|
[1] C. Gnoth, E. Godehardt, P. Frank-Herrmann, K. Friol, J. Tigges, and G. Freundl, “Definition and prevalence of subfertility and infertility,” Hum. Reprod., vol. 20, no. 5, pp. 1144–1147, 2005. [2] S. Gurunath, Z. Pandian, R. A. Anderson, and S. Bhattacharya, “Defining infertility-a systematic review of prevalence studies,” Human Reproduction Update, vol. 17, no. 5. pp. 575–588, 2011. [3] K. A. O’Connor, D. J. Holman, and J. W. Wood, “Declining fecundity and ovarian ageing in natural fertility populations,” Maturitas, vol. 30, no. 2, pp. 127–136, 1998. [4] D. B. Dunson, B. Colombo, and D. D. Baird, “Changes with age in the level and duration of fertility in the menstrual cycle,” Hum. Reprod., vol. 17, no. 5, pp. 1399–1403, 2002. [5] E. H. Yu, W. S. Yeung, E. Yee Lau, W. W. So, and P. C. Ho, “High serum oestradiol concentrations in fresh IVF cycles do not impair implantation and pregnancy rates in subsequent frozen-thawed embryo transfer cycles,” Hum. Reprod., vol. 15, no. 2, p. 250, 2000. [6] F. Talib, Z. Rahman, and M. Azam, “Best practices of total quality management implementation in health care settings,” Health Mark. Q., vol. 28, no. 3, pp. 232–52, 2011. [7] A. B. Jose-Miller, J. W. Boyden, and K. A. Frey, “Infertility,” American Family Physician, vol. 75, no. 6. 2007. [8] Mae Tao Clinic, “Mae Tao Clinic Annual Report 2013,” 2013. [9] U. Wahrburg, “Taschenatlas der Ernhrung,” Pharm. Ztg., vol. 144, no. 1, p. 86, 1999. [10] L. I. Barmat, H.C. Liu, S.D. Spandorfer, A. Kowalik., “Autologous endometrial co-culture in patients with repeated failures of implantation after in vitro fertilization- embryo transfer,” J. Assist. Reprod. Genet., vol. 16, no. 3, pp. 121–127, 1999. [11] C. Deachapunya and S. M. O’Grady, “Epidermal growth factor regulates the transition from basal sodium absorption to anion secretion in cultured endometrial epithelial cells,” J. Cell. Physiol., vol. 186, no. 2, pp. 243–250, 2001. [12] F. Dominguez, B. Gadea, A. Mercader, F. J. Esteban, A. Pellicer, and C. Simón, “Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system,” Fertil. Steril., vol. 93, no. 3, 2010. [13] M. Okabe, “The cell biology of mammalian fertilization,” Development, vol. 140, no. 22, pp. 4471–4479, 2013. [14] H. Kimura, T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii, “An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models,” Lab Chip, vol. 8, no. 5, pp. 741–6, 2008. [15] A. P. Sommer, M. K. Haddad, and H. J. Fecht, “It is Time for a Change: Petri Dishes Weaken Cells,” J. Bionic Eng., vol. 9, no. 3, pp. 353–357, 2012. [16] J. E. Swain and G. D. Smith, “Advances in embryo culture platforms: Novel approaches to improve preimplantation embryo development through modifications of the microenvironment,” Hum. Reprod. Update, vol. 17, no. 4, pp. 541–557, 2011. [17] K. S. Kolahi, A. Donjacour, X. Liu, W. Lin, R. K. Simbulan, “Effect of substrate stiffness on early mouse embryo development,” PLoS One, vol. 7, no. 7, 2012. [18] D. A. Rappolee, C. Basilico, Y. Patel, and Z. Werb, “Expression and function of FGF-4 in peri-implantation development in mouse embryos,” Development, vol. 120, no. 8, pp. 2259–2269, 1994. [19] S. Raty, E. M. Walters, J. Davis, H. Zeringue, D. J. Beebe, “Embryonic development in the mouse is enhanced via microchannel culture,” Lab Chip, vol. 4, pp. 186–190, 2004. [20] R. L. Krisher and M. B. Wheeler, “Towards the use of microfluidics for individual embryo culture,” Reproduction, Fertility and Development, vol. 22, no. 1. pp. 32–39, 2010. [21] D. L. Hickman, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, “Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos,” Comp. Med., vol. 52, no. 2, pp. 122–6, 2002. [22] Y. Xie, F. Wang, W. Zhong, E. Puscheck, H. Shen, and D. a Rappolee, “Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis,” Biol. Reprod., vol. 75, no. 1, pp. 45–55, 2006. [23] K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, “Improved development of mouse and human embryos using a tilting embryo culture system,” Reprod. Biomed. Online, vol. 20, no. 3, pp. 358–364, 2010. [24] Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, “Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates,” Hum. Reprod., vol. 25, no. 3, pp. 613–622, 2010. [25] Y. S. Hur, J. H. Park, E. K. Ryu, S. J. Park, J. H. Lee, “Effect of micro-vibration culture system on embryo development,” J. Assist. Reprod. Genet., vol. 30, no. 6, pp. 835–841, 2013. [26] J. R. Alegretti, A. M. Rocha, B. C. Barros, P. Serafini, “Microfluidic dynamic embryo culture increases the production of top quality human embryos through reduction in embryo fragmentation,” Fertility and Sterility, vol. 96 Suppl, no. 3. pp. S58-S59 O – 196, 2011. [27] M. S. Kim, C. Y. Bae, G. Wee, Y. M. Han, and J. K. Park, “A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos,” Electrophoresis, vol. 30, no. 18, pp. 3276–3282, 2009. [28] C. Y. Bae, M. S. Kim, and J. K. Park, “Mechanical stimulation of bovine embryos in a microfluidic culture platform,” Biochip J., vol. 5, no. 2, pp. 106–113, 2011. [29] V. Isachenko, R. Maettner, K. Sterzik, E. Strehler, “In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates,” Reproductive BioMedicine Online, vol. 22, no. 6. pp. 536–544, 2011. [30] E. Isachenko, R. Maettner, V. Isachenko, S. Roth, R. Kreienberg, and K. Sterzik, “Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate,” Clin. Lab., vol. 56, no. 11–12, pp. 569–576, 2010. [31] Y. Xie, F. Wang, E. E. Puscheck, and D. A. Rappolee, “Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos,” Mol. Reprod. Dev., vol. 74, no. 10, pp. 1287–1294, 2007. [32] C. Simón, A. Mercader, J. Garcia-Velasco, “Coculture of human embryos with autologous human endometrial epithelial cells in patients with implantation failure,” J. Clin. Endocrinol. Metab., vol. 84, no. 8, pp. 2638–46, 1999. [33] V. Eyheremendy, F. G. E. Raffo, M. Papayannis, J. Barnes, C. Granados, and J. Blaquier, “Beneficial effect of autologous endometrial cell coculture in patients with repeated implantation failure,” Fertil. Steril., vol. 93, no. 3, pp. 769–773, 2010. [34] H. Kimura, H. Nakamura, T. Akai, “On-chip single embryo coculture with microporous-membrane-supported endometrial cells,” IEEE Trans. Nanobioscience, vol. 8, no. 4, pp. 318–324, 2009. [35] M. Cruz, N. Garrido, J. Herrero, I. Pérez-Cano, M. Muñoz, and M. Meseguer, “Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality,” Reprod. Biomed. Online, vol. 25, no. 4, pp. 371–381, 2012. [36] W. X. Li, G.T. Liang, W. Yan, Q. Zhang, W. Wang, X.M. Zhou, “Artificial uterus on a microfluidic chip,” Fenxi Huaxue/ Chinese J. Anal. Chem., vol. 41, no. 4, pp. 467–472, 2013. [37] H. Y. Huang, H.H. Shen, C.H. Tien, C.J. Li, S.K. Fan, C.H. Liu, “Digital microfluidic dynamic culture of mammalian embryos on an Electrowetting on Dielectric (EWOD) chip,” PLoS One, vol. 10, no. 5, 2015. [38] G. Vajta, T.T. Peura, P. Holm, A. Paldi, “New method for culture of zona-included or zona-free embryos: The Well of the Well (WOW) system,” Mol. Reprod. Dev., vol. 55, no. 3, pp. 256–264, 2000. [39] S. Sugimura, T. Akai, T. Somfai, M. Hirayama, “Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos,” Biol. Reprod., vol. 83, no. August, pp. 970–978, 2010. [40] R. Ma, L. Xie, C. Han, K. Su, T. Qiu, L. Wang, “In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development,” Anal. Chem., vol. 83, no. 8, pp. 2964–2970, 2011. [41] W.-H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. U.S.A., vol. 104, no. 4, pp. 1146–51, 2007. [42] D. Di Carlo and L. P. Lee, “Dynamic Single-Cell Analysis for Quantitative Biology,” Anal. Chem., vol. 78, no. 23, pp. 7918–7925, 2006. [43] A. N. Terävä, M. Gissler, E. Hemminki, and R. Luoto, “Infertility and the use of infertility treatments in Finland: Prevalence and socio-demographic determinants 1992-2004,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 136, no. 1, pp. 61–66, 2008. [44] C. Leung, Z. Lu, X. P. Zhang, and Y. Sun, “Three-dimensional rotation of mouse embryos,” IEEE Trans. Biomed. Eng., vol. 59, no. 4, pp. 1049–1056, 2012. [45] J. C. Li, M. Koji, K. Yuka, F. Hiroaki, and N. Keiji, "Application of mechanical stimuli using a microfluidic air actuating system to cultured mammalian embryos," Micro-NanoMechatronics and Human Science (MHS), 2010 International Symposium on. IEEE, 2010. [46] J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett., vol. 98, no. 12, 2011. [47] N. Saiz and B. Plusa, “Early cell fate decisions in the mouse embryo,” Reproduction, vol. 145, pp. R65-80, 2013.
|