帳號:guest(18.117.158.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):亞卓司
作者(外文):Adomkevicius, Arturas
論文名稱(中文):控制過渡金屬氧化物奈米結構應用於儲能系統
論文名稱(外文):Controlling Transition Metal Oxides Nanostructures for Energy Storage Systems
指導教授(中文):胡啟章
Hardwick, Laurence
指導教授(外文):Hu, Chi-Chang
Hardwick, Laurence
口試委員(中文):Shchukin, Dmitry
Cowan, Alexander
Titirici, Magdalena
口試委員(外文):Shchukin, Dmitry
Cowan, Alexander
Titirici, Magdalena
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032878
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:311
中文關鍵詞:鋰離子電池水相超級電容器錳氧化物石墨烯非對稱式超電容
外文關鍵詞:Lithium-ion batteriesaqueous supercapacitorsmanganese oxidegrapheneasymmetric supercapacitors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:166
  • 評分評分:*****
  • 下載下載:28
  • 收藏收藏:0
此篇論文主要探討以不同方法開發快速充放電鋰離子電池和電化學電容器。第一章與第二章分別為鋰離子電池、電化學電容器的發展背景以及實驗的步驟與方法。
第三章中討論鋰離子電池具奈米結構的陰極,藉由加入石墨烯或鹼改質之氧化石墨烯作為提升導電性的添加劑。現今的鋰離子電池主要是添加碳黑作為幫助導電的添加劑,但是碳黑顆粒很難均勻分散在材料中形成良好的導電網絡,因此只能添加大量的碳黑來改善導電網絡的問題,然而增加碳黑的用量,同時導致電池的比容量下降。本章詳細說明電極成分最佳化的條件,包含調整嵌入材料的比例與粒徑大小以及導電助劑的添加(例:石墨烯與碳黑) ,得以改善材料間的連通與導電性問題,使鋰離子陰極材料 Li(Ni1/3Mn1/3Co1/3)O2 能在高速率充放電下仍有優越的表現。
第二部分主要是以過渡金屬氧化物作為電化學電容器的開發,本篇選擇二氧化錳作為研究材料。二氧化錳是目前受大家關注且具有發展潛力的擬電容材料,由於其離子與電子導電性不佳的限制因素,在實際應用上會受到影響。於第四章探討藉由一個簡單且可被量化的製程,以合成大量具有隨機錯層的二氧化錳。此合成條件促使材料形成無序結構,因而可讓離子在材料中自由移動,不被固相態的擴散所限制,利用相對低溫與鈉離子添加成功抑制了大顆粒且高結晶材料形成,此無序的奈米片狀 Na0.35MnO2 在極高掃速與大電流密度 (1000 mV s-1與200 A g-1) 下具備相當優異的電容維持率。
第五章延續第四章 Na0.35MnO2 的實驗成果,進一步探討不同鹼金屬離子嵌入二氧化錳。結果顯示,在相控制合成上,其關鍵在於較大的非水合鉀離子 (離子半徑:1.52 Å) 等鹼金屬離子,可在形成二氧化錳的層狀結構時作為模板,因而抑制有序層狀結構的形成。而較小的非水合鋰離子(離子半徑:0.9Å) 無法抑制此現象,故形成電化學表現相對較差的相二氧化錳。
在第六章中於水相系統,以 Na0.35MnO2 作為擬電容的正極電極材料,活性碳 (AC) 當作負極,組裝出一非對稱式電化學電容器。藉由調整正負兩極的電荷平衡與添加少量的碳酸氫鈉於0.5 M 硫酸鈉電解液,可以有效抑制二氧化錳的溶解與氫氣的產生,因而能提高至 2.4 V 的電壓同時電容能維持長時間的效能。
This thesis focuses on several approaches for the development of high charge/discharge rate lithium-ion batteries and electrochemical capacitors. The general background of lithium-ion batteries and electrochemical capacitors, and experimental techniques and methods are presented in the Chapter 1 and Chapter 2.
The Chapter 3 in this thesis discusses the development of nanostructured cathodes for lithium-ion battery by introducing graphene or base washed graphene oxide as conductive additive. The carbon black is the most used conductivity enhancing additive in today’s lithium-ion batteries, nevertheless, makes it difficult for carbon black particles to form a wide-ranging “point-to-point” conductive network. Essentially, higher amounts of carbon black should be added in the electrodes to achieve percolation, leading to a lowering of the gravimetric capacity of the battery. Chapter 3 will detail the conditions used to investigate the optimal electrode composition containing different ratios and particle sizes of intercalation material and conductive additives (graphene and carbon black) in order to improve connectivity and conductivity leading to superior performance of a lithium-ion cathode material, Li(Ni1/3Mn1/3Co1/3)O2 at high charge/discharge rates.
The second part of this work is focuses on electrochemical capacitors based on transition metal oxide. Manganese oxide (MnO2) is recognised as promising pseudocapacitive material, however poor ionic and electronic conductivity is the major limiting factor for its practical application. Chapter 4 discuss that through a straightforward and scalable synthesis it is possible to develop a bulk MnO2 material with randomly isolated layers. The synthesis conditions promote the formation of disordered material that allow ion transfer throughout the material that is not limited by solid state diffusion. Relatively low temperatures and inclusion of Na+ disrupt the formation of a highly crystalline material with a large domains size leading to a capacitance of ~200 F g-1 which was maintained at extremely high rates (1000 mV s-1 and 200 A g-1) for disordered Na0.35MnO2 nanosheets.
In Chapter 5, an aqueous asymmetric electrochemical capacitor was assembled with Na0.35MnO2 pseudocapacitive electrode material as the positive electrode and activated carbon (AC) as the negative electrode. The optimisation charge balance between positive and negative electrodes, and modification of 0.5 M Na2SO4 aqueous electrolyte with addition of small amount of NaHCO3, is possible to suppress manganese oxide dissolution and hydrogen evolution, leading to long-term cycling at extended cell voltage of 2.4 V.
In Chapter 6 following the promising results with Na0.35MnO2 within Chapter 4, other alkali metal intercalated MnO2 were investigated. Results show that the inclusion of the larger non-hydrated K+ (ionic radius = 1.52 Å) is key in the phase-controlled synthesis, where alkaline ion can serve as a template in the formation of layered structures of MnO2. Moreover, inclusion of small non-hydrated Li+ (ionic radius = 0.9 Å) was unable to prevent from forming α-MnO2 phase leading to relatively poor electrochemical performance.
Abstract i
中文摘要 iii
Acknowledgements v
List of Figures xii
List of Tables xx
List of Abbreviations xxii
Chapter 1 1
Introduction 1
Brief History of Electricity 3
1.1 Introduction and objectives 6
1.2 Basics of rechargeable lithium-ion battery 13
1.3 Lithium intercalation materials 17
1.3.1 Cathode materials 19
1.3.1.1 Layered lithium metal oxides 20
1.3.1.2 Manganese spinel cathodes 22
1.3.1.3 Phospho-olivine cathodes 24
1.4 Improvement of cathode material performance 26
1.4.1 Lithium mixed transition metal oxides – graphene composites as cathode materials 29
1.5 Fundamentals and applications of electrochemical capacitors 33
1.5.1 Charge storage mechanism of electrical double layer capacitor 34
1.6 Redox based electrochemical capacitors 38
1.6.1 Mechanism of pseudo-capacitive charge storage 38
1.6.2 Asymmetric and hybrid electrochemical capacitors 40
1.6.3 Electrode Materials for electrochemical capacitor 45
1.6.3.1 Carbon Based Material for Electrochemical Supercapacitors 45
1.7 Pseudocapacitive material for electrochemical capacitors 49
1.7.1 Conducting polymers (CPs). 49
1.7.2 Transition metal oxides 50
1.7.2.1 Ruthenium oxide (RuO2) 51
1.7.2.2 Manganese Oxide (MnO2) 53
1.7.2.2.1 Factors affecting the pseudocapacitance of MnO2 54
1.7.2.2.2 Challenges and opportunities for MnOx for electrochemical capacitors. 61
1.8 References 64
Chapter 2 80
Experimental Techniques 80
2.1 Synthetic methods 82
2.1.1 Hydrothermal synthesis 82
2.1.2 Co-precipitation synthesis 83
2.1.3 Resorcinol-formaldehyde gel synthesis 84
2.1.4 Base washed graphene oxide synthesis 85
2.2 Structural characterisation techniques 86
2.2.1 Powder X-ray diffraction 86
2.2.2 Inductively couple plasma optical emission spectroscopy 87
2.2.3 Scanning electron microscopy 88
2.2.4 Transmission electron microscopy 90
2.2.5 Nitrogen adsorption/desorption isotherms 91
2.2.6 Raman spectroscopy 94
2.2.6.1 Experimental procedures of ex situ and in situ Raman spectroscopy 96
2.3 Electrochemical studies set up 99
2.3.1 Fabrication of electrodes for lithium-ion battery cell 99
2.3.2 Fabrication of electrodes for symmetric and asymmetric (full cell) electrochemical capacitor 101
2.4 Basic principles of electrochemical energy storage/conversion 103
2.4.1 Faraday’s Law 104
2.4.2 Cell potential 105
2.4.3 Theoretical cell capacity and capacitance 106
2.4.4 Specific energy and power density 108
2.5 Electrochemical methods 111
2.5.1 Cyclic voltammetry 111
2.5.2 Galvanostatic cycling 113
2.5.3 Rate of charge-discharge and kinetics 114
2.5.3.1 Cyclability 115
2.5.4 Differential capacity plots 116
2.5.5 Electrochemical impedance spectroscopy 118
2.6 Practical electrochemical procedures 121
2.6.1 Potentionstats and battery cycler 121
2.6.2 Electrochemical cells for aqueous electrochemical capacitors 121
2.7 References 123
Chapter 3 126
Electrode Nanostructures of 126
Graphene – Metal Oxide Composites for Lithium-ion Batteries 126
Abstract 129
3.1 Introduction 130
3.2 Experimental methods 133
3.3 Results 136
3.3.1 Structural characterisation of the synthesised Li(Ni1/3Mn1/3Co1/3)O2 136
3.3.2 Structural characterisation of carbon materials 140
3.4 Electrochemical characterisation of the H-CP derived metal oxide Li(Ni1/3Mn1/3Co1/3)O2 and carbon materials 143
3.5 Electrochemical characterisation of the R-F gel derived Li(Ni1/3Mn1/3Co1/3)O2 and carbon materials 152
3.5.1 Electrochemical investigation of R-F derived Li(Ni1/3Mn1/3Co1/3)O2 with 10 μm in lateral dimension of graphenic materials 154
3.5.2 Electrochemical investigation of R-F derived Li(Ni1/3Mn1/3Co1/3)O2 with 5 μm in lateral dimension of graphenic materials 156
3.5.3 Electrochemical investigation of R-F derived 88 wt% Li(Ni1/3Mn1/3Co1/3)O2 with graphenic materials 157
3.6 Discussion and concluding remarks 159
3.7 Further work 166
3.8 References 167
Chapter 4 171
Manganese Dioxide Compounds as a Pseudocapacitance Material for Energy Storage 171
Abstract 173
4.1 Introduction 174
4.2 Experimental details 177
4.3 Structural characterisation of α-MnO2 179
4.4 Electrochemical characterisation of α-MnO2 184
4.5 Structural characterisation of Na0.15MnO2 189
4.6 Electrochemical characterisation of Na0.15MnO2 195
4.7 In situ Raman Spectroscopy of Na0.15MnO2 material 198
4.8 Structural characterisation of Na0.35MnO2 203
4.9 Electrochemical characterisation of Na0.35MnO2 213
4.10 Performance of Na0.35MnO2 with different mass loadings 217
4.11 In situ Raman spectroscopy of Na0.35MnO2 material 225
4.12 Discussion 229
4.13 Conclusions 232
4.14 Future work 234
4.15 References 235
Chapter 5 241
Asymmetric Electrochemical Capacitor 241
Abstract 243
5.1 Introduction 244
5.2 Experimental methods 246
5.3 Results and discussion 248
5.3.1 Charge balance calculation for asymmetric type electrochemical capacitor 248
5.3.2 Electrochemical characterisation of asymmetric capacitor in 0.5 M Na2SO4 electrolyte 252
5.3.3 Electrochemical characterisation of asymmetric capacitor in 0.5 M Na2SO4 with additive of 2mM NaHCO3 electrolyte 256
5.4 Concluding remarks and future work 265
5.5 References 267
Chapter 6 269
Future work 269
Optimising Alkali Metal Enriched MnO2 as a Pseudocapacitive Material 269
Abstract 271
6.1 Introduction 272
6.2 Experimental details 273
6.3 Structural characterisation of LixMnO2 275
6.4 Electrochemical characterisation of Li0.01MnO2 278
6.5 Structural characterisation of KxMnO2 280
6.6 Electrochemical characterisations of K0.11MnO2 and K0.35MnO2 288
6.7 Discussion 292
6.8 Future work 295
6.9 References 297
Chapter 7 299
Summary and Further Work 299
7.1 Summary 301
7.2 Further work 302
Appendix 305
Summary of the Research Papers and Conference Presentations 310


1. R. Barrett, P. P. Delsanto and A. Tartaglia, Physics: The Ultimate Adventure, Springer International Publishing, 2016.
2. D. H. D. Roller, The De magnete of William Gilbert, M. Hertzberger, Amsterdam, 1959.
3. B. Dibner, Ten Founding Fathers of the Electrical Science, Burndy Library, 1954.
4. J. F. Keithley, The Story of Electrical and Magnetic Measurements: From 500 BC to the 1940s, Wiley, 1999.
5. S. Finger and M. Piccolino, The Shocking History of Electric Fishes: From Ancient Epochs to the Birth of Modern Neurophysiology, OUP USA, 2011.
6. P. F. Dahl, Flash of the Cathode Rays: A History of J J Thomson's Electron, Taylor & Francis, 1997.
7. A. Volta, Philosophical Transactions of the Royal Society of London, 1800, 90, 403-431.
8. J. Rogelj, M. den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi and M. Meinshausen, Nature, 2016, 534, 631-639.
9. M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 2012, 5, 7854-7863.
10. B. Dunn, H. Kamath and J. M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices.
11. Hemming's Blog, in Hemming's Blog,.
12. USA Pat., US2800616 A, 1957.
13. B. E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications, Kluwer-Academic, New York, 1999.
14. R. Kotz and M. Carlen, Electrochim. Acta, 2000, 45, 2483-2498.
15. P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7, 845-854.
16. R. Kötz, S. Müller, M. Bärtschi, B. Schnyder, P. Dietrich, F. Büchi, A. Tsukada, G. Scherer, P. Rodatz and O. Garcia, ECS Proceedings, 2001.
17. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 2012, 41, 797-828.
18. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. V. Schalkwijk, Nature Mater., 2005, 4, 366-377.
19. J. R. Miller and P. Simon, Science, 2008, 321, 651-652.
20. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie and Y. Tong, Energy Environ. Sci., 2011, 4, 2915-2921.
21. D. Liu, B. B. Garcia, Q. Zhang, Q. Guo, Y. Zhang, S. Sepehri and G. Cao, Adv. Funct. Mater., 2009, 19, 1015-1023.
22. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Nano Lett., 2008, 8, 2664-2668.
23. H. Jiang, L. Yang, C. Li, C. Yan, P. S. Lee and J. Ma, Energy Environ. Sci., 2011, 4, 1813-1819.
24. M. Winter and R. J. Brodd, Chem. Rev., 2004, 104, 4245-4270.
25. E. Frackowiak, Phys. Chem. Chem. Phys., 2007, 9, 1774-1785.
26. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 2006, 157, 11-27.
27. E. Frackowiak and F. Béguin, Carbon, 2001, 39, 937-950.
28. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and R. P. Raffaelle, Energy Environ. Sci., 2009, 2, 638-654.
29. Y. Omomo, T. Sasaki, L. Wang and M. Watanabe, J. Am. Chem. Soc., 2003, 125, 3568-3575.
30. X. Fu, J. Feng, H. Wang and K. M. Ng, J. Solid State Chem., 2010, 183, 883-889.
31. L. Peng, Y. Zhu, D. Chen, R. S. Ruoff and G. Yu, Adv. Energy Mater., 2016, 6, 1600025.
32. P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F. Katmis, Y. Zhu, D. Heiman, J. Hone, J. S. Moodera and C.-T. Chen, Nat. Mater., 2016, 12, 554-561.
33. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, Nat. Nanotechnol., 2014, 9, 768-779.
34. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, Science, 2015, 347.
35. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman, Science, 2013, 340.
36. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666-669.
37. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone and Z. L. Wang, Nature, 2014, 514, 470-474.
38. E. Navarro-Moratalla and P. Jarillo-Herrero, Nat. Phys., 2016, 12, 112-113.
39. H. Y. Lee and J. B. Goodenough, J. Solid State Chem., 1999, 144, 220-223.
40. H. Y. Lee, V. Manivannan and J. B. Goodenough, C.R. Acad. Sci., Ser. IIc: Chim., 1999, 2, 565-577.
41. M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 2004, 16, 3184-3190.
42. T. T. Truong, Y. Liu, Y. Ren, L. Trahey and Y. Sun, ACS Nano, 2012, 6, 8067-8077.
43. T.-H. Wu, Optimasing Cell Voltage and Understanding Charge Storage Mechanism of Transitional Metal Oxides and Hydroxides for Aqueous Supercapacitors, National Tsing Hua University and The University of Liverpool, 2016.
44. D. Deng, Energy Science & Engineering, 2015, 3, 385-418.
45. K. Xu, Chem. Rev., 2004, 104, 4303-4418.
46. D. Linden and T. Reddy, Handbook of Batteries, McGraw-Hill Education, 2001.
47. K. E. Aifantis, S. A. Hackney and R. V. Kumar, High energy density lithium batteries: materials, engineering, applications, John Wiley & Sons, 2010.
48. J. M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.
49. M. S. Whittingham, Chem. Rev., 2004, 104, 4271-4302.
50. G.-A. Nazri and G. Pistoia, Lithium batteries: science and technology, Springer Science & Business Media, 2008.
51. L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci., 2011, 4, 2682-2699.
52. W.-J. Zhang, J. Power Sources, 2011, 196, 13-24.
53. N. E. Drewett, Novel Routes to High Performance Lithium-ion Batteries, The University of St. Andrews, 2012.
54. T. B. Reddy and S. Hossain, Handbook of Batteries, 2002, 3, 34.31-34.62.
55. C. K. Chan, X. F. Zhang and Y. Cui, Nano Lett., 2008, 8, 307-309.
56. P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera and M. K. Sunkara, Nano Lett., 2009, 9, 612-616.
57. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol., 2008, 3, 31-35.
58. T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang and W. I. Park, Nano Lett., 2010, 10, 1710-1716.
59. Y. Hamon, T. Brousse, F. Jousse, P. Topart, P. Buvat and D. Schleich, J. Power Sources, 2001, 97, 185-187.
60. J. Xu, C. Jia, B. Cao and W. Zhang, Electrochim. Acta, 2007, 52, 8044-8047.
61. J. Akimoto, Y. Gotoh and Y. Oosawa, J. Solid State Chem., 1998, 141, 298-302.
62. T. Nagaura and K. Tozawa, Prog. Batteries Solar Cells, 1990, 9, 209.
63. Y.-M. Choi and S.-I. Pyun, Solid State Ion., 1997, 99, 173-183.
64. H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway and Y. M. Chiang, J. Electrochem. Soc., 1999, 146, 473-480.
65. H. Wang, Y.-I. Jang, B. Huang, D. R. Sadoway and Y.-M. Chiang, J. Power Sources, 1999, 81, 594-598.
66. Y.-K. Sun, J. Power Sources, 1999, 83, 223-226.
67. J. Cho, Y. J. Kim, T. J. Kim and B. Park, Angew. Chem. Int. Ed. (English), 2001, 40, 3367-3369.
68. G. Amatucci, J. Tarascon and L. Klein, Solid State Ion., 1996, 83, 167-173.
69. S. Campbell, C. Bowes and R. McMillan, J. Electroanal. Chem. Interfacial Electrochem., 1990, 284, 195-204.
70. A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik and S.-J. Yoon, Mater. Res. Bull., 43, 1913-1942.
71. G. A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Springer, 2004.
72. T. Ohzuku and Y. Makimura, Chem. Lett., 2001, 30, 642-643.
73. Z. Lu, D. D. MacNeil and J. R. Dahn, Electrochem. Solid State Lett., 2001, 4, A191-A194.
74. X.-Q. Yang, J. McBreen, W.-S. Yoon and C. P. Grey, Electrochem. Commun., 2002, 4, 649-654.
75. K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, Electrochim. Acta, 2002, 48, 145-151.
76. J. S. Kim, C. S. Johnson and M. M. Thackeray, Electrochem. Commun., 2002, 4, 205-209.
77. M. Jahn, I. Rubio, D. Gonzalez and R. Bhagat, Meeting Abstracts, 2016.
78. C. Chen, J. Liu, M. Stoll, G. Henriksen, D. Vissers and K. Amine, J. Power Sources, 2004, 128, 278-285.
79. P. He, H. Yu and H. Zhou, J. Mater. Chem., 2012, 22, 3680-3695.
80. N. Yabuuchi, Y. Koyama, N. Nakayama and T. Ohzuku, J. Electrochem. Soc., 2005, 152, A1434-A1440.
81. T. Ohzuku and Y. Makimura, Chem. Lett., 2001, 30, 642-643.
82. N. Yabuuchi, Y. Makimura and T. Ohzuku, J. Electrochem. Soc., 2007, 154, A314-A321.
83. N. Yabuuchi, Y. Makimura and T. Ohzuku, J. Electrochem. Soc., 2007, 154, A314-A321.
84. L. C. Ferracin, F. A. Amaral and N. Bocchi, Solid State Ion., 2000, 130, 215-220.
85. M. M. Doeff, A. Anapolsky, L. Edman, T. J. Richardson and L. C. De Jonghe, J. Electrochem. Soc., 2001, 148, A230-A236.
86. S.-T. Myung, S. Komaba and N. Kumagai, J. Electrochem. Soc., 2001, 148, A482-A489.
87. W. Liu, G. Farrington, F. Chaput and B. Dunn, J. Electrochem. Soc., 1996, 143, 879-884.
88. H. Xia, Z. Luo and J. Xie, Prog. Nat. Sci., 2012, 22, 572-584.
89. S. Patoux, L. Sannier, H. Lignier, Y. Reynier, C. Bourbon, S. Jouanneau, F. Le Cras and S. Martinet, Electrochim. Acta, 2008, 53, 4137-4145.
90. A. Butz, M. Wohlfahrt-Mehrens, R. Oesten and R. A. Huggins, Ionics, 1996, 2, 405-411.
91. T. L. Kulova, E. I. Karseeva, A. M. Skundin, E. I. Kachibaya, R. A. Imnadze and T. V. Paikidze, Russ. J. Electrochem., 2004, 40, 494-499.
92. K. Hironaka, T. Aiba, T. Kai, T. Matumura, K. Koseki, T. Horiba and Y. Muranaka, Shin-Kobe Tech. Report, 2000, 10.
93. T. Kai, H. Ando, Y. Muranaka, T. Horiba and K. Hironaka, Shin-Kobe Tech. Report, 2001, 11.
94. A. Manthiram, Electrochem. Soc. Interface, 2009, 18.
95. S.-Y. Chung, J. T. Bloking and Y.-M. Chiang, Nature Mater., 2002, 1, 123-128.
96. M. Thackeray and M. Thackeray, Nature Mater., 2002, 1, 81.
97. A. Yamada, S. C. Chung and K. Hinokuma J. Electrochem. Soc., 2001, 148, A224-A229.
98. M. Takahashi, S. Tobishima, K. Takei and Y. Sakurai, J. Power Sources, 2001, 97–98, 508-511.
99. B. Lung-Hao Hu, F.-Y. Wu, C.-T. Lin, A. N. Khlobystov and L.-J. Li, Nat. Commun., 2013, 4, 1687.
100. B. Wang, T. Liu, A. Liu, G. Liu, L. Wang, T. Gao, D. Wang and X. S. Zhao, Adv. Energy Mater., 2016, 6.
101. X. Sun, K. Feng, Z. Chen and B. Cui, ECS Trans., 2016, 73, 129-135.
102. J. Lim, J. Gim, J. Song, D. T. Nguyen, S. Kim, J. Jo, V. Mathew and J. Kim, J. Power Sources, 2016, 304, 354-359.
103. C. Su, X. Bu, L. Xu, J. Liu and C. Zhang, Electrochim. Acta, 2012, 64, 190-195.
104. M. Park, X. Zhang, M. Chung, G. B. Less and A. M. Sastry, ‎J. Power Sources, 2010, 195, 7904-7929.
105. Z. Ma, G. Shao, G. Wang, J. Du and Y. Zhang, Ionics, 2013, 19, 437-443.
106. H. Zhang, Y. Xu, C. Zhao, X. Yang and Q. Jiang, ‎Electrochim. Acta, 2012, 83, 341-347.
107. X. Sun, J. Li, C. Shi, Z. Wang, E. Liu, C. He, X. Du and N. Zhao, J. Power Sources, 2012, 220, 264-268.
108. X.-M. Liu, Z. d. Huang, S. w. Oh, B. Zhang, P.-C. Ma, M. M. F. Yuen and J.-K. Kim, Compos. Sci. Technol., 2012, 72, 121-144.
109. Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu and H. Q. Wu, Electrochem. Commun., 2007, 9, 1228-1232.
110. E. Park, D. J. Chung, H. Kim, J. Kim, J. H. Kim and M. Park, ChemSusChem, 2016, 9, 2754-2758.
111. F. Wu, J. Liu, L. Li, X. Zhang, R. Luo, Y. Ye and R. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 23095-23104.
112. A. Manthiram, A. Vadivel Murugan, A. Sarkar and T. Muraliganth, Energy Environ. Sci., 2008, 1, 621-638.
113. C. Venkateswara Rao, A. Leela Mohana Reddy, Y. Ishikawa and P. M. Ajayan, ACS Appl. Mater. Interfaces, 2011, 3, 2966-2972.
114. J. B. Goodenough and Y. Kim, Chem. Mater., 2010, 22, 587-603.
115. B. L. Ellis, K. T. Lee and L. F. Nazar, Chem. Mater., 2010, 22, 691-714.
116. J.-M. Kim and H.-T. Chung, ‎Electrochim. Acta, 2004, 49, 3573-3580.
117. S. Shi, J. Tu, Y. Tang, Y. Yu, Y. Zhang and X. Wang, J. Power Sources, 2013, 221, 300-307.
118. Y. Chen, G. Xu, J. Li, Y. Zhang, Z. Chen and F. Kang, ‎Electrochim. Acta, 2013, 87, 686-692.
119. X. Yang, X. Wang, L. Hu, G. Zou, S. Su, Y. Bai, H. Shu, Q. Wei, B. Hu and L. Ge, J. Power Sources, 2013, 242, 589-596.
120. S. A. Al-Muhtaseb and J. A. Ritter, Adv. Mater., 2003, 15, 101-114.
121. R. Pekala, J. Mater. Sci., 1989, 24, 3221-3227.
122. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard and W. Tan, Langmuir, 2001, 17, 2900-2906.
123. B. Lin, Z. Wen, Z. Gu and S. Huang, J. Power Sources, 2008, 175, 564-569.
124. S. Dou and W. Wang, J. Solid State Electrochem., 2011, 15, 399-404.
125. C. Deng, S. Zhang, L. Ma, Y. Sun, S. Yang, B. Fu, F. Liu and Q. Wu, J. Alloys Compd. , 2011, 509, 1322-1327.
126. C. Nithya, V. S. Syamala Kumari and S. Gopukumar, Phys. Chem. Chem. Phys., 2011, 13, 6125-6132.
127. F. Wu, M. Wang, Y. Su, L. Bao and S. Chen, J. Power Sources, 2010, 195, 2362-2367.
128. C.-H. Lu and Y.-K. Lin, J. Power Sources, 2009, 189, 40-44.
129. Y. Kim, H. S. Kim and S. W. Martin, ‎Electrochim. Acta, 2006, 52, 1316-1322.
130. J. Cho, Y. W. Kim, B. Kim, J. G. Lee and B. Park, Angew. Chem. Int. Ed. (English), 2003, 42, 1618-1621.
131. H.-S. Kim, Y. Kim, S.-I. Kim and S. W. Martin, J. Power Sources, 2006, 161, 623-627.
132. N. N. Sinha and N. Munichandraiah, ACS Appl. Mater. Interfaces, 2009, 1, 1241-1249.
133. Z. Chen and J. Dahn, Electrochem. Solid State Lett., 2002, 5, A213-A216.
134. K. Tan, M. Reddy, G. S. Rao and B. Chowdari, J. Power Sources, 2005, 141, 129-142.
135. Z. Zhang, H. Liu, Z. Gong and Y. Yang, J. Power Sources, 2004, 129, 101-106.
136. L. Chen, M. Zhang and W. Wei, J Nanomater., 2013, 2013.
137. F. Wu, Y. Yan, R. Wang, H. Cai, W. Tong and H. Tang, Ceram. Int., 2017, 43, 7668-7673.
138. K.-C. Jiang, S. Xin, J.-S. Lee, J. Kim, X.-L. Xiao and Y.-G. Guo, Phys. Chem. Chem. Phys., 2012, 14, 2934-2939.
139. A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183-191.
140. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Prog. Mater. Sci., 2011, 56, 1178-1271.
141. G. Kucinskis, G. Bajars and J. Kleperis, J. Power Sources, 2013, 240, 66-79.
142. S.-M. Paek, E. Yoo and I. Honma, Nano Lett., 2008, 9, 72-75.
143. M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang and T. Wang, J. Mater. Chem., 2010, 20, 5538-5543.
144. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H.-M. Cheng, ACS Nano, 2010, 4, 3187-3194.
145. S.-M. Bak, K.-W. Nam, C.-W. Lee, K.-H. Kim, H.-C. Jung, X.-Q. Yang and K.-B. Kim, J. Mater. Chem., 2011, 21, 17309-17315.
146. Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long and P. Zhang, Electrochem. Commun., 2010, 12, 10-13.
147. F.-Y. Su, C. You, Y.-B. He, W. Lv, W. Cui, F. Jin, B. Li, Q.-H. Yang and F. Kang, J. Mater. Chem., 2010, 20, 9644-9650.
148. J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li and X. Sun, J. Power Sources, 2012, 208, 340-344.
149. Y. Tang, F. Huang, H. Bi, Z. Liu and D. Wan, J. Power Sources, 2012, 203, 130-134.
150. X. Zhou, F. Wang, Y. Zhu and Z. Liu, J. Mater. Chem., 2011, 21, 3353-3358.
151. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nat. Mater., 2005, 4, 366-377.
152. P. Simon, Y. Gogotsi and B. Dunn, Science, 2014, 343, 1210-1211.
153. H. Helmholtz, Annalen der Physik, 1853, 165, 211-233.
154. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 2009, 38, 2520-2531.
155. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, 2000.
156. M. Gouy, J. Phys. Theor. Appl., 1910, 9, 457-468.
157. D. L. Chapman, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25, 475-481.
158. O. Stern, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924, 30, 508-516.
159. C.-C. Hu, K.-H. Chang, M.-C. Lin and Y.-T. Wu, Nano Lett., 2006, 6, 2690-2695.
160. S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 2010, 4, 2822-2830.
161. X.-H. Xia, J.-P. Tu, Y.-J. Mai, X.-L. Wang, C.-D. Gu and X.-B. Zhao, J. Mater. Chem., 2011, 21, 9319-9325.
162. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, J. Power Sources, 1994, 47, 89-107.
163. K. Naoi, S. Suematsu and A. Manago, J. Electrochem. Soc., 2000, 147, 420-426.
164. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen Energy, 2009, 34, 4889-4899.
165. C.-M. Chuang, C.-W. Huang, H. Teng and J.-M. Ting, Energy Fuels, 2010, 24, 6476-6482.
166. C.-C. Hu, W.-C. Chen and K.-H. Chang J. Electrochem. Soc., 2004, 151, A281-A290.
167. B. E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Press, New York, 1999.
168. T. C. Wen and C. C. Hu, J. Electrochem. Soc., 1992, 139, 2158-2163.
169. J. P. Zheng, P. J. Cygan and T. R. Jow, J. Electrochem. Soc., 1995, 142, 2699-2703.
170. S.-C. Pang and M. A. Anderson, J. Mater. Res., 2000, 15, 2096-2106.
171. L. Q. Mai, H. Li, Y. L. Zhao, L. Xu, X. Xu, Y. Z. Luo, Z. F. Zhang, W. Ke, C. J. Niu and Q. J. Zhang, Sci. Rep., 2013, 3.
172. A. Burke, J. Power Sources, 2000, 91, 37-50.
173. M. C. Kisacikoglu, M. Uzunoglu and M. S. Alam, Int. J. Hydrogen Energy, 2009, 34, 1497-1507.
174. S.-B. Ma, K.-W. Nam, W.-S. Yoon, X.-Q. Yang, K.-Y. Ahn, K.-H. Oh and K.-B. Kim, Electrochem. Commun., 2007, 9, 2807-2811.
175. L. Demarconnay, E. Raymundo-Pinero and F. Béguin, J. Power Sources, 2011, 196, 580-586.
176. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu and R. Holze, J. Phys. Chem. C, 2009, 113, 14020-14027.
177. Q. T. Qu, Y. Shi, S. Tian, Y. H. Chen, Y. P. Wu and R. Holze, J. Power Sources, 2009, 194, 1222-1225.
178. G. G. Amatucci, Badway, F. & DuPasquier, in ESC Proc. , Electrochemical Society, 2000, vol. 99, pp. 344-359.
179. X. Lang, A. Hirata, T. Fujita and M. Chen, Nat Nano, 2011, 6, 232-236.
180. S.-C. Hong, S. Kim, W.-J. Jang, T.-H. Han, J.-P. Hong, J.-S. Oh, T. Hwang, Y. Lee, J.-H. Lee and J.-D. Nam, RSC Adv., 2014, 4, 48276-48284.
181. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu and Y. Wu, RSC Adv., 2013, 3, 13059-13084.
182. J. R. Miller, Electrochim. Acta, 2006, 52, 1703-1708.
183. J. P. Zheng, J. Electrochem. Soc., 2005, 152, A1864-A1869.
184. C.-Z. Yuan, B. Gao and X.-G. Zhang, J. Power Sources, 2007, 173, 606-612.
185. J. H. Park, O. O. Park, K. H. Shin, C. S. Jin and J. H. Kim, Electrochem. Solid State Lett., 2002, 5, H7-H10.
186. E. Faggioli, J. Power Sources, 1999, 84, 261-269.
187. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi and P. Simon, J. Am. Chem. Soc., 2008, 130, 2730-2731.
188. J. W. Long, K. E. Swider, C. I. Merzbacher and D. R. Rolison, Langmuir, 1999, 15, 780-785.
189. H. Lee, M. S. Cho, I. H. Kim, J. D. Nam and Y. Lee, Synth. Met., 2010, 160, 1055-1059.
190. D. Choi and P. N. Kumta, J. Electrochem. Soc., 2006, 153, A2298-A2303.
191. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros and F. Béguin, Chem. Phys. Lett., 2002, 361, 35-41.
192. V. Ruiz, C. Blanco, E. Raymundo-Piñero, V. Khomenko, F. Béguin and R. Santamaría, Electrochim. Acta, 2007, 52, 4969-4973.
193. C. Peng, S. Zhang, D. Jewell and G. Z. Chen, Prog. Nat. Sci., 2008, 18, 777-788.
194. C. Peng, J. Jin and G. Z. Chen, Electrochim. Acta, 2007, 53, 525-537.
195. A. Malinauskas, J. Malinauskiene and A. Ramanavičius, Nanotechnology, 2005, 16, R51.
196. Y. R. Ahn, M. Y. Song, S. M. Jo, C. R. Park and D. Y. Kim, Nanotechnology, 2006, 17, 2865.
197. Q. Ye, R. Dong, Z. Xia, G. Chen, H. Wang, G. Tan, L. Jiang and F. Wang, Electrochim. Acta, 2014, 141, 286-293.
198. S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song and J.-H. Jang, ACS Appl. Mater. Interfaces, 2013, 5, 1596-1603.
199. S. Vijayakumar, S. Nagamuthu and G. Muralidharan, ACS Appl. Mater. Interfaces, 2013, 5, 2188-2196.
200. T.-Y. Wei, C.-H. Chen, K.-H. Chang, S.-Y. Lu and C.-C. Hu, Chem. Mater., 2009, 21, 3228-3233.
201. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang and P. Chen, ACS nano, 2012, 6, 3206-3213.
202. A. M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G. Q. Lu and Y. Chen, Chem. Mater., 2009, 22, 914-921.
203. W.-C. Fang, J. Phys. Chem. C, 2008, 112, 11552-11555.
204. C.-C. Hu, C.-M. Huang and K.-H. Chang, J. Power Sources, 2008, 185, 1594-1597.
205. X. Yu, B. Lu and Z. Xu, Adv. Mater., 2014, 26, 1044-1051.
206. W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu and K. Zhu, Chem. Commun., 2011, 47, 10058-10060.
207. H. Shi, Electrochim. Acta, 1995, 41, 1633-1639.
208. S. H. Kwon, E. Lee, B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim and J. C. Jung, Curr. Appl. Phys., 2014, 14, 603-607.
209. W. Li, G. Reichenauer and J. Fricke, Carbon, 2002, 40, 2955-2959.
210. H. Pröbstle, M. Wiener and J. Fricke, J. Porous Mater., 2003, 10, 213-222.
211. V. Khomenko, E. Raymundo-Piñero and F. Béguin, J. Power Sources, 2008, 177, 643-651.
212. H.-K. Jeong, M. Jin, E. J. Ra, K. Y. Sheem, G. H. Han, S. Arepalli and Y. H. Lee, Acs Nano, 2010, 4, 1162-1166.
213. Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura and M. Ishikawa, Electrochem. Solid State Lett., 2007, 10, A106-A110.
214. T. Katakabe, T. Kaneko, M. Watanabe, T. Fukushima and T. Aida, J. Electrochem. Soc., 2005, 152, A1913-A1916.
215. C.-W. Huang, Y.-T. Wu, C.-C. Hu and Y.-Y. Li, J. Power Sources, 2007, 172, 460-467.
216. K. Wang, Y. Wang, Y. Wang, E. Hosono and H. Zhou, J. Phys. Chem. C, 2008, 113, 1093-1097.
217. S. Sivakkumar, J. M. Ko, D. Y. Kim, B. Kim and G. Wallace, Electrochim. Acta, 2007, 52, 7377-7385.
218. M. Eikerling, A. Kornyshev and E. Lust, J. Electrochem. Soc., 2005, 152, E24-E33.
219. Q.-Y. Li, Z.-S. Li, L. Lin, X. Y. Wang, Y.-F. Wang, C.-H. Zhang and H.-Q. Wang, Chem. Eng. J., 2010, 156, 500-504.
220. E. Frackowiak, J. Braz. Chem. Soc., 2006, 17, 1074-1082.
221. E. Raymundo-Pinero, K. Kierzek, J. Machnikowski and F. Beguin, Carbon, 2006, 44, 2498-2507.
222. E. Raymundo-Pinero, D. Cazorla-Amorós, A. Linares-Solano, S. Delpeux, E. Frackowiak, K. Szostak and F. Béguin, Carbon, 2002, 40, 1614-1617.
223. D. Lozano-Castello, M. Lillo-Rodenas, D. Cazorla-Amoros and A. Linares-Solano, Carbon, 2001, 39, 741-749.
224. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, Adv. Mater., 2001, 13, 497-500.
225. K. H. An, W. S. Kim, Y. S. Park, J.-M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, Adv. Funct. Mater., 2001, 11, 387-392.
226. C. Zhou, S. Kumar, C. D. Doyle and J. M. Tour, Chem. Mater., 2005, 17, 1997-2002.
227. K. Xia, Q. Gao, J. Jiang and J. Hu, Carbon, 2008, 46, 1718-1726.
228. K. Jurewicz, K. Babeł, A. Ziółkowski and H. Wachowska, J. Phys. Chem. Solids, 2004, 65, 269-273.
229. M. J. Bleda-Martínez, J. A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 2005, 43, 2677-2684.
230. G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, J. Electrochem. Soc., 2000, 147, 2486-2493.
231. F. Regisser, M.-A. Lavoie, G. Y. Champagne and D. Bélanger, J. Electroanal. Chem., 1996, 415, 47-54.
232. T. Momma, X. Liu, T. Osaka, Y. Ushio and Y. Sawada, J. Power Sources, 1996, 60, 249-253.
233. F. Béguin, K. Szostak, G. Lota and E. Frackowiak, Adv. Mater., 2005, 17, 2380-2384.
234. E. Raymundo‐Piñero, F. Leroux and F. Béguin, Adv. Mater., 2006, 18, 1877-1882.
235. G. Arabale, D. Wagh, M. Kulkarni, I. Mulla, S. Vernekar, K. Vijayamohanan and A. Rao, Chem. Phys. Lett., 2003, 376, 207-213.
236. M. Hughes, M. S. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray and A. H. Windle, Adv. Mater., 2002, 14, 382-385.
237. M. Hughes, G. Z. Chen, M. S. Shaffer, D. J. Fray and A. H. Windle, Chem. Mater., 2002, 14, 1610-1613.
238. C.-C. Hu, C.-C. Wang and K.-H. Chang, Electrochim. Acta, 2007, 52, 2691-2700.
239. K. R. Prasad, K. Koga and N. Miura, Chem. Mater., 2004, 16, 1845-1847.
240. M. Kalaji, P. Murphy and G. Williams, Synth. Met., 1999, 102, 1360-1361.
241. Y.-k. Zhou, B.-l. He, W.-j. Zhou, J. Huang, X.-h. Li, B. Wu and H.-l. Li, Electrochim. Acta, 2004, 49, 257-262.
242. V. Gupta and N. Miura, Mater. Lett., 2006, 60, 1466-1469.
243. P. Sharma and T. Bhatti, Energy Convers. Manage., 2010, 51, 2901-2912.
244. F. Fusalba, N. El Mehdi, L. Breau and D. Bélanger, Chem. Mater., 1999, 11, 2743-2753.
245. K. Naoi, S. Suematsu and A. Manago, J. Electrochem. Soc., 2000, 147, 420-426.
246. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park and S. H. Chang, J. Power Sources, 2002, 103, 305-309.
247. A. Clemente, S. Panero, E. Spila and B. Scrosati, Solid State Ion., 1996, 85, 273-277.
248. A. Laforgue, P. Simon, C. Sarrazin and J.-F. Fauvarque, J. Power Sources, 1999, 80, 142-148.
249. M. Mastragostino, R. Paraventi and A. Zanelli, J. Electrochem. Soc., 2000, 147, 3167-3170.
250. R. Sharma, A. Rastogi and S. Desu, Electrochim. Acta, 2008, 53, 7690-7695.
251. P. Sivaraman, A. Thakur, R. Kushwaha, D. Ratna and A. Samui, Electrochem. Solid State Lett., 2006, 9, A435-A438.
252. Z.-z. Zhu, G.-c. Wang, M.-q. Sun, X.-w. Li and C.-z. Li, Electrochim. Acta, 2011, 56, 1366-1372.
253. N.-L. Wu, S.-L. Kuo and M.-H. Lee, J. Power Sources, 2002, 104, 62-65.
254. G.-Y. Yu, W.-X. Chen, Y.-F. Zheng, J. Zhao, X. Li and Z.-D. Xu, Mater. Lett., 2006, 60, 2453-2456.
255. M.-K. Seo, A. Saouab and S.-J. Park, Mat. Sci. Eng. B, 2010, 167, 65-69.
256. Y.-T. Kim, K. Tadai and T. Mitani, J. Mater. Chem., 2005, 15, 4914-4921.
257. Y.-Z. Zheng, H.-Y. Ding and M.-L. Zhang, Thin Solid Films, 2008, 516, 7381-7385.
258. W. Sugimoto, K. Yokoshima, Y. Murakami and Y. Takasu, Electrochim. Acta, 2006, 52, 1742-1748.
259. J. P. Zheng and T. R. Jow, J. Power Sources, 1996, 62, 155-159.
260. Y. Takasu, T. Nakamura, H. Ohkawauchi and Y. Murakami, J. Electrochem. Soc., 1997, 144, 2601-2606.
261. Q. Fang, D. Evans, S. Roberson and J. Zheng, J. Electrochem. Soc., 2001, 148, A833-A837.
262. Y. Jeong and A. Manthiram, J. Electrochem. Soc., 2001, 148, A189-A193.
263. M. Ramani, B. S. Haran, R. E. White and B. N. Popov, J. Electrochem. Soc., 2001, 148, A374-A380.
264. H. Kim and B. N. Popov, J. Power Sources, 2002, 104, 52-61.
265. J. M. Miller, B. Dunn, T. D. Tran and R. W. Pekala, J. Electrochem. Soc., 1997, 144, L309-L311.
266. G. Deng, X. Xiao, J. Chen, X. Zeng, D. He and Y. Kuang, Carbon, 2005, 43, 1566-1569.
267. J.-K. Lee, H. M. Pathan, K.-D. Jung and O.-S. Joo, J. Power Sources, 2006, 159, 1527-1531.
268. F. Pico, J. Ibáñez, M. Lillo-Rodenas, A. Linares-Solano, R. Rojas, J. Amarilla and J. Rojo, J. Power Sources, 2008, 176, 417-425.
269. Y. Chen, X. Zhang, D. Zhang and Y. Ma, J. Alloys Compd., 2012, 511, 251-256.
270. W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan and C. S. Ozkan, Sci. Rep., 2014, 4.
271. C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 1999, 146, 3155-3160.
272. J.-K. Chang, M.-T. Lee and W.-T. Tsai, J. Power Sources, 2007, 166, 590-594.
273. M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 2002, 14, 3946-3952.
274. C.-C. Hu and T.-W. Tsou, Electrochem. Commun., 2002, 4, 105-109.
275. E. Machefaux, T. Brousse, D. Belanger and D. Guyomard, J. Power Sources, 2007, 165, 651-655.
276. D. A. McKeown, P. L. Hagans, L. P. Carette, A. E. Russell, K. E. Swider and D. R. Rolison, J. Phys. Chem. B, 1999, 103, 4825-4832.
277. H. Kim and B. N. Popov, J. Electrochem. Soc., 2003, 150, D56-D62.
278. J.-K. Chang, C.-H. Huang, M.-T. Lee, W.-T. Tsai, M.-J. Deng and I.-W. Sun, Electrochim. Acta, 2009, 54, 3278-3284.
279. J. Wei, N. Nagarajan and I. Zhitomirsky, J. Mater. Process. Technol., 2007, 186, 356-361.
280. Q. Feng, H. Kanoh and K. Ooi, J. Mater. Chem., 1999, 9, 319-333.
281. J. E. Post, Proceedings of the National Academy of Sciences, 1999, 96, 3447-3454.
282. S. Donne, A. Hollenkamp and B. Jones, J. Power Sources, 2010, 195, 367-373.
283. V. Subramanian, H. Zhu and B. Wei, J. Power Sources, 2006, 159, 361-364.
284. S. Chou, F. Cheng and J. Chen, J. Power Sources, 2006, 162, 727-734.
285. R. Ma, Y. Bando, L. Zhang and T. Sasaki, Adv. Mater., 2004, 16, 918-922.
286. L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger and T. Brousse, J. Phys. Chem. C. , 2008, 112, 7270-7277.
287. J. Yan, T. Wei, J. Cheng, Z. Fan and M. Zhang, Mater. Res. Bull., 2010, 45, 210-215.
288. S. Devaraj and N. Munichandraiah, J. Phys. Chem. C, 2008, 112, 4406-4417.
289. B. Babakhani and D. G. Ivey, J. Power Sources, 2010, 195, 2110-2117.
290. E. Beaudrouet, A. L. G. La Salle and D. Guyomard, Electrochim. Acta, 2009, 54, 1240-1248.
291. M.-S. Wu, P.-C. J. Chiang, J.-T. Lee and J.-C. Lin, J. Phys. Chem. B, 2005, 109, 23279-23284.
292. R. K. Sharma, H.-S. Oh, Y.-G. Shul and H. Kim, J. Power Sources, 2007, 173, 1024-1028.
293. J. Ge, L. Zhuo, F. Yang, B. Tang, L. Wu and C. Tung, J. Phys. Chem. B, 2006, 110, 17854-17859.
294. R. Jiang, T. Huang, J. Liu, J. Zhuang and A. Yu, Electrochim. Acta, 2009, 54, 3047-3052.
295. M.-S. Wu, Appl. Phys. Lett., 2005, 87, 153102.
296. K. W. Nam and K. B. Kim, J. Electrochem. Soc., 2006, 153, A81-A88.
297. S. Devaraj and N. Munichandraiah, Electrochem. Solid State Lett., 2005, 8, A373-A377.
298. M. S. Wu and P. C. J. Chiang, Electrochem. Solid State Lett., 2004, 7, A123-A126.
299. Y. Zhou, M. Toupin, D. Bélanger, T. Brousse and F. Favier, J. Phys. Chem. Solids, 2006, 67, 1351-1354.
300. T. Brousse, J. Electrochem. Soc., 2006, 153, A2171-A2180.
301. R. N. Reddy and R. G. Reddy, J. Power Sources, 2004, 132, 315-320.
302. K. R. Prasad and N. Miura, Electrochem. Commun., 2004, 6, 1004-1008.
303. S. W. Zhang and G. Z. Chen, Energy Materials, 2008, 3, 186-200.
304. V. Subramanian, H. Zhu and B. Wei, Chem. Phys. Lett., 2008, 453, 242-249.
305. Y.-C. Hsieh, K.-T. Lee, Y.-P. Lin, N.-L. Wu and S. W. Donne, J. Power Sources, 2008, 177, 660-664.
306. S. C. Pang, M. A. Anderson and T. W. Chapman, J. Electrochem. Soc., 2000, 147, 444-450.
307. W. Xu and C. A. Angell, Electrochem. Solid State Lett., 2001, 4, E1-E4.
308. K. Xu, S. Zhang, B. A. Poese and T. R. Jow, Electrochem. Solid State Lett., 2002, 5, A259-A262.
309. S. Komaba, A. Ogata and T. Tsuchikawa, Electrochem. Commun., 2008, 10, 1435-1437.
310. Y.-H. Chu, C.-C. Hu and K.-H. Chang, Electrochim. Acta, 2012, 61, 124-131.
311. H. Zheng, F. Tang, M. Lim, A. Mukherji, X. Yan, L. Wang and G. Q. M. Lu, J. Power Sources, 2010, 195, 680-683.
312. E.-H. Liu, W. Li, J. Li, X.-Y. Meng, R. Ding and S.-T. Tan, Mater. Res. Bull., 2009, 44, 1122-1126.
313. J. Wen, X. Ruan and Z. Zhou, J. Phys. Chem. Solids, 2009, 70, 816-820.
314. Y.-S. Chen and C.-C. Hu, Electrochem. Solid State Lett., 2003, 6, A210-A213.
315. M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki and K. Ogura, Langmuir, 2005, 21, 5907-5913.
316. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li and J. Shi, J. Phys. Chem. B, 2006, 110, 6015-6019.
317. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin, J. Electrochem. Soc., 2005, 152, A229-A235.
318. J. Li, X. Wang, Q. Huang, S. Gamboa and P. Sebastian, J. Power Sources, 2006, 160, 1501-1505.
319. C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin and T. Y. Tseng, J. Electrochem. Soc., 2005, 152, A716-A720.
320. L. Li, Z.-Y. Qin, L.-F. Wang, H.-J. Liu and M.-F. Zhu, J. Nanopart. Res., 2010, 12, 2349-2353.
321. H.-S. Nam, J.-K. Yoon, J. M. Ko and J.-D. Kim, Mater. Chem. Phys., 2010, 123, 331-336.
322. Y. F. C. Mei Gen Deng, Adv. Mat. Res., 2010, 152-153, 1551-1554.
323. A. Rabenau, Angew. Chem. Int. Ed. (English), 1985, 24, 1026-1040.
324. B. D. Aleksandra, Y. X. Yan, F. H. Yan and K. C. Wai, Recent. Pat. Nanotechnol., 2007, 1, 121-128.
325. K. M. Shaju and P. G. Bruce, Adv. Mater., 2006, 18, 2330-2334.
326. K. M. Shaju and P. G. Bruce, Chem. Mater., 2008, 20, 5557-5562.
327. K. M. Shaju and P. G. Bruce, Dalton Trans., 2008, 5471-5475.
328. H. Tamon, H. Ishizaka, M. Mikami and M. Okazaki, Carbon, 1997, 35, 791-796.
329. W. S. Hummers Jr and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
330. H. R. Thomas, S. P. Day, W. E. Woodruff, C. Vallés, R. J. Young, I. A. Kinloch, G. W. Morley, J. V. Hanna, N. R. Wilson and J. P. Rourke, Chem. Mater., 2013, 25, 3580-3588.
331. J. P. Rourke, P. A. Pandey, J. J. Moore, M. Bates, I. A. Kinloch, R. J. Young and N. R. Wilson, Angew. Chem. Int. Ed. (English), 2011, 123, 3231-3235.
332. D. A. Skoog, F. J. Holler and S. R. Crouch, Principles of Instrumental Analysis, Thomson Brooks/Cole, 2007.
333. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer US, 2009.
334. L. C. Fernandez, Electrochemical Properties of Redox Centres in Coordination Compounds and in Gold Nanocluster Hybrids, The University of Liverpool, 2011.
335. T. Allen, Particle Size Measurement, Springer Netherlands, 2012.
336. K. Sing, Colloids Surf., A, 2001, 187–188, 3-9.
337. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309-319.
338. K. S. W. Sing, Adv. Colloid Interface Sci., 1998, 76–77, 3-11.
339. K. K. Aligizaki, Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements, Taylor & Francis, 2005.
340. P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier Science, 2011.
341. P. Vandenabeele, in Practical Raman Spectroscopy – An Introduction, John Wiley & Sons, Ltd, 2013, pp. 1-38.
342. D. A. Long, Raman spectroscopy, New York, 1977.
343. P. Vandenabeele, Practical Raman Spectroscopy: An Introduction, Wiley, 2013.
344. J.-X. Cheng and X. S. Xie, J. Phys. Chem. B, 2004, 108, 827-840.
345. D. T. Zahn, Phys. Chem. Chem. Phys., 1999, 1, 185-190.
346. M. C. Bernard, A. Hugot‐Le Goff, B. V. Thi and S. C. de Torresi, J. Electrochem. Soc., 1993, 140, 3065-3070.
347. T. H. Wu, Optimasing Cell Voltage and Understanding Charge Storage Mechanism of Transitional Metal Oxides and Hydroxides for Aqueous Supercapacitors, National Tsing Hua University and The University of Liverpool, 2016.
348. C. Vincent and B. Scrosati, Modern Batteries, Elsevier Science, 1997.
349. G. A. Mabbott, J. Chem. Educ., 1983, 60, 697.
350. Z. Su, C. Yang, B. Xie, Z. Lin, Z. Zhang, J. Liu, B. Li, F. Kang and C. P. Wong, Energy Environ. Sci., 2014, 7, 2652-2659.
351. Y.-H. Lee, K.-H. Chang and C.-C. Hu, J. Power Sources, 2013, 227, 300-308.
352. M. Inagaki, H. Konno and O. Tanaike, J. Power Sources, 2010, 195, 7880-7903.
353. V. F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, Wiley, 2012.
354. H. Cesiulis, N. Tsyntsaru, A. Ramanavicius and G. Ragoisha, in Nanostructures and Thin Films for Multifunctional Applications, Springer, 2016, pp. 3-42.
355. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami and Y. Takasu, J. Phys. Chem. B, 2005, 109, 7330-7338.
356. T.-H. Wu, Y.-H. Chu, C.-C. Hu and L. J. Hardwick, Electrochem. Commun., 2013, 27, 81-84.
357. E. Rossen, C. Jones and J. Dahn, Solid State Ion., 1992, 57, 311-318.
358. M. E. Spahr, P. Novák, B. Schnyder, O. Haas and R. Nesper, ‎J. Electrochem. Soc., 1998, 145, 1113-1121.
359. X. M. Liu, Z. d. Huang, S. W. Oh, B. Zhang, P. C. Ma, M. M. F. Yuen and J. K. Kim, Compos. Sci. Technol., 2012, 72, 121-144.
360. B. Zhang, Y. Yu, Y. Liu, Z. D. Huang, Y. B. He and J. K. Kim, Nanoscale, 2013, 5, 2100-2106.
361. Z. Chen, J. Wang, D. Chao, T. Baikie, L. Bai, S. Chen, Y. Zhao, T. C. Sum, J. Lin and Z. Shen, Sci. Rep., 2016, 6, 25771.
362. S. M. Paek, E. Yoo and I. Honma, Nano Lett., 2008, 9, 72-75.
363. Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H. M. Cheng, ACS Nano, 2010, 4, 3187-3194.
364. J. Choi and A. Manthiram, Electrochem. Solid State Lett., 2004, 7, A365-A368.
365. S. Patoux and M. M. Doeff, Electrochem. Commun., 2004, 6, 767-772.
366. US Pat., US 20140061059 A1, 2012.
367. US Pat., US 20150027900 A1, 2013.
368. US Pat., US 20140370269 A1, 2014.
369. J. P. Rourke, P. A. Pandey, J. J. Moore, M. Bates, I. A. Kinloch, R. J. Young and N. R. Wilson, Angew. Chem. Int. Ed., 2011, 123, 3231-3235.
370. F. Zhou, X. Zhao, J. Jiang and J. Dahn, Electrochem. Solid State Lett., 2009, 12, A81-A83.
371. S. C. Yin, Y. H. Rho, I. Swainson and L. Nazar, Chem. Mater., 2006, 18, 1901-1910.
372. S. Li, G. Ma, B. Guo, Z. Yang, X. Fan, Z. Chen and W. Zhang, Ind. Eng. Chem. Res., 2016, 55, 9352-9361.
373. F. Du and L. fu Peng, 2015 International Conference on Education, Management, Information and Medicine, 2015.
374. P. He, H. Wang, L. Qi and T. Osaka, J. Power Sources, 2006, 160, 627-632.
375. C. Sole, N. E. Drewett, F. Liu, A. M. Abdelkader, I. A. Kinloch and L. J. Hardwick, J. Electroanal. Chem., 2015, 753, 35-41.
376. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov and S. Roth, Phys. Rev. Lett., 2006, 97, 187401.
377. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, Nat. Nanotechnol., 2008, 3, 563-568.
378. A. C. Ferrari and J. Robertson, ‎Phys. Rev. B, 2000, 61, 14095.
379. C. Thomsen and S. Reich, Phys. Rev. Lett., 2000, 85, 5214.
380. F. Tuinstra and J. L. Koenig, J. Chem. Phys., 1970, 53, 1126-1130.
381. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr and R. S. Ruoff, Carbon, 2009, 47, 145-152.
382. J. P. Rourke, P. A. Pandey, J. J. Moore, M. Bates, I. A. Kinloch, R. J. Young and N. R. Wilson, Angew. Chem. Int. Ed., 2011, 50, 3173-3177.
383. S. H. Park, H. S. Shin, S. T. Myung, C. S. Yoon, K. Amine and Y. K. Sun, Chem. Mater., 2005, 17, 6-8.
384. B. J. Hwang, Y. W. Tsai, D. Carlier and G. Ceder, Chem. Mater., 2003, 15, 3676-3682.
385. Y. J. Shin, W. J. Choi, Y. S. Hong, S. Yoon, K. S. Ryu and S. H. Chang, Solid State Ion., 2006, 177, 515-521.
386. Y. H. Ding, H. M. Ren, Y. Y. Huang, F. H. Chang, X. He, J. Q. Fen and P. Zhang, Nanotechnology, 2013, 24, 375401.
387. P. Joensen, R. F. Frindt and S. R. Morrison, Mater. Res. Bull., 1986, 21, 457-461.
388. K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi and J. N. Coleman, Nat. Mater., 2014, 13, 624-630.
389. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, Science, 2011, 331, 568-571.
390. S. C. Pang and M. A. Anderson, J. Mater. Res., 2000, 15, 2096-2106.
391. L. Mai, H. Li, Y. Zhao, L. Xu, X. Xu, Y. Luo, Z. Zhang, W. Ke, C. Niu and Q. Zhang, Sci. Rep., 2013, 3, 1718.
392. D. Bélanger, L. Brousse and J. W. Long, Electrochem. Soc. Interface, 2008, 17, 49.
393. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui and Z. Bao, Nano Lett., 2011, 11, 4438-4442.
394. S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, K. Y. Ahn, K. H. Oh and K. B. Kim, J. Power Sources, 2008, 178, 483-489.
395. Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu and H. M. Cheng, ACS Nano, 2010, 4, 5835-5842.
396. L. Ji and X. Zhang, Electrochem. Commun., 2009, 11, 795-798.
397. R. Liu, J. Duay and S. B. Lee, ACS Nano, 2010, 4, 4299-4307.
398. Y. Hou, Y. Cheng, T. Hobson and J. Liu, Nano Lett., 2010, 10, 2727-2733.
399. S. Devaraj and N. Munichandraiah, J. Electrochem. Soc., 2007, 154, A901-A909.
400. A. Caballero, L. Hernan, J. Morales, L. Sanchez, J. Santos Pena and M. A. G. Aranda, J. Mater. Chem., 2002, 12, 1142-1147.
401. X. Ma, H. Chen and G. Ceder, J. Electrochem. Soc., 2011, 158, A1307-A1312.
402. M. D'Arienzo, R. Ruffo, R. Scotti, F. Morazzoni, C. M. Mari and S. Polizzi, Phys. Chem. Chem. Phys., 2012, 14, 5945-5952.
403. M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm and C. Delmas, Nat. Mater., 2013, 12, 74-80.
404. J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P. Hagenmuller, J. Solid State Chem., 1971, 3, 1-11.
405. A. Mendiboure, C. Delmas and P. Hagenmuller, J. Solid State Chem., 1985, 57, 323-331.
406. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda and P. M. Ajayan, J. Phys. Chem. C, 2009, 114, 658-663.
407. G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang and W. Huang, Nanoscale, 2014, 6, 1079-1085.
408. L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef and Y. Cui, ACS nano, 2011, 5, 8904-8913.
409. T. M. Ou, C. T. Hsu and C. C. Hu, J. Electrochem. Soc., 2015, 162, A5124-A5132.
410. A. Bilewicz, J. Nucl. Radiochem. Sci., 2002, 3, 147-149.
411. T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvåg and P. Norby, J. Phys. Chem. C, 2008, 112, 13134-13140.
412. Y. Dong, K. Li, P. Jiang, G. Wang, H. Miao, J. Zhang and C. Zhang, RSC Adv., 2014, 4, 39167-39173.
413. M. Polverejan, J. C. Villegas and S. L. Suib, J. Am. Chem. Soc., 2004, 126, 7774-7775.
414. W. Mingdeng, K. Yoshinari, Z. Haoshen, S. Hideki and A. Hironori, Nanotechnology, 2005, 16, 245.
415. H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt and S. E. Lindquist, J. Phys. Chem. B, 1997, 101, 7717-7722.
416. V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon and B. Dunn, Nat. Mater., 2013, 12, 518-522.
417. J. Jiang and A. Kucernak, ‎Electrochim. Acta, 2002, 47, 2381-2386.
418. W. Wei, X. Cui, W. Chen and D. G. Ivey, Chem. Soc. Rev., 2011, 40, 1697-1721.
419. M. Toupin, T. Brousse and D. Bélanger, Chem. Mater. , 2002, 14, 3946-3952.
420. C.-C. Hu, C.-Y. Hung, K.-H. Chang and Y.-L. Yang, J. Power Sources, 2011, 196, 847-850.
421. T.-H. Wu, D. Hesp, V. Dhanak, C. Collins, F. Braga, L. J. Hardwick and C.-C. Hu, J. Mater. Chem. A, 2015, 3, 12786-12795.
422. Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu and R. Holze, J. Power Sources, 2010, 195, 2789-2794.
423. A. Adomkevicius, L. Cabo-Fernandez, T.-H. Wu, T.-M. Ou, M.-G. Chen, Y. Andreev, C.-C. Hu and L. J. Hardwick, J. Mater. Chem. A, 2017, 5, 10021-10026.
424. J. Cao, Y. Wang, Y. Zhou, J. H. Ouyang, D. Jia and L. Guo, J. Electroanal. Chem., 2013, 689, 201-206.
425. C. Julien, M. Massot, R. Baddour Hadjean, S. Franger, S. Bach and J. P. Pereira-Ramos, Solid State Ion., 2003, 159, 345-356.
426. P. L. Goff, N. Baffier, S. Bach and J. P. Pereira Ramos, J. Mater. Chem., 1994, 4, 875-881.
427. F. Rong, J. Zhao, Z. Chen, Y. Xu, Y. Zhao, Q. Yang and C. Li, ‎J. Mater. Chem. A, 2016, 4, 6585-6594.
428. T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger and P. Simon, J. Power Sources, 2007, 173, 633-641.
429. T. Brousse, M. Toupin and D. Belanger, J. Electrochem. Soc., 2004, 151, A614-A622.
430. Y. K. Hsu, Y. C. Chen, Y. G. Lin, L. C. Chen and K. H. Chen, Chem. Commun., 2011, 47, 1252-1254.
431. A. Dias, R. G. Sá, M. C. Spitale, M. Athayde and V. S. T. Ciminelli, Mater. Res. Bull., 2008, 43, 1528-1538.
432. T. Gao, H. Fjellvåg and P. Norby, Anal. Chim. Acta, 2009, 648, 235-239.
433. P. Zhang, Y. Zhan, B. Cai, C. Hao, J. Wang, C. Liu, Z. Meng, Z. Yin and Q. Chen, Nano Res., 2010, 3, 235-243.
434. C. M. Julien, M. Massot and C. Poinsignon, Spectrochim. Acta Mol. Biomol. Spectrosc., 2004, 60, 689-700.
435. K. W. Nam and K. B. Kim, J. Electrochem. Soc., 2006, 153, A81.
436. S. Dong, X. Chen, L. Gu, X. Zhou, L. Li, Z. Liu, P. Han, H. Xu, J. Yao, H. Wang, X. Zhang, C. Shang, G. Cui and L. Chen, Energy Environ. Sci., 2011, 4, 3502-3508.
437. Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan and Z. Geng, Electrochim. Acta, 2014, 117, 528-533.
438. M. Kim and J. Kim, ACS Appl. Mater. Interfaces, 2014, 6, 9036-9045.
439. J. L. Liu, L. Z. Fan and X. Qu, Electrochim. Acta, 2012, 66, 302-305.
440. Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao and E. Xie, ACS Nano, 2012, 7, 174-182.
441. T. H. Wu, Y. H. Chu, C. C. Hu and L. J. Hardwick, Electrochem. Commun., 2013, 27, 81-84.
442. C. C. Hu and C. H. Chu, J. Electroanal. Chem., 2001, 503, 105-116.
443. W. Xiao, H. Xia, J. Y. H. Fuh and L. Lu, J. Power Sources, 2009, 193, 935-938.
444. N. Tang, X. Tian, C. Yang and Z. Pi, Mater. Res. Bull., 2009, 44, 2062-2067.
445. B. H. Zhang, Y. Liu, Z. Chang, Y. Q. Yang, Z. B. Wen, Y. P. Wu and R. Holze, J. Power Sources, 2014, 253, 98-103.
446. J. Lv, X. Yang, H. Zhou, L. Kang, Z. Lei and Z. H. Liu, Mater. Res. Bull., 2016, 73, 429-436.
447. S. W. Lee, J. Kim, S. Chen, P. T. Hammond and Y. Shao Horn, ACS nano, 2010, 4, 3889-3896.
448. J. Liu, J. Essner and J. Li, Chem. Mater., 2010, 22, 5022-5030.
449. T. Bordjiba and D. Bélanger, ‎J. Electrochem. Soc., 2009, 156, A378-A384.
450. R. Jiang, T. Huang, Y. Tang, J. Liu, L. Xue, J. Zhuang and A. Yu, Electrochim. Acta, 2009, 54, 7173-7179.
451. J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin and O. Crosnier, Mrs Bull., 2011, 36, 513-522.
452. C. Peng, S. Zhang, X. Zhou and G. Z. Chen, Energ. Environ. Sci., 2010, 3, 1499-1502.
453. T.-H. Wu, C.-T. Hsu, C.-C. Hu and L. J. Hardwick, J. Power Sources, 2013, 242, 289-298.
454. D. Qu, J. Power Sources, 2002, 109, 403-411.
455. J. N. Barisci*, G. G. Wallace* and R. H. Baughman, J. Electroanal. Chem., 2000, 488, 92-98.
456. K. Jurewicz, E. Frackowiak and F. Béguin, ‎Appl. Phys. A, 2004, 78, 981-987.
457. Y.-H. Chu, C.-C. Hu and K.-H. Chang, Electrochim. Acta, 2012, 61, 124-131.
458. R. Palm, H. Kurig, K. Tõnurist, A. Jänes and E. Lust, Electrochim. Acta, 2012, 85, 139-144.
459. A. Brandt and A. Balducci, J. Power Sources, 2014, 250, 343-351.
460. R. t. Shannon, Acta Crystallogr. A, 1976, 32, 751-767.
461. X. He and A. R. Rezaie, J. Biol. Chem., 1999, 274, 4970-4976.
462. X. Wang and Y. Li, Chem. Eur. J., 2003, 9, 300-306.
463. Y. Li, J. Wang, Y. Zhang, M. N. Banis, J. Liu, D. Geng, R. Li and X. Sun, ‎J. Colloid Interface Sci., 2012, 369, 123-128.
464. P. Debye, Ann. Phys., 1915, 351, 809-823.
465. Y. G. Andreev and P. G. Bruce, J. Appl. Crystallogr., 2016, 49, 24-30.
466. Y. G. Andreev, P. M. Panchmatia, Z. Liu, S. C. Parker, M. S. Islam and P. G. Bruce, J. Am. Chem. Soc., 2014, 136, 6306-6312.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *