. Guglielmi, “Direct-flux vector control of IPM motor drives in the maximum torque per voltage speed range,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3780–3788, 2012.
[14] G. Pellegrino, R. I. Bojoi, and P. Guglielmi, “Unified direct-flux vector control for AC motor drives,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2093–2102, 2011.
[15] X. Z. Zhang and Y. N. Wang, “A novel position-sensorless control method for brushless DC motors,” Energy Convers. Manag., vol. 52, no. 3, pp. 1669–1676, 2011.
[16] C. H. DeAngelo, G. R. Bossio, J. A. Solsona, G. O. García, and M. I.Valla, “Sensorless speed control of permanent magnet motors driving an unknown load,” IEEE Int. Symp. Ind. Electron., vol. I, no. 2, pp. 617–620, 2003.
[17] C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 373–378, 2006.
[18] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288–295, 2003.
[19] J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, and M. Sawamura, “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1031–1039, 2003.
[20] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1241–1248, 2006.
[21] P. L. Xu and Z. Q. Zhu, “Novel square-wave signal injection method using zero-sequence voltage for sensorless control of PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7444–7454, 2016.
[22] J. I. Ha, “Current prediction in vector-controlled PWM inverters using single DC-link current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 716–726, 2010.
[23] H. Kim and T. M. Jahns, “Phase current reconstruction for ac motor drives using a dc link single current sensor and measurement voltage vectors,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1413–1419, 2006.
[24] Y. Gu, F. Ni, D. Yang, and H. Liu, “Switching-state phase shift method for three-phase-current reconstruction with a single dc-link current sensor,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5186–5194, 2011.
[25] M. A. Rodriguez-Blanco, A. Vazquez-Perez, L. Hernandez-Gonzalez, V. Golikov, J. Aguayo-Alquicira, and M. May-Alarcon, “Fault detection for IGBT using adaptive thresholds during the turn-on transient,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1975–1983, 2015.
[26] X. Zhang, G. Foo, M. D. Vilathgamuwa, K. J. Tseng, B. S. Bhangu, and C. Gajanayake, “Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives,” IET Electr. Power Appl., vol. 7, no. 7, pp. 607–617, 2013.
[27] G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485–3495, 2013.
[28] Y. Wang, Y. Lin, and R. Chen, “A Multi fault tolerant control architecture in starter generator system,” IEEE Int. Symp. Ind. Electron., pp. 434–439, 2019.
[29] M. Li, D. Yu, Z. Chen, K. Xiahou, T. Ji, and Q. H. Wu, “A data-driven residual-based method for fault diagnosis and isolation in wind turbines,” IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 895–904, 2019.
[30] B. Cai, Y. Zhao, H. Liu, and M. Xie, “A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5590–5600, 2017.
[31] X. Luo, L. Kang, C. Lu, J. Linghu, H. Lin, and B. Hu, “An enhanced multicell-to-multicell battery equalizer based on bipolar-resonant LC converter,” Electron., vol. 10, no. 3, pp. 1–20, 2021.
[32] Y. Ko and W. Choi, “A new soc estimation for lfp batteries: Application in a 10 ah cell (hw 38120 l/s) as a hysteresis case study,” Electron., vol. 10, no. 6, pp. 1–14, 2021.
[33] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” J. Power Sources, vol. 226, pp. 272–288, 2013.
[34] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. VanMierlo, and P. Van DenBossche, “Critical review of state of health estimation methods of Li-ion batteries for real applications,” Renew. Sustain. Energy Rev., vol. 56, pp. 572–587, 2016.
[35] A. Farmann and D. U. Sauer, “A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles,” J. Power Sources, vol. 329, pp. 123–137, 2016.
[36] M. Lelie et al., “Battery management system hardware concepts: An overview,” Appl. Sci., vol. 8, no. 4, 2018.
[37] Y. Xing, E. W. M. Ma, K. L. Tsui, and M. Pecht, “Battery management systems in electric and hybrid vehicles,” Energies, vol. 4, no. 11, pp. 1840–1857, 2011.
[38] J. Kim and B. H. Cho, “State-of-charge estimation and state-of-health prediction of a Li-Ion degraded battery based on an EKF combined with a per-unit system,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4249–4260, 2011.
[39] M. K. Tran and M. Fowler, “A Review of lithium-ion battery fault diagnostic algorithms: current progress and future challenges,” Algorithms, vol. 13, no. 3, pp. 1–16, 2020.
[40] D. Lyu, B. Ren, and S. Li, “Failure modes and mechanisms for rechargeable lithium-based batteries: a state-of-the-art review,” Acta Mech., vol. 230, no. 3, pp. 701–727, 2019.
[41] Q. Ahmed and G. Rizzoni, “Fault detection and isolation for lithium-ion battery system using,” Proc. ASME 2014 Dyn. Syst. Control Conf., pp. 1–10, 2014.
[42] O. Aiello, “Electromagnetic susceptibility of battery management systems’ ICs for electric vehicles: Experimental study,” Electron., vol. 9, no. 3, 2020.
[43] S. Dey, S. Mohon, P. Pisu, and B. Ayalew, “Sensor fault detection, isolation, and estimation in lithium-ion batteries,” IEEE Trans. Control Syst. Technol., vol. 24, no. 6, pp. 2141–2149, 2016.
[44] R. Xiong, Q. Yu, W. Shen, C. Lin, and F. Sun, “A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9709–9718, 2019.
[45] M. K. Tran and M. Fowler, “Sensor fault detection and isolation for degrading lithium-ion batteries in electric vehicles using parameter estimation with recursive least squares,” Batteries, vol. 6, no. 1, pp. 1–16, 2020.
[46] Industrial communication networks – network and system security, IEC 62443, 2018.
[47] I. Agirre, I. Yarza, I. Mugarza, J. Binchi, P. Onaindia, T. Poggi, F. J. Cazorla, L. Kosmidis, K. Grüttner, P. Uven, M. Abuteir, J. Loewe, J. M. Orbegozo and S. Botta, “Safe and secure software updates on high-performance mixed-criticality systems: The UP2DATE approach,” Microprocess. Microsyst., vol. 87, p. 104351, 2021.
[48] T. Placho, C. Schmittner, A. Bonitz, and O. Wana, “Management of automotive software updates,” Microprocess. Microsyst., vol. 78, p. 103257, 2020.
[49] I. Mugarza, I. Yarza, I. Agirre, F. Lussiana, and S. Botta, “Safety and security concept for software updates on mixed-criticality systems,” Int. Conf. on Syst. Reliability and Safety, pp. 171–180, 2021.
[50] S. Halder, A. Ghosal, and M. Conti, “Secure OTA software updates in connected vehicles: A survey,” 2019, [Online]. Available: https://arxiv.org/abs/1904.00685.
[51] S. M. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in an intelligent vehicle via wireless communication links,” IEEE Intell. Veh. Symp. Proc., pp. 588–593, 2005.
[52] Mayilsamy, N. Ramachandran, and V. Sunder Raj, “An integrated approach for data security in vehicle diagnostics over internet protocol and software update over the air,” Comput. Electr. Eng., vol. 71, pp. 578–593, 2018.
[53] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air in intelligent vehicles,” IEEE Int. Conf. Commun., pp. 380–384, 2008.
[54] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and O. Henniger, “Secure automotive on-board protocols: A case of over-the-air firmware updates,” Lecture Notes in Computer Science, vol. 6596, Berlin, Heidelberg: Springer, 2011.
[55] H. Guissouma, A. Lauber, A. Mkadem, and E. Sax, “Virtual test environment for efficient verification of software updates for variant-rich automotive systems,” IEEE Int. Syst. Conf., 2019.
[56] W. Li, A. Monti, and F. Ponci, “Fault detection and classification in medium voltage dc shipboard power systems with wavelets and artificial neural networks,” IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp. 2651–2665, 2014.
[57] H. Bernardes, M. Tonelli-Neto, and C. R. Minussi, “Fault classification in power distribution systems using multiresolution analysis and a Fuzzy-ARTMAP neural network analysis and a Fuzzy-ARTMAP neural network,” IEEE Lat. Am. Trans., vol. 19, no. 11, pp. 1824–1831, 2021.
[58] A. Jiang et al., “A hybrid framework for fault detection, classification, and location-Part I: Concept, structure, and methodology,” IEEE Trans. Power Deliv., vol. 26, no. 3, pp. 1988–1998, 2011.
[59] F. Cheng, Y. Peng, L. Qu, and W. Qiao, “Current-based fault detection and identification for wind turbine drivetrain gearboxes,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 878–887, 2017.
[60] S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless sensor networks through SVM classifier,” IEEE Sens. J., vol. 18, no. 1, pp. 340–347, 2018.
[61] Seera, C. P. Lim, and C. K. Loo, “Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning,” J. Intell. Manuf., vol. 27, no. 6, pp. 1273–1285, 2016.
[62] V. T. Tran, B. S. Yang, M. S. Oh, and A. C. C. Tan, “Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference,” Expert Syst. Appl., vol. 36, no. 2, pp. 1840–1849, 2009.
[63] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.
[64] B. S. Yang, X. Di, and T. Han, “Random forests classifier for machine fault diagnosis,” J. Mech. Sci. Technol., vol. 22, no. 9, pp. 1716–1725, 2008.
[65] P. Ostojic, A. Banerjee, D. C. Patel, W. Basu, and S. Ali, “Advanced motor monitoring and diagnostics,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3120–3127, 2014.
[66] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” J. Process Control, vol. 22, no. 9, pp. 1567–1581, 2012.
[67] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, “Industrial big data for fault diagnosis: taxonomy, review, and applications,” IEEE Access, vol. 5, pp. 17368–17380, 2017.
[68] D. Park, S. Kim, Y. An, and J. Y. Jung, “Lired: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks,” Sensors (Switzerland), vol. 18, no. 7, 2018.
[69] H. Zhao, S. Sun, and B. Jin, “Sequential fault diagnosis based on LSTM neural network,” IEEE Access, vol. 6, pp. 12929–12939, 2018.
[70] Arbeitskreis, “Standardized E-Gas monitoring concept for gasoline and diesel engine control units,” Report Version 6.0, 2015.
[71] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree analysis, methods, and applications - A review,” IEEE Trans. Reliab., vol. R-34, no. 3, pp. 194–203, 1985.
[72] F. Rahman, L. Zhong, M. E. Haque, and M. A. Rahman, “A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 17–22, 2003.
[73] M. A. Amutio, J. Candau, and J. Antonio, “MAGERIT - version 3.0. Methodology for Information Systems Risk Analysis and Management - The Method,” 2014. [Online]. Available: https://administracionelectronica.gob.es
[74] M. Štulrajter, V. Hrabovcová, and M. Franko, “Permanent magnets synchronous motor control theory,” J. Electr. Eng., vol. 58, no. 2, pp. 79–84, 2007.
[75] H. Kim and T. M. Jahns, “Current control for AC motor drives using a single DC-link current sensor and measurement voltage vectors,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1539–1547, 2006.
[76] H. Yan, Y. Xu, and J. Zou, “A phase current reconstruction approach for three-phase permanent-magnet synchronous motor drive,” Energies, vol. 9, no. 10, pp. 1–16, 2016.
[77] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification,” J. Power Sources, vol. 134, no. 2, pp. 262–276, 2004.
[78] J. Lee, O. Nam, and B. H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” J. Power Sources, vol. 174, no. 1, pp. 9–15, 2007.
[79] C. Zhang, W. Allafi, Q. Dinh, P. Ascencio, and J. Marco, “Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique,” Energy, vol. 142, pp. 678–688, 2018.
[80] F. Kazhamiaka, S. Keshav, C. Rosenberg, and K. H. Pettinger, “Simple spec-based modeling of lithium-ion batteries,” IEEE Trans. Energy Convers., vol. 33, no. 4, pp. 1757–1765, 2018.
[81] R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986.
[82] R. Begg, M. Palaniswami, S. Member, and B. Owen, “Support vector machines for automated gait classificatio,” IEEE Trans. Biomed. Eng., vol. 52, no. 5, pp. 828–838, 2005.
[83] Y. Rahulamathavan, R. C. W.Phan, S. Veluru, K. Cumanan, and M. Rajarajan, “Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud,” IEEE Trans. Dependable Secur. Comput., vol. 11, no. 5, pp. 467–479, 2014.
[84] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full AES,” Lecture Notes in Computer Science, vol 7073, Berlin, Heidelberg: Springer, 2011.
[85] S. Nisha and M. Farik, “RSA public key cryptography algorithm - A Review,” Int. J. Sci. Technol. Res., vol. 6, no. 07, p. 7, 2017.
[86] S. Narayan, “A review on elliptic curve cryptography,” Int. J. Emerg. Technol. Innov. Eng., vol. 4, no. 12, pp. 132–138, 2018.
[87] H. Handschuh and B. Preneel, “Key-recovery attacks on universal hash function based MAC algorithms,” Lecture Notes in Computer Science vol 5157, Berlin, Heidelberg: Springer, 2008.
[88] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-hashing for message authentication, RFC2104, [Online]. Available: https://www.rfc-editor.org/info/rfc2104
[89] J. V. Barreras et al., “An advanced HIL simulation battery model for battery management system testing,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 5086–5099, 2016.
[90] F. Ju, J. Wang, J. Li, G. Xiao, and S. Biller, “Virtual battery: A battery simulation framework for electric vehicles,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 1, pp. 5–15, 2013.
[91] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “Simplified extended Kalman filter observer for SOC estimation of commercial power-oriented LFP lithium battery cells,” SAE Tech. Pap., vol. 2, 2013.
[92] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells,” IEEE International Electric Vehicle Conference, pp. 1–8, 2012.
[93] D. Hu and L. Xu, “Characterizing the torque lookup table of an IPM machine for automotive application,” IEEE Conf. Expo Transp. Electrif. Asia-Pacific, pp. 1–6, 2014.
[94] S. N. Motapon, A. Lupien-Bedard, L. A. Dessaint, H. Fortin-Blanchette, and K. Al-Haddad, “A Generic electrothermal Li-ion battery model for rapid evaluation of cell temperature temporal evolution,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 998–1008, 2017.
[95] J. Karthik et al., “Uptane: securing software updates for automobiles,” 14th escar Eur., pp. 471–481, 2016.
[96] M. Vandervoord, M. Karlesky and G. Williams, “Throw the switch,” 2015. [Online]. Available: http://www.throwtheswitch.org/unity
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *