|
[1]Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 2008. [2]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, Jun 2008. [3]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, Mar 2008. [4]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502, Oct 2008. [5]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007. [6]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, et al., "Detection of individual gas molecules adsorbed on graphene," Nature Materials, vol. 6, pp. 652-655, Sep 2007. [7]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial," Angewandte Chemie-International Edition, vol. 48, pp. 7752-7777, 2009. [8]M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chemical Reviews, vol. 110, pp. 132-145, Jan 2010. [9]J. T. Clarke, "SURFACE AREA MEASUREMENT OF GRAPHITE USING THE GAMMA-RADIATION OF KR85," Journal of Physical Chemistry, vol. 68, pp. 884-&, 1964. [10]X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nature Nanotechnology, vol. 3, pp. 491-495, Aug 2008. [11] A. Shukla, R. Kumar, J. Mazher, and A. Balan, "Graphene made easy: High quality, large-area samples," Solid State Communications, vol. 149, pp. 718-721, May 2009. [12] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, et al., "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, pp. 563-568, Sep 2008. [13] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, et al., "Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions," Journal of the American Chemical Society, vol. 131, pp. 3611-3620, Mar 2009. [14] C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, and P. C. Eklund, "Debundling and dissolution of single-walled carbon nanotubes in amide solvents," Journal of the American Chemical Society, vol. 126, pp. 6095-6105, May 2004. [15] U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, "High-Concentration Solvent Exfoliation of Graphene," Small, vol. 6, pp. 864-871, Apr 2010. [16] J. N. Coleman, "Liquid-Phase Exfoliation of Nanotubes and Graphene," Advanced Functional Materials, vol. 19, pp. 3680-3695, Dec 2009. [17] J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, "Structural coherency of graphene on Ir(111)," Nano Letters, vol. 8, pp. 565-570, Feb 2008. [18] P. W. Sutter, J. I. Flege, and E. A. Sutter, "Epitaxial graphene on ruthenium," Nature Materials, vol. 7, pp. 406-411, May 2008. [19]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, Feb 2009. [20] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, Jan 2009. [21]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 2009. [22]C. D. Kim, B. K. Min, and W. S. Jung, "Preparation of graphene sheets by the reduction of carbon monoxide," Carbon, vol. 47, pp. 1610-1612, May 2009. [23] A. G. Cano-Marquez, F. J. Rodriguez-Macias, J. Campos-Delgado, C. G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, et al., "Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes," Nano Letters, vol. 9, pp. 1527-1533, Apr 2009. [24] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, pp. 872-U5, Apr 2009. [25] A. Sinitskii, D. V. Kosynkin, A. Dimiev, and J. M. Tour, "Corrugation of Chemically Converted Graphene Monolayers on SiO2," Acs Nano, vol. 4, pp. 3095-3102, Jun 2010. [26] L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, and H. J. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, pp. 877-880, Apr 2009. [27] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., "Functionalized single graphene sheets derived from splitting graphite oxide," Journal of Physical Chemistry B, vol. 110, pp. 8535-8539, May 2006. [28] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, et al., "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, vol. 19, pp. 4396-4404, Sep 2007. [29] A. V. Murugan, T. Muraliganth, and A. Manthiram, "Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage," Chemistry of Materials, vol. 21, pp. 5004-5006, Nov 2009. [30] Z. T. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, "High Yield Preparation of Macroscopic Graphene Oxide Membranes," Journal of the American Chemical Society, vol. 131, pp. 898-+, Jan 2009. [31] W. F. Chen, L. F. Yan, and P. R. Bangal, "Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves," Carbon, vol. 48, pp. 1146-1152, Apr 2010. [32] M. Choucair, P. Thordarson, and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis and sonication," Nature Nanotechnology, vol. 4, pp. 30-33, Jan 2009. [33] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, "A chemical route to graphene for device applications," Nano Letters, vol. 7, pp. 3394-3398, Nov 2007. [34] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217-224, Apr 2009. [35] L. Zhang, X. Li, Y. Huang, Y. F. Ma, X. J. Wan, and Y. S. Chen, "Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation," Carbon, vol. 48, pp. 2367-2371, Jul 2010. [36] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, vol. 3, pp. 101-105, Feb 2008. [37] W. S. Hummers and R. E. Offeman, "PREPARATION OF GRAPHITIC OXIDE," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958. [38] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, et al., "Preparation and characterization of graphene oxide paper," Nature, vol. 448, pp. 457-460, Jul 2007. [39] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, Jun 2007. [40] Y. Si and E. T. Samulski, "Synthesis of water soluble graphene," Nano Letters, vol. 8, pp. 1679-1682, Jun 2008. [41] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, et al., "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation," Advanced Materials, vol. 20, pp. 4490-4493, Dec 2008. [42] X. C. Dong, C. Y. Su, W. J. Zhang, J. W. Zhao, Q. D. Ling, W. Huang, et al., "Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties," Physical Chemistry Chemical Physics, vol. 12, pp. 2164-2169, 2010. [43] S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, "Solution properties of graphite and graphene," Journal of the American Chemical Society, vol. 128, pp. 7720-7721, Jun 2006. [44] J. Liu, H. Jeong, J. Liu, K. Lee, J. Y. Park, Y. H. Ahn, et al., "Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents," Carbon, vol. 48, pp. 2282-2289, Jul 2010. [45] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, "Substrate-free gas-phase synthesis of graphene sheets," Nano Letters, vol. 8, pp. 2012-2016, Jul 2008. [46] R. A. Nistor, D. M. Newns, and G. J. Martyna, "The Role of Chemistry in Graphene Doping for Carbon-Based Electronics," Acs Nano, vol. 5, pp. 3096-3103, Apr 2011.
[47] Y. Y. Shao, S. Zhang, M. H. Engelhard, G. S. Li, G. C. Shao, Y. Wang, et al., "Nitrogen-doped graphene and its electrochemical applications," Journal of Materials Chemistry, vol. 20, pp. 7491-7496, 2010. [48] Y. M. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, "Work Function Engineering of Graphene Electrode via Chemical Doping," Acs Nano, vol. 4, pp. 2689-2694, May 2010. [49] A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, "Charge transport in chemically doped 2D graphene," Physical Review Letters, vol. 101, Jul 2008. [50] M. Wu, C. Cao, and J. Z. Jiang, "Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study," Nanotechnology, vol. 21, Dec 2010. [51] M. Deifallah, P. F. McMillan, and F. Cora, "Electronic and structural properties of two-dimensional carbon nitride graphenes," Journal of Physical Chemistry C, vol. 112, pp. 5447-5453, Apr 2008. [52] N. Jung, N. Kim, S. Jockusch, N. J. Turro, P. Kim, and L. Brus, "Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation," Nano Letters, vol. 9, pp. 4133-4137, Dec 2009. [53] C. Attaccalite and A. Rubio, "Fermi velocity renormalization in doped graphene," Physica Status Solidi B-Basic Solid State Physics, vol. 246, pp. 2523-2526, Dec 2009. [54] S. S. Yu, W. T. Zheng, C. Wang, and Q. Jiang, "Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene," Acs Nano, vol. 4, pp. 7619-7629, Dec 2010. [55] L. S. Panchokarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, et al., "Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene," Advanced Materials, vol. 21, pp. 4726-+, Dec 2009. [56] L. P. Zhang and Z. H. Xia, "Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells," Journal of Physical Chemistry C, vol. 115, pp. 11170-11176, Jun 2011. [57] K. P. Gong, F. Du, Z. H. Xia, M. Durstock, and L. M. Dai, "Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction," Science, vol. 323, pp. 760-764, Feb 2009. [58] L. T. Qu, Y. Liu, J. B. Baek, and L. M. Dai, "Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells," Acs Nano, vol. 4, pp. 1321-1326, Mar 2010. [59] E. J. Biddinger, D. von Deak, and U. S. Ozkan, "Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts," Topics in Catalysis, vol. 52, pp. 1566-1574, Oct 2009. [60] J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. JimenezMateos, "Origin of the large N is binding energy in X-ray photoelectron spectra of calcined carbonaceous materials," Journal of the American Chemical Society, vol. 118, pp. 8071-8076, Aug 1996. [61] C. P. Ewels and M. Glerup, "Nitrogen doping in carbon nanotubes," Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1345-1363, Sep 2005.
[62] S. Kundu, T. C. Nagaiah, W. Xia, Y. M. Wang, S. Van Dommele, J. H. Bitter, et al., "Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction," Journal of Physical Chemistry C, vol. 113, pp. 14302-14310, Aug 2009. [63] R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, "Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes," Chemical Communications, pp. 4891-4893, 2008. [64] H. B. Wang, T. Maiyalagan, and X. Wang, "Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications," Acs Catalysis, vol. 2, pp. 781-794, May 2012. [65] Z. Bo, Y. Yang, J. H. Chen, K. H. Yu, J. H. Yan, and K. F. Cen, "Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets," Nanoscale, vol. 5, pp. 5180-5204, 2013. [66] Junhong Chen, Zheng Bo, and G. Lu, "Vertically-Oriented Graphene PECVD Synthesis and Applications," 2015. [67] H. Sugai, I. Ghanashev, and K. Mizuno, "Transition of electron heating mode in a planar microwave discharge at low pressures," Applied Physics Letters, vol. 77, pp. 3523-3525, Nov 2000. [68] M. Nagatsu, G. Xu, I. Ghanashev, M. Kanoh, and H. Sugai, "Mode identification of surface waves excited in a planar microwave discharge," Plasma Sources Science & Technology, vol. 6, pp. 427-434, Aug 1997. [69] Y. H. Wu, P. W. Qiao, T. C. Chong, and Z. X. Shen, "Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition," Advanced Materials, vol. 14, pp. 64-67, Jan 2002. [70] Y. Zhang, J. L. Du, S. Tang, P. Liu, S. Z. Deng, J. Chen, et al., "Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology," Nanotechnology, vol. 23, Jan 2012. [71] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, et al., "Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes," Nano Letters, vol. 11, pp. 2472-2477, Jun 2011. [72] J. R. Miller, R. A. Outlaw, and B. C. Holloway, "Graphene Double-Layer Capacitor with ac Line-Filtering Performance," Science, vol. 329, pp. 1637-1639, Sep 2010. [73] K. X. Sheng, Y. Q. Sun, C. Li, W. J. Yuan, and G. Q. Shi, "Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering," Scientific Reports, vol. 2, Feb 2012. [74] Z. Bo, Z. H. Wen, H. Kim, G. H. Lu, K. H. Yu, and J. H. Chen, "One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal," Carbon, vol. 50, pp. 4379-4387, Oct 2012. [75] L. Wang, U. J. Erasquin, M. R. Zhao, L. Ren, M. Y. Zhang, G. J. Cheng, et al., "Stability, Antimicrobial Activity, and Cytotoxicity of Poly(amidoamine) Dendrimers on Titanium Substrates," Acs Applied Materials & Interfaces, vol. 3, pp. 2885-2894, Aug 2011. [76] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, pp. 845-854, Nov 2008.
[77] J. R. Miller and P. Simon, "Materials science - Electrochemical capacitors for energy management," Science, vol. 321, pp. 651-652, Aug 2008. [78] L. B. Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, et al., "Stretchable, Porous, and Conductive Energy Textiles," Nano Letters, vol. 10, pp. 708-714, Feb 2010. [79] M. C. Tsai, J. C. Chang, H. S. Sheu, H. T. Chiu, and C. Y. Lee, "Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process," Chemistry of Materials, vol. 21, pp. 499-505, Feb 2009. [80] P. C. Chen, M. C. Tsai, H. C. Chen, I. N. Lin, H. S. Sheu, Y. S. Lin, et al., "Self-carbonized lamellar nano/micro hierarchical structure C/TiO2 and its Li-ion intercalation performance," Journal of Materials Chemistry, vol. 22, pp. 5349-5355, 2012. [81] S. P. Tung, T. K. Huang, C. Y. Lee, and H. T. Chiu, "Electrochemical growth of gold nanostructures on carbon paper for alkaline direct glucose fuel cell," Rsc Advances, vol. 2, pp. 1068-1073, 2012. [82]X. H. Lu, D. Z. Zheng, T. Zhai, Z. Q. Liu, Y. Y. Huang, S. L. Xie, et al., "Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor," Energy & Environmental Science, vol. 4, pp. 2915-2921, Aug 2011. [83] X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, et al., "WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors," Advanced Materials, vol. 24, pp. 938-+, Feb 2012. [84] Z. Y. Lin, Y. Liu, Y. G. Yao, O. J. Hildreth, Z. Li, K. Moon, et al., "Superior Capacitance of Functionalized Graphene," Journal of Physical Chemistry C, vol. 115, pp. 7120-7125, Apr 2011. [85] R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000. [86] M. Gouy, "Sur la constitution de la charge électrique à la surface d'un électrolyte," J. Phys. Theor. Appl., vol. 9, pp. 457-468, 1910. [87] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy," Nano Letters, vol. 10, pp. 751-758, Mar 2010. [88] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, "Specific surface area of carbon nanotubes and bundles of carbon nanotubes," Carbon, vol. 39, pp. 507-514, 2001. [89] Z. M. Peng and H. Yang, "Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property," Nano Today, vol. 4, pp. 143-164, Apr 2009. [90] Y. H. Bing, H. S. Liu, L. Zhang, D. Ghosh, and J. J. Zhang, "Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction," Chemical Society Reviews, vol. 39, pp. 2184-2202, 2010. [91] C. W. B. Bezerra, L. Zhang, K. C. Lee, H. S. Liu, A. L. B. Marques, E. P. Marques, et al., "A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction," Electrochimica Acta, vol. 53, pp. 4937-4951, Jun 2008.
[92] B. Wang, "Recent development of non-platinum catalysts for oxygen reduction reaction," Journal of Power Sources, vol. 152, pp. 1-15, Dec 2005. [93] A. Brouzgou, S. Q. Song, and P. Tsiakaras, "Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects," Applied Catalysis B-Environmental, vol. 127, pp. 371-388, Oct 2012. [94] G. C. K. Liu and J. R. Dahn, "Fe-N-C oxygen reduction catalysts supported on vertically aligned carbon nanotubes," Applied Catalysis a-General, vol. 347, pp. 43-49, Sep 2008. [95] F. Y. Cheng, J. Shen, W. Q. Ji, Z. L. Tao, and J. Chen, "Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction," Acs Applied Materials & Interfaces, vol. 1, pp. 460-466, Feb 2009. [96] R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S. C. Barton, "Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells," Applied Catalysis B-Environmental, vol. 92, pp. 209-216, Oct 2009. [97] Y. H. Lu, H. B. Xu, J. Wang, and X. F. Kong, "Oxygen reduction mechanism on copper in a 0.5 M H2SO4," Electrochimica Acta, vol. 54, pp. 3972-3978, Jun 2009. [98] A. Manthiram, A. V. Murugan, A. Sarkar, and T. Muraliganth, "Nanostructured electrode materials for electrochemical energy storage and conversion," Energy & Environmental Science, vol. 1, pp. 621-638, 2008.
[99] E. Antolini, "Palladium in fuel cell catalysis," Energy & Environmental Science, vol. 2, pp. 915-931, 2009. [100]L. Xiao, L. Zhuang, Y. Liu, J. T. Lu, and H. D. Abruna, "Activating Pd by Morphology Tailoring for Oxygen Reduction," Journal of the American Chemical Society, vol. 131, pp. 602-608, Jan 2009. [101]S. Maldonado and K. J. Stevenson, "Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes," Journal of Physical Chemistry B, vol. 109, pp. 4707-4716, Mar 2005. [102]S. Y. Deng, G. Q. Jian, J. P. Lei, Z. Hu, and H. X. Ju, "A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes," Biosensors & Bioelectronics, vol. 25, pp. 373-377, Oct 2009. [103]R. L. Liu, D. Q. Wu, X. L. Feng, and K. Mullen, "Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction," Angewandte Chemie-International Edition, vol. 49, pp. 2565-2569, 2010. [104]X. A. Xu, S. J. Jiang, Z. Hu, and S. Q. Liu, "Nitrogen-Doped Carbon Nanotubes: High Electrocatalytic Activity toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing," Acs Nano, vol. 4, pp. 4292-4298, Jul 2010. [105]J. Ozaki, N. Kimura, T. Anahara, and A. Oya, "Preparation and oxygen reduction activity of BN-doped carbons," Carbon, vol. 45, pp. 1847-1853, Aug 2007.
[106]G. Liu, X. G. Li, P. Ganesan, and B. N. Popov, "Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon," Applied Catalysis B-Environmental, vol. 93, pp. 156-165, Nov 2009. [107]K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, and S. I. Woo, "Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media," Electrochemistry Communications, vol. 12, pp. 1052-1055, Aug 2010. [108]T. Iwazaki, H. S. Yang, R. Obinata, W. Sugimoto, and Y. Takasu, "Oxygen-reduction activity of silk-derived carbons," Journal of Power Sources, vol. 195, pp. 5840-5847, Sep 2010. [109]L. P. Shi, Q. M. Gao, and Y. H. Wu, "High Performance Oxide Functionalized Nitrogen-Doped Mesocellular Carbon Foam for Biosensor Construction," Electroanalysis, vol. 21, pp. 715-722, Mar 2009. [110]Y. Wang, Y. Y. Shao, D. W. Matson, J. H. Li, and Y. H. Lin, "Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing," Acs Nano, vol. 4, pp. 1790-1798, Apr 2010. [111]L. Zhang, Z. Y. Zhang, R. P. Liang, Y. H. Li, and J. D. Qiu, "Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal" Aggregation-Induced Photoluminescence Enhancement," Analytical Chemistry, vol. 86, pp. 4423-4430, May 2014. [112]Z. T. Fan, Y. C. Li, X. H. Li, L. Z. Fan, S. X. Zhou, D. C. Fang, et al., "Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging," Carbon, vol. 70, pp. 149-156, Apr 2014. [113]T. Y. Han, X. Feng, B. Tong, J. B. Shi, L. Chen, J. G. Zhi, et al., "A novel "turn-on'' fluorescent chemosensor for the selective detection of Al3+ based on aggregation-induced emission," Chemical Communications, vol. 48, pp. 416-418, 2012. [114]X. Y. Shi, H. Wang, T. Y. Han, X. Feng, B. Tong, J. B. Shi, et al., "A highly sensitive, single selective, real-time and "turn-on'' fluorescent sensor for Al3+ detection in aqueous media," Journal of Materials Chemistry, vol. 22, pp. 19296-19302, 2012. [115]O. Arrigoni and M. C. De Tullio, "Ascorbic acid: much more than just an antioxidant," Biochimica Et Biophysica Acta-General Subjects, vol. 1569, pp. 1-9, Jan 2002. [116]M. Heien, A. S. Khan, J. L. Ariansen, J. F. Cheer, P. E. M. Phillips, K. M. Wassum, et al., "Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10023-10028, Jul 2005. [117]V. E. Dutt and H. A. Mottola, "Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period," Analytical Chemistry, vol. 46, pp. 1777-1781, 1974. [118]Y. Chen, L. R. Guo, W. Chen, X. J. Yang, B. Jin, L. M. Zheng, et al., "3-mercaptopropylphosphonic acid modified gold electrode for electrochemical detection of dopamine," Bioelectrochemistry, vol. 75, pp. 26-31, Apr 2009. [119]Y. Liu, J. S. Huang, H. Q. Hou, and T. Y. You, "Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode," Electrochemistry Communications, vol. 10, pp. 1431-1434, Oct 2008. [120]D. X. Han, T. T. Han, C. S. Shan, A. Ivaska, and L. Niu, "Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode," Electroanalysis, vol. 22, pp. 2001-2008, Sep 2010. [121]H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, and X. H. Xia, "A Green Approach to the Synthesis of Graphene Nanosheets," Acs Nano, vol. 3, pp. 2653-2659, Sep 2009. [122]Y. Wang, Y. M. Li, L. H. Tang, J. Lu, and J. H. Li, "Application of graphene-modified electrode for selective detection of dopamine," Electrochemistry Communications, vol. 11, pp. 889-892, Apr 2009. [123]Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, "Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid," Biosensors & Bioelectronics, vol. 34, pp. 125-131, Apr 2012. [124]M. F. El-Kady, Y. L. Shao, and R. B. Kaner, "Graphene for batteries, supercapacitors and beyond," Nature Reviews Materials, vol. 1, Jul 2016. [125]J. Lin, C. G. Zhang, Z. Yan, Y. Zhu, Z. W. Peng, R. H. Hauge, et al., "3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance," Nano Letters, vol. 13, pp. 72-78, Jan 2013.
[126]A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, et al., "Flexible Electronics: The Next Ubiquitous Platform," Proceedings of the Ieee, vol. 100, pp. 1486-1517, May 2012. [127]J. R. Sheats, "Manufacturing and commercialization issues in organic electronics," Journal of Materials Research, vol. 19, pp. 1974-1989, Jul 2004. [128]X. L. Wang and G. Q. Shi, "Flexible graphene devices related to energy conversion and storage," Energy & Environmental Science, vol. 8, pp. 790-823, 2015. [129]Y. L. Shao, M. F. El-Kady, L. J. Wang, Q. H. Zhang, Y. G. Li, H. Z. Wang, et al., "Graphene-based materials for flexible supercapacitors," Chemical Society Reviews, vol. 44, pp. 3639-3665, 2015. [130]J. A. Rogers, T. Someya, and Y. G. Huang, "Materials and Mechanics for Stretchable Electronics," Science, vol. 327, pp. 1603-1607, Mar 2010. [131]T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, "Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes," Acs Nano, vol. 8, pp. 1039-1046, Jan 2014. [132]K. Jost, G. Dion, and Y. Gogotsi, "Textile energy storage in perspective," Journal of Materials Chemistry A, vol. 2, pp. 10776-10787, 2014. [133]G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, et al., "Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors," Nano Letters, vol. 11, pp. 2905-2911, Jul 2011. [134]Y. N. Meng, Y. Zhao, C. G. Hu, H. H. Cheng, Y. Hu, Z. P. Zhang, et al., "All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles," Advanced Materials, vol. 25, pp. 2326-2331, Apr 2013. [135]L. Kou, T. Q. Huang, B. N. Zheng, Y. Han, X. L. Zhao, K. Gopalsamy, et al., "Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics," Nature Communications, vol. 5, May 2014. [136]A. Facchetti and T. Marks, "ransparent electronics: from synthesis to applications," 2010. [137]X. W. Yang, C. Cheng, Y. F. Wang, L. Qiu, and D. Li, "Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage," Science, vol. 341, pp. 534-537, Aug 2013. [138]Y. X. Xu, Z. Y. Lin, X. Zhong, X. Q. Huang, N. O. Weiss, Y. Huang, et al., "Holey graphene frameworks for highly efficient capacitive energy storage," Nature Communications, vol. 5, Aug 2014. [139]M. F. El-Kady, M. Ihns, M. P. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, et al., "Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage," Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 4233-4238, Apr 2015. [140]胡啟章, "電化學原理與方法," 五南圖書出版股份有限公司, 2002. [141]Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, et al., "Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes," Biosensors & Bioelectronics, vol. 25, pp. 2366-2369, Jun 2010. [142]S. M. Li, S. Y. Yang, Y. S. Wang, C. H. Lien, H. W. Tien, S. T. Hsiao, et al., "Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid," Carbon, vol. 59, pp. 418-429, Aug 2013. [143]A. Du Pasquier, I. Plitz, S. Menocal, and G. Amatucci, "A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications," Journal of Power Sources, vol. 115, pp. 171-178, Mar 2003. [144]C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density," Nano Letters, vol. 10, pp. 4863-4868, Dec 2010. [145]N. V. Plechkova and K. R. Seddon, "Applications of ionic liquids in the chemical industry," Chemical Society Reviews, vol. 37, pp. 123-150, 2008. [146]A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, et al., "High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte," Journal of Power Sources, vol. 165, pp. 922-927, Mar 2007. [147]H. W. Wang, C. Guan, X. F. Wang, and H. J. Fan, "A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode," Small, vol. 11, pp. 1470-1477, Mar 2015. [148]K. Naoi, S. Ishimoto, J. Miyamoto, and W. Naoi, "Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices," Energy & Environmental Science, vol. 5, pp. 9363-9373, Nov 2012. [149]Z. S. Wu, W. C. Ren, D. W. Wang, F. Li, B. L. Liu, and H. M. Cheng, "High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors," Acs Nano, vol. 4, pp. 5835-5842, Oct 2010. [150]E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001. [151]K. Naoi, "'Nanohybrid Capacitor': The Next Generation Electrochemical Capacitors," Fuel Cells, vol. 10, pp. 825-833, Oct 2010. [152]M. Morita, Y. Noguchi, M. Tokita, N. Yoshimoto, K. Fujii, and T. Utsunomiya, "Influences of Residual Water in High Specific Surface Area Carbon on the Capacitor Performances in an Organic Electrolyte Solution," Electrochimica Acta, vol. 206, pp. 427-431, Jul 2016. [153]A. Krause and A. Balducci, "High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes," Electrochemistry Communications, vol. 13, pp. 814-817, Aug 2011. [154]S. Pohlmann and A. Balducci, "A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors," Electrochimica Acta, vol. 110, pp. 221-227, Nov 2013. [155]H. H. Shen and C. C. Hu, "Capacitance Enhancement of Activated Carbon Modified in the Propylene Carbonate Electrolyte," Journal of the Electrochemical Society, vol. 161, pp. A1828-A1835, 2014.
|