帳號:guest(3.16.50.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孟克 
作者(外文):MASIMUKKU, SRINIVAAS
論文名稱(中文):層狀二維過渡金屬二硫屬化物作為壓電觸媒和鋰離子電池活性陽極候選物之研究
論文名稱(外文):Study on Layered Two Dimensional Transition Metal Dichalcogenides as a Piezocatalyst and Active Anode Candidates of Lithium-Ion Batteries
指導教授(中文):胡育誠
吳志明
指導教授(外文):Hu, Yu-Chen.
Wu, Jyh-Ming
口試委員(中文):張宏宜
呂奇明
陳翰儀
口試委員(外文):Chang, Horng-Yi
Leu, Chyi-Ming
Chen, Han-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032879
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:129
中文關鍵詞:二維材料压电催化可充电电池
外文關鍵詞:2D MaterialsPiezocatalysisRechargeable batteries
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  二維材料(2D materials),特別是過渡金屬二硫化物(TMDs),近年來已引起全世界的關注,並且正在大量研究其在光伏器件、鋰離子電池、產氫反應、電晶體、光電探測器、可充電電池與記憶體等等的應用。與石墨烯單層碳原子不同的是,二維材料(例如MoS2、WS2、WSe2與WTe2等等)是由過渡層(例如MoS2、WS2、WSe2等等)的「夾層」結構組成,由兩個硫屬元素層(例如S、Se與Te)之間的過渡金屬層(例如Mo與W)所組成。與石墨烯和其他凡德瓦力固體一樣,TMD的特徵在於層之間微弱的非共價鍵與層之內強烈的共價鍵。近年來,TMD的二硫化鎢(WS2)更是受到全世界強烈的關注,並且正在大量研究其在環境淨化、鋰離子電池、產氫反應、催化、電晶體、光電探測器、DNA檢測與記憶體等等的應用。
  在第4.1節中,我們首次展示了嵌入豐富的單層二硫化鎢(WS2)與奈米花(PDMS / WS2 NFs)的聚二甲基矽氧烷,應用於在黑暗環境中降解有機染料(羅丹明B,RB)。PDMS / WS2 NFs的降解率達到近99%並且重複了十次循環測試,其中每個循環只花了90分鐘就成功分解染料分子。PDMS嵌入WS2 NF的速率常數為0.13(ppms-1),其最高降解率接近6624 ppm L mole -1 s-1,這是使用PDMS嵌入了豐富單層WS2 NF的最快降解速率。我們也進一步證明了在超聲波條件下,單層和多層WS2 NFs對大腸桿菌(E. coli)的抗菌性能達到99.99%以上。壓電響應力顯微鏡(PFM)和穿隧原子力顯微鏡(TUNA)也揭示了WS2 NFs顯著的壓電勢,其在WS2 NF的周圍產生,並在水的介質中產生活性氧(ROS)。電子順磁共振(EPR)光譜進一步證明在機械應力下,產生了活性氧.O2 與羥基自由基(OH^∙),這是Rh-B染料分子和大腸桿菌得以在黑暗環境分解的原因。PDMS / WS2 NFs對於有機染料的有效分解具高度再現性,這進一步證明了在沒有光的情況下,利用壓電催化技術可以將機械能轉化為可用的化學能,以有效分解污染物。
  此外,透過壓電催化技術降解污染物,我們進一步研究了高度豐富的1T少層WS2奈米花(稱為富1T WS2 NF)的合成,它具有豐富的1T金屬相,與NF活化位點周圍少層狀的結構,以達到快速的電子/離子轉移,進而提供優良的循環性能與鋰存儲(見第4.2節)。富1T WS2 NF在0.2 C時表現出810 mA h g-1的不可逆容量(充電容量),且在五個循環後,平均可逆容量(放電容量)數值為609,577,554,542,530和504 mA h g-1,其c-速率分別增加0.4,0.6,0.8,1,1.5和2.0 C。此外,富1T WS2 NFs陽極在沒有額外的碳載體下,初始容量為890 mA h g-1,在500次循環後仍然保持在390 mA h g-1的容量,優於2H WS2 NF和片狀WS2。這種優異的性能乃歸因於少量WS2 NF豐富的1T金屬性質,與無碳(即石墨烯,CNT)複合材料相比,可以促進優異的循環穩定性和速率性能。更重要的是,擴大的層間距(即0.67nm)及其豐富的1T金屬性質有利於高電容和長循環穩定性,使其具有應用在鋰離子存儲陽極的潛力。
  最後,在第4.3節中,被認為是整個TMDs家族特殊成員的鎢二碲化物(WTe2),經證實具有優異物化性質的原子級少層WTe2奈米結構,且其高導電性可以促進其承載能力,並具有應用在光電、催化和儲能的潛力,這也激勵我們將它應用在鋰離子電池的電極。特別的是,具有低維異質結構的TMD與奈米碳管相互連接後,可以提高它們的承載能力。這是第一次,由WTe2奈米星(WTe2 @ CNT奈米複合材料)注入多壁奈米碳管(MWCNT)做為鋰離子電池陽極的應用。當WTe2 @ CNT奈米複合材料用以作為鋰離子電池的電極時,它提供了優異的電化學性能。WTe2 @ CNT奈米複合材料具有1097,475,439,408,395和381 mA h g-1的高放電容量,電流密度分別增加100,200,400,600,800和1000 mA g-1,在WTe2奈米星上則顯示出655,400,362,290和197mA g-1的可逆容量。此外,WTe2 @ CNT奈米複合材料具有592 mA h g-1的優異可逆容量,在超過500次的循環下仍保有100%的電容值,而WTe2奈米星則在超過350個循環下,提供約85 mA h g-1的電容值。其優良的鋰循環性能歸因於MWCNT與WTe2奈米星以及暴露的WTe2奈米星活性中間層互連,使電極具有結構的完整性,並緩衝WTe2奈米星體內的高體積膨脹並避免其顆粒聚集。透過溶液相法合成分層的WTe2奈米星,應用在鋰離子電池的存儲系統,為將來的量產帶來很大的機會。

Two dimensional (2D) materials, especially transition metal dichalcogenides (TMDs), have gained worldwide attention in recent years. Research on 2D TMDs attracted significant attention due to their unusual physicochemical properties for the development of photovoltaic devices, lithium-ion batteries, hydrogen evolution catalysis, transistors, photodetectors, rechargeable batteries, and memory devices. Unlike graphene’s single carbon atomic thick layer, TMDs (eg. MoS2, WS2, WSe2, WTe2, etc.) consist of a “sandwich” structure of a transition layer(e.g. MoS2, WS2, WSe2, etc.) consist of a sandwich structure of a transition metal layer (eg. Mo, W) between two chalcogen layers (eg. S, Se, Te). Like graphene and other vans der Waals solids, TMDs are characterized by weak, noncovalent bonding between layers and strong in-plane covalent bonding. Recently, the 2D TMD’s tungsten disulfide (WS2) has been regarded as one of the most promising candidates have gained worldwide attention in recent years. They are heavily researched for the applications of environmental purification, lithium-ion batteries, hydrogen evolution, catalysis, transistors, photodetectors, DNA detection, and memory devices.
In chapter 4.1, we achieved the first-ever demonstration in the polydimethylsiloxane embedded with the abundant single-layer tungsten disulfide (WS2) nanoflowers (PDMS/WS2 NFs) for the degradation of organic dye (Rhodamine B, RB) in dark environment. The degradation ratio of the PDMS/WS2 NFs brick reached ~ 99% and achieved ten cycling test where each cycle took 90 min for the decomposition of the dye molecules. The rate constant for the PDMS embedded WS2 NFs is 0.13 ( ppms-1 ), with the highest degradation rate of ~ 6624 ppm L mole -1 s-1. This is the fastest degradation rate using the PDMS embedded with the abundant single-layer WS2 NFs. We further demonstrated the antibacterial properties of single and few-layers WS2 NFs reaches more than 99.99% against the Escherichia coli (E. coli) under ultrasonic condition. The piezoresponse force microscopy (PFM) and tunneling atomic force microscopy (TUNA) unveil the dramatically piezo potential of the WS2 NFs. The piezo potential was created around the WS2 NFs to generate the reactive oxygen species (ROS) in the water mediator. The electron paramagnetic resonance (EPR) spectra further evidence that the generation of reactive oxygen species .O2 and hydroxyl (OH^∙) radicals under the mechanical strain, were responsible for decomposing the Rh-B dye molecules and the E. coli bacteria in the dark. The PDMS/WS2 NFs brick was highly repeatable for the efficient decomposition of the organic dyes, which further evidenced that by utilizing piezo-catalytic technologies in the absence of light could be an effective solution for converting mechanical energy into usable chemical energy for the degradation of pollutants.
Besides, to the degradation of pollutants by piezo-catalytic technologies, we further investigated the highly rich 1T few-layered WS2 nanoflowers (referred to as rich 1T WS2 NFs) were synthesized, exhibiting a rich 1T metallic phase with few-layered structures around the active edge sites of the NFs for achieving a fast electron/ion transfer, thereby delivering the enhanced cycling performance and lithium storage (see chapter 4.2). The rich 1T WS2 NFs exhibits an irreversible capacity (charge capacity) of 810 mA h g-1 at 0.2 C, and after five cycles the average reversible capacity (discharge capacity) exhibits 609, 577, 554, 542, 530, and 504 mA h g-1, with the increased c-rates of 0.4, 0.6, 0.8, 1, 1.5, and 2.0 C, respectively. Also, the rich 1T WS2 NFs anode without additional carbon support exhibits an initial capacity of 890 mA h g-1 and still remains at a capacity of 390 mA h g-1 after 500 cycles being better than the 2H WS2 NFs and the bulk WS2 sheets. This excellent rate of performance is further attributed to the rich 1T metallic nature of the few-layered WS2 NFs that could well promote the excellent cycling stability and rate capability in contrast to the carbon-free (i.e. graphene, CNTs) composites. More importantly, the enlarged interlayer spacing (i.e. 0.67 nm) and its rich 1T metallic nature are beneficial for the high capacity and improved long cycling stability, and thus, makes a potential candidate for the superior Li-ion storage anodes.
The tungsten ditelluride (WTe2), is considered as a special member of the whole TMDs family, is demonstrated, atomically few-layered WTe2 nanostructures with excellent physicochemical properties have shown high electrical conductivities, which could promote their high carrying capacity which has huge potential for optoelectronic, catalytic, and energy storage applications, inspiring us towards a promising electrode candidate for the Li-ion batteries. Notably, the TMDs having a low dimensional heterostructure are interconnected with carbon nanotubes, which could promote their high carrying capacity. Here in chapter 4.3, the multi-walled carbon nanotubes (MWCNTs) are implanted by the WTe2 nanostars (WTe2@CNT nanocomposites), to be employed as the anode candidate for developing the Li-ion battery. The WTe2@CNT nanocomposites provide excellent electrochemical performance when it is used as an electrode for the Li-ion battery. The WTe2@CNT nanocomposites deliver the high discharge capacity of 1097, 475, 439, 408, 395, and 381 mA h g-1 with an increasing current density of 100, 200, 400, 600, 800, and 1000 mA g-1, respectively, while the WTe2 nanostars exhibited the reversible capacity of 655, 400, 362, 290 and 197 mA g-1 with the aforementioned current densities. Furthermore, the WTe2@CNT nanocomposites exhibit that the superior reversible capacity 592 mA h g-1 at 500 mA g-1¬¬ with the capacity retention of 100% was achieved over 500 cycles, while the bare WTe2 nanostars deliver~ 85 mA h g-1 over 350 cycles. The remarkable Li cycling performance is attributed to the MWCNTs being interconnected with the WTe2 nanostars as well as the exposed active interlayers of the WTe2 nanostars, which were responsible for exhibiting the structural integrity of the electrodes that buffer the large volume expansion within the WTe2 nanostars and avoids its particle agglomeration. The layered WTe2¬ nanostars were synthesized via the solution-phase method, which could offer an excellent opportunity for the scale-up process for the advanced lithium-ion battery storage systems.
Chinese abstract 2-3
English abstract……………………………………………………………………...4-6
Acknowledgments 7
List of figures 11-17
Chapter 1 Introductions 18-25
Chapter 2 Literature Review 26
2.1 Photocatalysis ………………………………………………………………….26
2.2 Heterogeneous photocatalyst ………………………………………………27-29
2.3 2D Materials and its Piezoelectricity………………………………………30 -31
2.4 Single atomic layer for Piezotronics……………………………………….32 - 33
2.5 Piezocatalysis …………………………………………………………………..34
2.6 Principles of piezocatalysis process ……………………………………….35 - 36
2.7 Piezocatalytic performance of single and few-layered MoS2 NFs ………37 - 40
2.8 Energy storage system ……………………………………………………..41 - 42
2.9 Principle and mechanism of LIBs ………………………………………...43 - 44
2.10 Demand on LIBs ……………………………………………………………..45
2.11 Conventional negative electrodes …………………………………………...46
2.12 Mechanisms of various conventional anode materials ……………………..47
2.12.1 Insertion mechanism………………………………………………………..48
2.12.2 Alloying mechanism …………………………………………………………..48
2.12.3 Conversion mechanism………………………………………………………..49
2.13 Two dimensional transition metal dichalcogenides ……………………..50 - 51
2.14 Two dimensional transition metal dichalcogenides in Li-ion batteries...52 - 53
2.15 Engineering hybrid nanostructures interconnected with 2D TMDs…...54 - 56
2.16 Wet chemical approaches to synthesize 2D TMDs………………………57 - 59
2.17 Soft colloidal methods……………………………………………………...60 - 61
2.18 WTe2 for energy storage applications…………………………………….62 - 66

Chapter 3 Methodologies: synthesis procedures and characterizations……………...67
3.0 Materials for the synthesis of single and few-layered WS2 NFs………………...67
3.1 Synthesis of single and few-layered WS2 NFs…………………………………...67
3.2 Preparation of the PDMS/WS2 NFs brick………………………………………67
3.3 Antibacterial Test ………………………………………………………………...68
3.4 Materials characterizations, piezoelectric potential,
and dyes degradation process …………………………………………………....68
3.5 Electrochemical measurements of the rich 1T WS2 NFs, 2H WS2 NFs………..69
3.6 Materials for the synthesis of layered WTe2 nanostars and
WTe2/CNT nanocomposites……………………………………………………..69
3.7 Synthesis of layered WTe2 nanostars …………………………………………...70
3.8 Synthesis of layered WTe2@CNT nanocomposites……………………………...70
3.9 Characterization techniques of layered WTe2 nanostars and
WTe2/CNT nanocomposites……………………………………..……………….71
3.10 Electrochemical measurements of layered WTe2 nanostars and
WTe2/CNT nanocomposites……………………………………..……………...72
Chapter 4 Results and Discussions ……………………………………………………....73
4.1 High Efficient Degradation of Dye Molecules by PDMS Embedded Abundant Single-layer Tungsten Disulfide and Their Antibacterial Performance………………………73
4.1.1 SEM and TEM of single and few-layered WS2 NFs ………………………....76
4.1.2 X-ray photoelectron spectroscopy (XPS) spectra of 1T phase WS2 NFs …...74
4.1.3 Piezoelectric properties of single and few-layered WS2 NFs ………………..77
4.1.4 The piezo-degradation activity of Rh B solution by using single and few- layered WS2 NFs…………………………………………………………………….79
4.1.5 The piezo-degradation activity of Rh B solution by using PDMS/WS2 NFs brick………………………………………………………………………………......82
4.1.6 The inactivation of bacteria E. coli K12 cells…………………………………84
4.1.7 Reactive oxygen species measurement by EPR ………………………………84
4.1.8 Piezocatalytic degradation mechanism of WS2 NFs……………………….....86
4.1.9 Short summary on piezocatalytic degradation against Rhodamine B and
E. coli K12 cells………………………………….…………………………….88
4.2 Highly Rich 1T Metallic Phase of Few-Layered WS2 Nanoflowers for Enhanced Storage of Lithium-Ion Battery…………………………………………………………89
4.2.1 Importance of 1T metallic phase in Li-ion batteries…………………….......89
4.2.2 Existence of single and few-layeres of rich 1T metallic phase WS2 NFs.......90
4.2.3 The electrochemical performance of 1T rich few-layered WS2 NFs for Li-ion batteries……………………………………………………………………...92
4.2.4 Differential capacity verses voltage for rich 1T, 2H WS2 NFs and WS2 bulk sheets………………………………………………………………………………98
4.2.5 EX-Situ FEM-SEM of rich 1T and 2H phase WS2 NFs after 100 cycles…..100
4.2.6 X-ray photoelectron spectroscopy to study 2H phase evolution…………...101
4.2.7 Schematic illustration of lithium intercalation into 1T and 2H polymorphs..102
4.2.8 Short summary on rich 1T Metallic Phase of Few-Layered WS2 Nanoflowers for Lithium-Ion Battery………………………………………………………………103
4.3 Multi-walled Carbon Nanotubes Implanted Tungsten Ditelluride Nanostars Anodes of Lithium Ion Batteries………………………………………………………………104
4.3.1 FESEM morphology of WTe2 nanostars and WTe2/CNT nanocomposites..104
4.3.2 XRD, Raman and XPS characterizations of WTe2 nanostars and WTe2/CNT nanocomposites……………………………………………………………………………105
4.3.3 HR-TEM of WTe2 nanostars and WTe2/CNT nanocomposites……………..107
4.3.4 Electrochemical performance of layered WTe2 nanostars and WTe2/CNT nanocomposites for Li-ion batteries……………………………………………………...109
4.3.5 Short summary on multi-walled carbon nanotubes implanted tungsten ditelluride nanostars anodes of lithium Ion Batteries…………………………………...115
Chapter 5 Epilogues …………………………………………………………………….....116
5.1 Conclusions ……………………………………………………………………......116
5.2 Future Perspective ………………………………………………………………..118
References ……………………………………………………………………………119 - 129

[1] E. Marlina, S. Nee Goh, T. Yeong Wu, T. Tan, S.B. Abd Hamid, J.C. Juan, Evaluation on the Photocatalytic Degradation Activity of Reactive Blue 4 using Pure Anatase Nano-TiO2, 2015.
[2] O. Tokode, R. Prabhu, L. Lawton, P. K. J. Robertson, UV LED Sources for Heterogeneous Photocatalysis, 2014.
[3] S. Shi, M.A. Gondal, S.G. Rashid, Q. Qi, A.A. Al-Saadi, Z.H. Yamani, Y. Sui, Q. Xu, K. Shen, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461 (2014) 202-211.
[4] Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Small, 8 (2012) 2994-2999.
[5] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Nature, 514 (2014) 470.
[6] W. Ma, B. Yao, W. Zhang, Y. He, Y. Yu, J. Niu, C. Wang, Environmental Science: Nano, 5 (2018) 2876-2887.
[7] M.B. Starr, X. Wang, Scientific Reports, 3 (2013) 2160.
[8] J.M. Wu, W.E. Chang, Y.T. Chang, C.-K. Chang, Advanced Materials, 28 (2016) 3718-3725.
[9] X.-C. Wang, J.J. Klemeš, X. Dong, W. Fan, Z. Xu, Y. Wang, P.S. Varbanov, Renewable and Sustainable Energy Reviews, 105 (2019) 71-85.
[10] Z. Xue-Qiang, C. Xinbing, Z. Qiang, Journal of Energy Chemistry, 25 (2016).
[11] D. Deng, Energy Science & Engineering, 3 (2015) 385-418.
[12] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Journal of Power Sources, 257 (2014) 421-443.
[13] M.R. Palacín, Chemical Society Reviews, 38 (2009) 2565-2575.
[14] M.R.-E. Tanjil, Y. Jeong, Z. Yin, W. Panaccione, M.C. Wang, Coatings, 9 (2019) 133.
[15] H. Yoo, A.P. Tiwari, J. Lee, D. Kim, J.H. Park, H. Lee, Nanoscale, 7 (2015) 3404-3409.
[16] Y. Du, Z. Yin, J. Zhu, X. Huang, X.-J. Wu, Z. Zeng, Q. Yan, H. Zhang, Nature Communications, 3 (2012) 1177.
[17] H. Y. Lv, W. Lu, D.-F. Shao, Y. Liu, S. G. Tan, Y. Sun, Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer, 2014.
[18] P. Yu, W. Fu, Q. Zeng, J. Lin, C. Yan, Z. Lai, B. Tang, K. Suenaga, H. Zhang, Z. Liu, Advanced Materials, 29 (2017) 1701909.
[19] M. Srinivaas, C.-Y. Wu, J.-G. Duh, J.M. Wu, ACS Sustainable Chemistry & Engineering, (2019).
[20] S. Masimukku, Y.-C. Hu, Z.-H. Lin, S.-W. Chan, T.-M. Chou, J.M. Wu, Nano Energy, 46 (2018) 338-346.
[21] A. Fujishima, K. Honda, Nature, 238 (1972) 37-38.
[22] W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, A. Inoue, 5 (2015) 18125.
[23] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Chemical Engineering Journal, 169 (2011) 126-134.
[24] S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir, 26 (2010) 3894-3901.
[25] H. Fu, C. Pan, W. Yao, Y. Zhu, The Journal of Physical Chemistry B, 109 (2005) 22432-22439.
[26] J.M. Wu, Y.R. Chen, J Phys Chem C, 115 (2011) 2235-2243.
[27] J.M. Wu, J Mater Chem, 21 (2011) 14048-14055.
[28] J.M. Wu, W.T. Kao, Journal of Physical Chemistry C, 119 (2015) 1433-1441.
[29] C. Chen, P. Lei, H. Ji, W. Ma, J. Zhao, H. Hidaka, N. Serpone, Environmental Science & Technology, 38 (2004) 329-337.
[30] C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N. Wang, 4 (2014) 4181.
[31] J.M. Wu, G.K. Hsu, H.-H. Yeh, H.-C. Lin, Journal of The Electrochemical Society, 159 (2012) H497-H501.
[32] J.M. Wu, L.Y. Tsay, Nanotechnology, 26 (2015).
[33] S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, The Journal of Physical Chemistry Letters, 5 (2014) 2543-2554.
[34] J.M. Wu, Y.-R. Chen, W.T. Kao, ACS Applied Materials & Interfaces, 6 (2014) 487-494.
[35] J.M. Wu, C.W. Fang, L.T. Lee, H.H. Yeh, Y.H. Lin, P.H. Yeh, L.N. Tsai, L.J. Lin, J Electrochem Soc, 158 (2011) K6-K10.
[36] Y. Wang, Y. Di, M. Antonietti, H.R. Li, X.F. Chen, X.C. Wang, Chem Mater, 22 (2010) 5119-5121.
[37] Z.W. Wang, Z.M. Zhang, W. Liu, Z.L. Wang, Micron, 95 (2017) 16-22.
[38] B. Luo, G. Liu, L.Z. Wang, Nanoscale, 8 (2016) 6904-6920.
[39] W.Z. Wu, L. Wang, Y.L. Li, F. Zhang, L. Lin, S.M. Niu, D. Chenet, X. Zhang, Y.F. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Nature, 514 (2014) 470-+.
[40] Z.L. Wang, J.H. Song, Science, 312 (2006) 242-246.
[41] F.R. Fan, W. Tang, Z.L. Wang, Adv Mater, 28 (2016) 4283-4305.
[42] F. Xue, L.J. Yang, M.X. Chen, J. Chen, X.N. Yang, L.F. Wang, L.B. Chen, C.F. Pan, Z.L. Wang, Npg Asia Mater, 9 (2017).
[43] D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, C.N.R. Rao, Acs Nano, 6 (2012) 5635-5641.
[44] Z.L. Wang, Nano Today, 5 (2010) 540-552.
[45] Z.L. Wang, Int El Devices Meet, (2007) 371-374.
[46] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small, 9 (2013) 140-147.
[47] M. Acerce, D. Voiry, M. Chhowalla, Nat Nano, 10 (2015) 313-318.
[48] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Journal of the American Chemical Society, 135 (2013) 10274-10277.
[49] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Nature, 514 (2014) 470-474.
[50] M.B. Starr, J. Shi, X.D. Wang, Angew Chem Int Edit, 51 (2012) 5962-5966.
[51] J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, J.M. Wu, Nano Energy, 31 (2017) 575-581.
[52] H.D. Li, Y.H. Sang, S.J. Chang, X. Huang, Y. Zhang, R.S. Yang, H.D. Jiang, H. Liu, Z.L. Wang, Nano Lett, 15 (2015) 2372-2379.
[53] M.H. Wu, J.T. Lee, Y.J. Chung, M. Srinivaas, J.M. Wu, Nano Energy, 40 (2017) 369-375.
[54] D.Y. Hong, W.L. Zang, X. Guo, Y.M. Fu, H.X. He, J. Sun, L.L. Xing, B.D. Liu, X.Y. Xue, Acs Appl Mater Inter, 8 (2016) 21302-21314.
[55] M.B. Starr, X.D. Wang, Sci Rep-Uk, 3 (2013).
[56] Y. Lu, X. Yao, J. Yin, G. Peng, P. Cui, X. Xu, RSC Advances, 5 (2015) 7938-7943.
[57] J. He, L. Chen, Z.-Q. Yi, C.-T. Au, S.-F. Yin, Industrial & Engineering Chemistry Research, 55 (2016) 8327-8333.
[58] Y. Yang, L. Huang, Y. Xiao, Y. Li, Y. Zhao, D. Luo, L. Tao, M. Zhang, T. Feng, Z. Zheng, X. Feng, Z. Mu, J. Li, ACS Applied Materials & Interfaces, 10 (2018) 2745-2751.
[59] R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H.M. Albishri, A.S. Al-Bogami, D.A. El-Hady, J. Lu, K. Amine, Nano Letters, 14 (2014) 5899-5904.
[60] C. Feng, L. Huang, Z. Guo, H. Liu, Electrochemistry Communications, 9 (2007) 119-122.
[61] J. Li, X. Shi, J. Fang, J. Li, Z. Zhang, ChemNanoMat, 2 (2016) 997-1002.
[62] Y.V. Lim, Z.X. Huang, Y. Wang, F.H. Du, J. Zhang, T.P. Chen, L.K. Ang, H.Y. Yang, RSC Advances, 6 (2016) 107768-107775.
[63] Q. He, W. Xu, S. Chen, D. Liu, M. Habib, Q. Liu, C. Wang, Y.A. Haleem, T. Xiang, C. Wu, A. Khalil, Q. Fang, Z. Niu, L. Song, RSC Advances, 6 (2016) 87919-87925.
[64] H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Physical Chemistry Chemical Physics, 20 (2018) 26986-26994.
[65] J. Lin, J. Zhou, S. Zuluaga, P. Yu, M. Gu, Z. Liu, S.T. Pantelides, K. Suenaga, ACS Nano, 12 (2018) 894-901.
[66] Y. Jiao, A. Mukhopadhyay, Y. Ma, L. Yang, A.M. Hafez, H. Zhu, Advanced Energy Materials, 8 (2018) 1702779.
[67] Y. Luo, H. Li, Y.M. Dai, H. Miao, Y.G. Shi, H. Ding, A.J. Taylor, D.A. Yarotski, R.P. Prasankumar, J.D. Thompson, Applied Physics Letters, 107 (2015) 182411.
[68] Y. Chen, B. Peng, C. Cong, J. Shang, L. Wu, W. Yang, J. Zhou, P. Yu, H. Zhang, Y. Wang, C. Zou, J. Zhang, S. Liu, Q. Xiong, H. Shao, Z. Liu, H. Zhang, W. Huang, T. Yu, Advanced Materials, 31 (2019) 1804979.
[69] S. Song, S.-Y. Kim, J. Kwak, Y. Jo, J.H. Kim, J.H. Lee, J.-U. Lee, J.U. Kim, H.D. Yun, Y. Sim, J. Wang, D.H. Lee, S.-H. Seok, T.-i. Kim, H. Cheong, Z. Lee, S.-Y. Kwon, Advanced Science, 6 (2019) 1801370.
[70] Y.M. Chen, X.Y. Yu, Z. Li, U. Paik, X.W. Lou, Science Advances, 2 (2016) e1600021.
[71] M. Yousaf, Y. Wang, Y. Chen, Z. Wang, W. Aftab, A. Mahmood, W. Wang, S. Guo, R.P.S. Han, ACS Applied Materials & Interfaces, 10 (2018) 14622-14631.
[72] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science, 331 (2011) 568-571.
[73] W. Cao, J. Wang, M. Ma, The Journal of Physical Chemistry Letters, 10 (2019) 981-986.
[74] W. Jung, S. Lee, D. Yoo, S. Jeong, P. Miró, A. Kuc, T. Heine, J. Cheon, Journal of the American Chemical Society, 137 (2015) 7266-7269.
[75] A. Mansouri, N. Semagina, ACS Applied Nano Materials, 1 (2018) 4408-4412.
[76] J.H. Han, M. Kwak, Y. Kim, J. Cheon, Chemical Reviews, 118 (2018) 6151-6188.
[77] Q.T. Nguyen, P.D. Nguyen, D. N. Nguyen, Q.D. Truong, T.T. Kim Chi, T.T.D. Ung, I. Honma, N.Q. Liem, P.D. Tran, ACS Applied Materials & Interfaces, 10 (2018) 8659-8665.
[78] A.C. Berends, J.D. Meeldijk, M.A. van Huis, C. de Mello Donega, Chemistry of Materials, 29 (2017) 10551-10560.
[79] L. Kubie, L.A. King, M.E. Kern, J.R. Murphy, S. Kattel, Q. Yang, J.T. Stecher, W.D. Rice, B.A. Parkinson, ACS Nano, 11 (2017) 8471-8477.
[80] M.-H. Wu, J.-T. Lee, Y.J. Chung, M. Srinivaas, J.-M. Wu, Nano Energy, 40 (2017) 369-375.
[81] B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Journal of the American Chemical Society, 136 (2014) 14121-14127.
[82] C.-P. Lee, K.-Y. Lai, C.-A. Lin, C.-T. Li, K.-C. Ho, C.-I. Wu, S.-P. Lau, J.-H. He, Nano Energy, 36 (2017) 260-267.
[83] C. Wu, T.W. Kim, J.H. Park, H. An, J. Shao, X. Chen, Z.L. Wang, ACS Nano, 11 (2017) 8356-8363.
[84] M.R.-E. Tanjil, Y. Jeong, Z. Yin, W. Panaccione, M.C. Wang, Coatings, 9 (2019) 133.
[85] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 10451-10453.
[86] H. Li, J. Wu, Z. Yin, H. Zhang, Accounts of Chemical Research, 47 (2014) 1067-1075.
[87] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nature Nanotechnology, 3 (2008) 563.
[88] M.B. Dines, Materials Research Bulletin, 10 (1975) 287-291.
[89] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angewandte Chemie International Edition, 50 (2011) 11093-11097.
[90] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Advanced Materials, 24 (2012) 2320-2325.
[91] L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Letters, 10 (2010) 3209-3215.
[92] D. Yoo, M. Kim, S. Jeong, J. Han, J. Cheon, Journal of the American Chemical Society, 136 (2014) 14670-14673.
[93] Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H.-Z. Lu, D. Xing, B. Wang, X. Wan, F. Miao, Nature Communications, 7 (2016) 13142.
[94] M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature, 514 (2014) 205.
[95] S. Liu, M.X. Wang, C. Chen, X. Xu, J. Jiang, L.X. Yang, H.F. Yang, Y.Y. Lv, J. Zhou, Y.B. Chen, S.H. Yao, M.H. Lu, Y.F. Chen, C. Felser, B.H. Yan, Z.K. Liu, Y.L. Chen, APL Materials, 6 (2018) 121111.
[96] Z.-H. Lin, C.-H. Lee, H.-Y. Chang, H.-T. Chang, Chemistry – An Asian Journal, 7 (2012) 930-934.
[97] Z.-H. Lin, P. Roy, Z.-Y. Shih, C.-M. Ou, H.-T. Chang, ChemPlusChem, 78 (2013) 302-309.
[98] M. Zhou, Z. Zhang, K. Huang, Z. Shi, R. Xie, W. Yang, Nanoscale, 8 (2016) 15262-15272.
[99] S.H. Choi, S.J. Boo, J.-H. Lee, Y.C. Kang, 4 (2014) 5755.
[100] A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, M. Terrones, Scientific Reports, 3 (2013) 1755.
[101] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui, Z. Liu, ACS Nano, 7 (2013) 8963-8971.
[102] T.A.J. Loh, D.H.C. Chua, A.T.S. Wee, 5 (2015) 18116.
[103] W. Yang, J. Wang, C. Si, Z. Peng, J. Frenzel, G. Eggeler, Z. Zhang, Journal of Materials Chemistry A, 3 (2015) 17811-17819.
[104] Z. Luo, J. Zhou, L. Wang, G. Fang, A. Pan, S. Liang, Journal of Materials Chemistry A, 4 (2016) 15302-15308.
[105] C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Advanced Functional Materials, 25 (2015) 5611-5616.
[106] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat Mater, 12 (2013) 850-855.
[107] M.-H. Zhao, Z.-L. Wang, S.X. Mao, Nano Letters, 4 (2004) 587-590.
[108] M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei, J. Li, P.M. Ajayan, P. Sharma, 5 (2014) 4284.
[109] V. Yanev, M. Rommel, M. Lemberger, S. Petersen, B. Amon, T. Erlbacher, A.J. Bauer, H. Ryssel, A. Paskaleva, W. Weinreich, C. Fachmann, J. Heitmann, U. Schroeder, Applied Physics Letters, 92 (2008) 252910.
[110] S. Lan, J. Feng, Y. Xiong, S. Tian, S. Liu, L. Kong, Environmental Science & Technology, 51 (2017) 6560-6569.
[111] G. Huang, H. Liu, S. Wang, X. Yang, B. Liu, H. Chen, M. Xu, Journal of Materials Chemistry A, 3 (2015) 24128-24138.
[112] Q. Liu, X.L. Li, Z.R. Xiao, Y. Zhou, H.P. Chen, A. Khalil, T. Xiang, J.Q. Xu, W.S. Chu, X.J. Wu, J.L. Yang, C.M. Wang, Y.J. Xiong, C.H. Jin, P.M. Ajayan, L. Song, Advanced Materials, 27 (2015) 4837-4844.
[113] K. Shiva, H.S.S. Ramakrishna Matte, H.B. Rajendra, A.J. Bhattacharyya, C.N.R. Rao, Nano Energy, 2 (2013) 787-793.
[114] D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen, J.Y. Lee, Nanoscale, 5 (2013) 7890-7896.
[115] H. Liu, D. Su, G. Wang, S.Z. Qiao, Journal of Materials Chemistry, 22 (2012) 17437-17440.
[116] X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D.G. Ivey, W. Wei, ACS Applied Materials & Interfaces, 8 (2016) 18841-18848.
[117] X. Xu, C.S. Rout, J. Yang, R. Cao, P. Oh, H.S. Shin, J. Cho, Journal of Materials Chemistry A, 1 (2013) 14548-14554.
[118] Y. Liu, W. Wang, H. Huang, L. Gu, Y. Wang, X. Peng, Chemical Communications, 50 (2014) 4485-4488.
[119] S. Liu, B. Shen, Y. Niu, M. Xu, Journal of Colloid and Interface Science, 488 (2017) 20-25.
[120] J. Huang, X. Wang, J. Li, L. Cao, Z. Xu, H. Wei, Journal of Alloys and Compounds, 673 (2016) 60-66.
[121] Y. Du, X. Zhu, L. Si, Y. Li, X. Zhou, J. Bao, The Journal of Physical Chemistry C, 119 (2015) 15874-15881.
[122] M. Hong, J. Li, W. Zhang, S. Liu, H. Chang, Energy & Fuels, 32 (2018) 6371-6377.
[123] H.-B. Zhang, G.-D. Lin, Z.-H. Zhou, X. Dong, T. Chen, Carbon, 40 (2002) 2429-2436.
[124] C.-H. Lee, E.C. Silva, L. Calderin, M.A.T. Nguyen, M.J. Hollander, B. Bersch, T.E. Mallouk, J.A. Robinson, Scientific Reports, 5 (2015) 10013.
[125] R. Konnola, K. Joseph, RSC Advances, 6 (2016) 23887-23899.
[126] A. Bhaskar, M. Deepa, T. Narasinga Rao, ACS Applied Materials & Interfaces, 5 (2013) 2555-2566.
[127] F. Ma, A. Yuan, J. Xu, P. Hu, ACS Applied Materials & Interfaces, 7 (2015) 15531-15541.
[128] Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, X. Yang, Q. Chen, C.E. Banks, Journal of Materials Chemistry A, 3 (2015) 5648-5655.
[129] M. Agostini, S. Brutti, M.A. Navarra, S. Panero, P. Reale, A. Matic, B. Scrosati, Scientific Reports, 7 (2017) 1104.
[130] H. Gullapalli, K. Kalaga, S. Vinod, M.-T.F. Rodrigues, A. George, Pulickel M. Ajayan, RSC Advances, 7 (2017) 32737-32742.
[131] Z. Li, J. Zhang, Y. Lu, X.W. Lou, Science Advances, 4 (2018) eaat1687.
[132] M. Fang, Z. Wang, X. Chen, S. Guan, Applied Surface Science, 436 (2018) 345-353.
[133] Y. Liu, M. Zhu, D. Chen, Journal of Materials Chemistry A, 3 (2015) 11857-11862.
[134] X. Li, J. Zhang, Z. Liu, C. Fu, C. Niu, Journal of Alloys and Compounds, 766 (2018) 656-662.
[135] X. Wang, J. He, B. Zheng, W. Zhang, Y. Chen, Electrochimica Acta, 283 (2018) 1660-1667.
[136] Y. Wang, B. Qian, H. Li, L. Liu, L. Chen, H. Jiang, Materials Letters, 141 (2015) 35-38.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *