帳號:guest(18.219.89.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):季宇文
作者(外文):Chi, Yu-Wen
論文名稱(中文):石墨烯與氮摻雜石墨烯的合成與應用研究
論文名稱(外文):Synthesis and Applications of Graphene and Nitrogen-doped Graphene
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):溫添進
鄧熙聖
李元堯
衛子健
黃昆平
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032811
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:122
中文關鍵詞:石墨烯氮摻雜氧氣還原反應生物感測器超級電容
外文關鍵詞:GrapheneNitrogen-dopedORRBio-sensorSupercapacitors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:519
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究透過PECVD電漿方法製備了兩種型態的氮摻雜石墨烯,透
過控制製程參數,調整電漿強度可控制石墨烯的缺陷量,在藉由不
同缺陷的石墨烯進行氮元素的摻雜,發現氮原子與碳原子的鍵結態
可以被缺陷位置影響進而加以控制。本研究透過不同位置的氮摻雜
石墨烯粉末應用到氧氣還原反應的催化以及生化檢測上,發現有著異
的表現,其中HPN-MQGs可以在氧氣還原反應上達到3.94的電子
轉移。而高品質石墨烯作為uric acid(UA), ascorbic acid(AA) and
dopamine (DA)的檢測上則可以將偵測極限降低至2.5μM。之後為了
避免石墨烯粉末再堆疊,製作了無黏著劑(binder-free)的奈米石墨烯壁
(Graphene-Nano-Wall, GNW)以及氮摻雜奈米石墨烯壁 (Nitrogen-
doped Graphene Nano-Wall, NGNW)將之應用在製作有機系超級電容
的電極,透過GNW與NGNW可以分別提升正極的上限電位到
1.5V以及將負極從-2.0V增加到-2.5V,在組成一非對稱電雙層電容
器可以在商用電解液1M 四乙基四氟硼酸/碳酸丙烯酯Tetraethyl
ammonium tetrafluoroborate (TEABF4)/propylene carbonate (PC)中達到
4V的高電位窗,並且能量密度為53 Wh/kg以及功率密8000W/kg,
經過10000次充放電測試後可以維持100%的電容維持率。
This research prepared two types of graphene sheet through microwave
plasma torch chemical vapor deposition method (MPT-CVD). We fine-
tuned the parameters of process and controlled strength of plasma to
manipulate the defects of graphene and found a correlation between
nitrogen configuration and defect density. The nitrogen plasma has been demonstrated to effectively dope N atoms onto graphene sheets. The distribution of the N-doping types can be tuned by control of the
graphene defect density and the nitrogen plasma power to generate
multiple functionalities of the resultant materials. The medium-quality graphene doped at a high-power nitrogen plasma exhibits the highest
electrocatalytic activity toward the oxygen reduction reaction (ORR) with
a mean electron-transfer number of 3.94 which is comparable to that of
platinum. The high-quality graphene doped at a low-power nitrogen
plasma shows the high activity and selectivity for simultaneously
detecting uric acid (UA), ascorbic acid (AA), and dopamine (DA) and
detecting limit is 2.5 μM due to the high content of the pyridinic-N
structure. We also produced the binder-free, vertically grown graphene-nano-walls (GNW) and nitrogen-doped graphene-nano-walls (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 V to 1.5 V (vs. Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M Tetraethyl ammonium tetrafluoroborate (TEABF4)/propylene carbonate (PC) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 53 Wh kg-1 and specific power of 8 kW kg-1 and ca. 100% capacitance retention after 10,000 cycles charge-discharge.
中文摘要 ...1
ABSTRACT...2
誌謝...3
目錄...4
圖目錄...9
表目錄...15
第一章 緒論與研究背景介紹...16
第二章 文獻回顧與研究動機...18
2.1 石墨烯的製備...18
2.2 摻雜石墨烯...24
2.3 各類電漿源成長GNW...26
2.3.1 微波電漿...29
2.4 垂直成長石墨烯(VERTICAL ORIENTED GRAPHENE, VG)...30
2.5拉曼光譜 (RAMAN SPECTROSCOPY)石墨烯材料分析...36
2.6 石墨烯的應用研究...37
2.6.1石墨烯在氧氣還原催化應用...37
2.6.2 石墨烯應用於生物感測...40
2.6.3 石墨烯在超級電容儲能應用...42
2.7 電化學分析方法...48
2.8 研究動機...61
第三章 藥品、儀器與實驗方法...63
3.1實驗藥品...63
3.2 實驗設備...64
3.3 實驗方法...65
3.3.1 實驗裝置...65
3.3.2 石墨烯粉末與氮摻雜石墨烯粉末的合成...65
3.3.3 GNW AND NGNW的製備...66
3.3.4 材料分析...67
3.3.4 電化學量測與分析...67
第四章 氮摻雜石墨烯製作應用於觸媒和生物感測器...70
4.1 石墨稀層數與缺陷的控制...70
4.2氮摻雜石墨烯的控制與成長...76
4.3 氮摻雜石墨烯粉末在氧氣還原反應觸媒與多巴胺檢測的應用...79
第五章 氮摻雜奈米石墨烯壁應用於高電壓超級電容...89
5.1垂直成長奈米石墨烯壁(GNW)與氮摻雜奈米石墨烯壁(NGNW)材料鑑定...92
5.2 垂直成長BINDER-FREE GNW提升上限電位窗...96
5.3 高電壓超級電容驗證結果...98
第六章 總結與未來展望...101
第七章 參考文獻...103
[1]Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 2008.
[2]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, Jun 2008.
[3]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, Mar 2008.
[4]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502, Oct 2008.
[5]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
[6]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, et al., "Detection of individual gas molecules adsorbed on graphene," Nature Materials, vol. 6, pp. 652-655, Sep 2007.
[7]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial," Angewandte Chemie-International Edition, vol. 48, pp. 7752-7777, 2009.
[8]M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chemical Reviews, vol. 110, pp. 132-145, Jan 2010.
[9]J. T. Clarke, "SURFACE AREA MEASUREMENT OF GRAPHITE USING THE GAMMA-RADIATION OF KR85," Journal of Physical Chemistry, vol. 68, pp. 884-&, 1964.
[10]X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nature Nanotechnology, vol. 3, pp. 491-495, Aug 2008.
[11] A. Shukla, R. Kumar, J. Mazher, and A. Balan, "Graphene made easy: High quality, large-area samples," Solid State Communications, vol. 149, pp. 718-721, May 2009.
[12] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, et al., "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, pp. 563-568, Sep 2008.
[13] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, et al., "Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions," Journal of the American Chemical Society, vol. 131, pp. 3611-3620, Mar 2009.
[14] C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, and P. C. Eklund, "Debundling and dissolution of single-walled carbon nanotubes in amide solvents," Journal of the American Chemical Society, vol. 126, pp. 6095-6105, May 2004.
[15] U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, "High-Concentration Solvent Exfoliation of Graphene," Small, vol. 6, pp. 864-871, Apr 2010.
[16] J. N. Coleman, "Liquid-Phase Exfoliation of Nanotubes and Graphene," Advanced Functional Materials, vol. 19, pp. 3680-3695, Dec 2009.
[17] J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, "Structural coherency of graphene on Ir(111)," Nano Letters, vol. 8, pp. 565-570, Feb 2008.
[18] P. W. Sutter, J. I. Flege, and E. A. Sutter, "Epitaxial graphene on ruthenium," Nature Materials, vol. 7, pp. 406-411, May 2008.
[19]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, Feb 2009.
[20] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, Jan 2009.
[21]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 2009.
[22]C. D. Kim, B. K. Min, and W. S. Jung, "Preparation of graphene sheets by the reduction of carbon monoxide," Carbon, vol. 47, pp. 1610-1612, May 2009.
[23] A. G. Cano-Marquez, F. J. Rodriguez-Macias, J. Campos-Delgado, C. G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, et al., "Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes," Nano Letters, vol. 9, pp. 1527-1533, Apr 2009.
[24] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, pp. 872-U5, Apr 2009.
[25] A. Sinitskii, D. V. Kosynkin, A. Dimiev, and J. M. Tour, "Corrugation of Chemically Converted Graphene Monolayers on SiO2," Acs Nano, vol. 4, pp. 3095-3102, Jun 2010.
[26] L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, and H. J. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, pp. 877-880, Apr 2009.
[27] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., "Functionalized single graphene sheets derived from splitting graphite oxide," Journal of Physical Chemistry B, vol. 110, pp. 8535-8539, May 2006.
[28] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, et al., "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, vol. 19, pp. 4396-4404, Sep 2007.
[29] A. V. Murugan, T. Muraliganth, and A. Manthiram, "Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage," Chemistry of Materials, vol. 21, pp. 5004-5006, Nov 2009.
[30] Z. T. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, "High Yield Preparation of Macroscopic Graphene Oxide Membranes," Journal of the American Chemical Society, vol. 131, pp. 898-+, Jan 2009.
[31] W. F. Chen, L. F. Yan, and P. R. Bangal, "Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves," Carbon, vol. 48, pp. 1146-1152, Apr 2010.
[32] M. Choucair, P. Thordarson, and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis and sonication," Nature Nanotechnology, vol. 4, pp. 30-33, Jan 2009.
[33] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, "A chemical route to graphene for device applications," Nano Letters, vol. 7, pp. 3394-3398, Nov 2007.
[34] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217-224, Apr 2009.
[35] L. Zhang, X. Li, Y. Huang, Y. F. Ma, X. J. Wan, and Y. S. Chen, "Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation," Carbon, vol. 48, pp. 2367-2371, Jul 2010.
[36] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, vol. 3, pp. 101-105, Feb 2008.
[37] W. S. Hummers and R. E. Offeman, "PREPARATION OF GRAPHITIC OXIDE," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
[38] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, et al., "Preparation and characterization of graphene oxide paper," Nature, vol. 448, pp. 457-460, Jul 2007.
[39] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, Jun 2007.
[40] Y. Si and E. T. Samulski, "Synthesis of water soluble graphene," Nano Letters, vol. 8, pp. 1679-1682, Jun 2008.
[41] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, et al., "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation," Advanced Materials, vol. 20, pp. 4490-4493, Dec 2008.
[42] X. C. Dong, C. Y. Su, W. J. Zhang, J. W. Zhao, Q. D. Ling, W. Huang, et al., "Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties," Physical Chemistry Chemical Physics, vol. 12, pp. 2164-2169, 2010.
[43] S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, "Solution properties of graphite and graphene," Journal of the American Chemical Society, vol. 128, pp. 7720-7721, Jun 2006.
[44] J. Liu, H. Jeong, J. Liu, K. Lee, J. Y. Park, Y. H. Ahn, et al., "Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents," Carbon, vol. 48, pp. 2282-2289, Jul 2010.
[45] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, "Substrate-free gas-phase synthesis of graphene sheets," Nano Letters, vol. 8, pp. 2012-2016, Jul 2008.
[46] R. A. Nistor, D. M. Newns, and G. J. Martyna, "The Role of Chemistry in Graphene Doping for Carbon-Based Electronics," Acs Nano, vol. 5, pp. 3096-3103, Apr 2011.

[47] Y. Y. Shao, S. Zhang, M. H. Engelhard, G. S. Li, G. C. Shao, Y. Wang, et al., "Nitrogen-doped graphene and its electrochemical applications," Journal of Materials Chemistry, vol. 20, pp. 7491-7496, 2010.
[48] Y. M. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, "Work Function Engineering of Graphene Electrode via Chemical Doping," Acs Nano, vol. 4, pp. 2689-2694, May 2010.
[49] A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, "Charge transport in chemically doped 2D graphene," Physical Review Letters, vol. 101, Jul 2008.
[50] M. Wu, C. Cao, and J. Z. Jiang, "Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study," Nanotechnology, vol. 21, Dec 2010.
[51] M. Deifallah, P. F. McMillan, and F. Cora, "Electronic and structural properties of two-dimensional carbon nitride graphenes," Journal of Physical Chemistry C, vol. 112, pp. 5447-5453, Apr 2008.
[52] N. Jung, N. Kim, S. Jockusch, N. J. Turro, P. Kim, and L. Brus, "Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation," Nano Letters, vol. 9, pp. 4133-4137, Dec 2009.
[53] C. Attaccalite and A. Rubio, "Fermi velocity renormalization in doped graphene," Physica Status Solidi B-Basic Solid State Physics, vol. 246, pp. 2523-2526, Dec 2009.
[54] S. S. Yu, W. T. Zheng, C. Wang, and Q. Jiang, "Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene," Acs Nano, vol. 4, pp. 7619-7629, Dec 2010.
[55] L. S. Panchokarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, et al., "Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene," Advanced Materials, vol. 21, pp. 4726-+, Dec 2009.
[56] L. P. Zhang and Z. H. Xia, "Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells," Journal of Physical Chemistry C, vol. 115, pp. 11170-11176, Jun 2011.
[57] K. P. Gong, F. Du, Z. H. Xia, M. Durstock, and L. M. Dai, "Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction," Science, vol. 323, pp. 760-764, Feb 2009.
[58] L. T. Qu, Y. Liu, J. B. Baek, and L. M. Dai, "Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells," Acs Nano, vol. 4, pp. 1321-1326, Mar 2010.
[59] E. J. Biddinger, D. von Deak, and U. S. Ozkan, "Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts," Topics in Catalysis, vol. 52, pp. 1566-1574, Oct 2009.
[60] J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. JimenezMateos, "Origin of the large N is binding energy in X-ray photoelectron spectra of calcined carbonaceous materials," Journal of the American Chemical Society, vol. 118, pp. 8071-8076, Aug 1996.
[61] C. P. Ewels and M. Glerup, "Nitrogen doping in carbon nanotubes," Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1345-1363, Sep 2005.

[62] S. Kundu, T. C. Nagaiah, W. Xia, Y. M. Wang, S. Van Dommele, J. H. Bitter, et al., "Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction," Journal of Physical Chemistry C, vol. 113, pp. 14302-14310, Aug 2009.
[63] R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, "Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes," Chemical Communications, pp. 4891-4893, 2008.
[64] H. B. Wang, T. Maiyalagan, and X. Wang, "Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications," Acs Catalysis, vol. 2, pp. 781-794, May 2012.
[65] Z. Bo, Y. Yang, J. H. Chen, K. H. Yu, J. H. Yan, and K. F. Cen, "Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets," Nanoscale, vol. 5, pp. 5180-5204, 2013.
[66] Junhong Chen, Zheng Bo, and G. Lu, "Vertically-Oriented Graphene PECVD Synthesis and Applications," 2015.
[67] H. Sugai, I. Ghanashev, and K. Mizuno, "Transition of electron heating mode in a planar microwave discharge at low pressures," Applied Physics Letters, vol. 77, pp. 3523-3525, Nov 2000.
[68] M. Nagatsu, G. Xu, I. Ghanashev, M. Kanoh, and H. Sugai, "Mode identification of surface waves excited in a planar microwave discharge," Plasma Sources Science & Technology, vol. 6, pp. 427-434, Aug 1997.
[69] Y. H. Wu, P. W. Qiao, T. C. Chong, and Z. X. Shen, "Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition," Advanced Materials, vol. 14, pp. 64-67, Jan 2002.
[70] Y. Zhang, J. L. Du, S. Tang, P. Liu, S. Z. Deng, J. Chen, et al., "Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology," Nanotechnology, vol. 23, Jan 2012.
[71] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, et al., "Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes," Nano Letters, vol. 11, pp. 2472-2477, Jun 2011.
[72] J. R. Miller, R. A. Outlaw, and B. C. Holloway, "Graphene Double-Layer Capacitor with ac Line-Filtering Performance," Science, vol. 329, pp. 1637-1639, Sep 2010.
[73] K. X. Sheng, Y. Q. Sun, C. Li, W. J. Yuan, and G. Q. Shi, "Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering," Scientific Reports, vol. 2, Feb 2012.
[74] Z. Bo, Z. H. Wen, H. Kim, G. H. Lu, K. H. Yu, and J. H. Chen, "One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal," Carbon, vol. 50, pp. 4379-4387, Oct 2012.
[75] L. Wang, U. J. Erasquin, M. R. Zhao, L. Ren, M. Y. Zhang, G. J. Cheng, et al., "Stability, Antimicrobial Activity, and Cytotoxicity of Poly(amidoamine) Dendrimers on Titanium Substrates," Acs Applied Materials & Interfaces, vol. 3, pp. 2885-2894, Aug 2011.
[76] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, pp. 845-854, Nov 2008.

[77] J. R. Miller and P. Simon, "Materials science - Electrochemical capacitors for energy management," Science, vol. 321, pp. 651-652, Aug 2008.
[78] L. B. Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, et al., "Stretchable, Porous, and Conductive Energy Textiles," Nano Letters, vol. 10, pp. 708-714, Feb 2010.
[79] M. C. Tsai, J. C. Chang, H. S. Sheu, H. T. Chiu, and C. Y. Lee, "Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process," Chemistry of Materials, vol. 21, pp. 499-505, Feb 2009.
[80] P. C. Chen, M. C. Tsai, H. C. Chen, I. N. Lin, H. S. Sheu, Y. S. Lin, et al., "Self-carbonized lamellar nano/micro hierarchical structure C/TiO2 and its Li-ion intercalation performance," Journal of Materials Chemistry, vol. 22, pp. 5349-5355, 2012.
[81] S. P. Tung, T. K. Huang, C. Y. Lee, and H. T. Chiu, "Electrochemical growth of gold nanostructures on carbon paper for alkaline direct glucose fuel cell," Rsc Advances, vol. 2, pp. 1068-1073, 2012.
[82]X. H. Lu, D. Z. Zheng, T. Zhai, Z. Q. Liu, Y. Y. Huang, S. L. Xie, et al., "Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor," Energy & Environmental Science, vol. 4, pp. 2915-2921, Aug 2011.
[83] X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, et al., "WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors," Advanced Materials, vol. 24, pp. 938-+, Feb 2012.
[84] Z. Y. Lin, Y. Liu, Y. G. Yao, O. J. Hildreth, Z. Li, K. Moon, et al., "Superior Capacitance of Functionalized Graphene," Journal of Physical Chemistry C, vol. 115, pp. 7120-7125, Apr 2011.
[85] R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000.
[86] M. Gouy, "Sur la constitution de la charge électrique à la surface d'un électrolyte," J. Phys. Theor. Appl., vol. 9, pp. 457-468, 1910.
[87] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy," Nano Letters, vol. 10, pp. 751-758, Mar 2010.
[88] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, "Specific surface area of carbon nanotubes and bundles of carbon nanotubes," Carbon, vol. 39, pp. 507-514, 2001.
[89] Z. M. Peng and H. Yang, "Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property," Nano Today, vol. 4, pp. 143-164, Apr 2009.
[90] Y. H. Bing, H. S. Liu, L. Zhang, D. Ghosh, and J. J. Zhang, "Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction," Chemical Society Reviews, vol. 39, pp. 2184-2202, 2010.
[91] C. W. B. Bezerra, L. Zhang, K. C. Lee, H. S. Liu, A. L. B. Marques, E. P. Marques, et al., "A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction," Electrochimica Acta, vol. 53, pp. 4937-4951, Jun 2008.

[92] B. Wang, "Recent development of non-platinum catalysts for oxygen reduction reaction," Journal of Power Sources, vol. 152, pp. 1-15, Dec 2005.
[93] A. Brouzgou, S. Q. Song, and P. Tsiakaras, "Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects," Applied Catalysis B-Environmental, vol. 127, pp. 371-388, Oct 2012.
[94] G. C. K. Liu and J. R. Dahn, "Fe-N-C oxygen reduction catalysts supported on vertically aligned carbon nanotubes," Applied Catalysis a-General, vol. 347, pp. 43-49, Sep 2008.
[95] F. Y. Cheng, J. Shen, W. Q. Ji, Z. L. Tao, and J. Chen, "Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction," Acs Applied Materials & Interfaces, vol. 1, pp. 460-466, Feb 2009.
[96] R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S. C. Barton, "Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells," Applied Catalysis B-Environmental, vol. 92, pp. 209-216, Oct 2009.
[97] Y. H. Lu, H. B. Xu, J. Wang, and X. F. Kong, "Oxygen reduction mechanism on copper in a 0.5 M H2SO4," Electrochimica Acta, vol. 54, pp. 3972-3978, Jun 2009.
[98] A. Manthiram, A. V. Murugan, A. Sarkar, and T. Muraliganth, "Nanostructured electrode materials for electrochemical energy storage and conversion," Energy & Environmental Science, vol. 1, pp. 621-638, 2008.


[99] E. Antolini, "Palladium in fuel cell catalysis," Energy & Environmental Science, vol. 2, pp. 915-931, 2009.
[100]L. Xiao, L. Zhuang, Y. Liu, J. T. Lu, and H. D. Abruna, "Activating Pd by Morphology Tailoring for Oxygen Reduction," Journal of the American Chemical Society, vol. 131, pp. 602-608, Jan 2009.
[101]S. Maldonado and K. J. Stevenson, "Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes," Journal of Physical Chemistry B, vol. 109, pp. 4707-4716, Mar 2005.
[102]S. Y. Deng, G. Q. Jian, J. P. Lei, Z. Hu, and H. X. Ju, "A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes," Biosensors & Bioelectronics, vol. 25, pp. 373-377, Oct 2009.
[103]R. L. Liu, D. Q. Wu, X. L. Feng, and K. Mullen, "Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction," Angewandte Chemie-International Edition, vol. 49, pp. 2565-2569, 2010.
[104]X. A. Xu, S. J. Jiang, Z. Hu, and S. Q. Liu, "Nitrogen-Doped Carbon Nanotubes: High Electrocatalytic Activity toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing," Acs Nano, vol. 4, pp. 4292-4298, Jul 2010.
[105]J. Ozaki, N. Kimura, T. Anahara, and A. Oya, "Preparation and oxygen reduction activity of BN-doped carbons," Carbon, vol. 45, pp. 1847-1853, Aug 2007.

[106]G. Liu, X. G. Li, P. Ganesan, and B. N. Popov, "Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon," Applied Catalysis B-Environmental, vol. 93, pp. 156-165, Nov 2009.
[107]K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, and S. I. Woo, "Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media," Electrochemistry Communications, vol. 12, pp. 1052-1055, Aug 2010.
[108]T. Iwazaki, H. S. Yang, R. Obinata, W. Sugimoto, and Y. Takasu, "Oxygen-reduction activity of silk-derived carbons," Journal of Power Sources, vol. 195, pp. 5840-5847, Sep 2010.
[109]L. P. Shi, Q. M. Gao, and Y. H. Wu, "High Performance Oxide Functionalized Nitrogen-Doped Mesocellular Carbon Foam for Biosensor Construction," Electroanalysis, vol. 21, pp. 715-722, Mar 2009.
[110]Y. Wang, Y. Y. Shao, D. W. Matson, J. H. Li, and Y. H. Lin, "Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing," Acs Nano, vol. 4, pp. 1790-1798, Apr 2010.
[111]L. Zhang, Z. Y. Zhang, R. P. Liang, Y. H. Li, and J. D. Qiu, "Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal" Aggregation-Induced Photoluminescence Enhancement," Analytical Chemistry, vol. 86, pp. 4423-4430, May 2014.
[112]Z. T. Fan, Y. C. Li, X. H. Li, L. Z. Fan, S. X. Zhou, D. C. Fang, et al., "Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging," Carbon, vol. 70, pp. 149-156, Apr 2014.
[113]T. Y. Han, X. Feng, B. Tong, J. B. Shi, L. Chen, J. G. Zhi, et al., "A novel "turn-on'' fluorescent chemosensor for the selective detection of Al3+ based on aggregation-induced emission," Chemical Communications, vol. 48, pp. 416-418, 2012.
[114]X. Y. Shi, H. Wang, T. Y. Han, X. Feng, B. Tong, J. B. Shi, et al., "A highly sensitive, single selective, real-time and "turn-on'' fluorescent sensor for Al3+ detection in aqueous media," Journal of Materials Chemistry, vol. 22, pp. 19296-19302, 2012.
[115]O. Arrigoni and M. C. De Tullio, "Ascorbic acid: much more than just an antioxidant," Biochimica Et Biophysica Acta-General Subjects, vol. 1569, pp. 1-9, Jan 2002.
[116]M. Heien, A. S. Khan, J. L. Ariansen, J. F. Cheer, P. E. M. Phillips, K. M. Wassum, et al., "Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10023-10028, Jul 2005.
[117]V. E. Dutt and H. A. Mottola, "Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period," Analytical Chemistry, vol. 46, pp. 1777-1781, 1974.
[118]Y. Chen, L. R. Guo, W. Chen, X. J. Yang, B. Jin, L. M. Zheng, et al., "3-mercaptopropylphosphonic acid modified gold electrode for electrochemical detection of dopamine," Bioelectrochemistry, vol. 75, pp. 26-31, Apr 2009.
[119]Y. Liu, J. S. Huang, H. Q. Hou, and T. Y. You, "Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode," Electrochemistry Communications, vol. 10, pp. 1431-1434, Oct 2008.
[120]D. X. Han, T. T. Han, C. S. Shan, A. Ivaska, and L. Niu, "Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode," Electroanalysis, vol. 22, pp. 2001-2008, Sep 2010.
[121]H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, and X. H. Xia, "A Green Approach to the Synthesis of Graphene Nanosheets," Acs Nano, vol. 3, pp. 2653-2659, Sep 2009.
[122]Y. Wang, Y. M. Li, L. H. Tang, J. Lu, and J. H. Li, "Application of graphene-modified electrode for selective detection of dopamine," Electrochemistry Communications, vol. 11, pp. 889-892, Apr 2009.
[123]Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, "Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid," Biosensors & Bioelectronics, vol. 34, pp. 125-131, Apr 2012.
[124]M. F. El-Kady, Y. L. Shao, and R. B. Kaner, "Graphene for batteries, supercapacitors and beyond," Nature Reviews Materials, vol. 1, Jul 2016.
[125]J. Lin, C. G. Zhang, Z. Yan, Y. Zhu, Z. W. Peng, R. H. Hauge, et al., "3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance," Nano Letters, vol. 13, pp. 72-78, Jan 2013.

[126]A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, et al., "Flexible Electronics: The Next Ubiquitous Platform," Proceedings of the Ieee, vol. 100, pp. 1486-1517, May 2012.
[127]J. R. Sheats, "Manufacturing and commercialization issues in organic electronics," Journal of Materials Research, vol. 19, pp. 1974-1989, Jul 2004.
[128]X. L. Wang and G. Q. Shi, "Flexible graphene devices related to energy conversion and storage," Energy & Environmental Science, vol. 8, pp. 790-823, 2015.
[129]Y. L. Shao, M. F. El-Kady, L. J. Wang, Q. H. Zhang, Y. G. Li, H. Z. Wang, et al., "Graphene-based materials for flexible supercapacitors," Chemical Society Reviews, vol. 44, pp. 3639-3665, 2015.
[130]J. A. Rogers, T. Someya, and Y. G. Huang, "Materials and Mechanics for Stretchable Electronics," Science, vol. 327, pp. 1603-1607, Mar 2010.
[131]T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, "Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes," Acs Nano, vol. 8, pp. 1039-1046, Jan 2014.
[132]K. Jost, G. Dion, and Y. Gogotsi, "Textile energy storage in perspective," Journal of Materials Chemistry A, vol. 2, pp. 10776-10787, 2014.
[133]G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, et al., "Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors," Nano Letters, vol. 11, pp. 2905-2911, Jul 2011.
[134]Y. N. Meng, Y. Zhao, C. G. Hu, H. H. Cheng, Y. Hu, Z. P. Zhang, et al., "All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles," Advanced Materials, vol. 25, pp. 2326-2331, Apr 2013.
[135]L. Kou, T. Q. Huang, B. N. Zheng, Y. Han, X. L. Zhao, K. Gopalsamy, et al., "Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics," Nature Communications, vol. 5, May 2014.
[136]A. Facchetti and T. Marks, "ransparent electronics: from synthesis to applications," 2010.
[137]X. W. Yang, C. Cheng, Y. F. Wang, L. Qiu, and D. Li, "Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage," Science, vol. 341, pp. 534-537, Aug 2013.
[138]Y. X. Xu, Z. Y. Lin, X. Zhong, X. Q. Huang, N. O. Weiss, Y. Huang, et al., "Holey graphene frameworks for highly efficient capacitive energy storage," Nature Communications, vol. 5, Aug 2014.
[139]M. F. El-Kady, M. Ihns, M. P. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, et al., "Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage," Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 4233-4238, Apr 2015.
[140]胡啟章, "電化學原理與方法," 五南圖書出版股份有限公司,
2002.
[141]Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, et al., "Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes," Biosensors & Bioelectronics, vol. 25, pp. 2366-2369, Jun 2010.
[142]S. M. Li, S. Y. Yang, Y. S. Wang, C. H. Lien, H. W. Tien, S. T. Hsiao, et al., "Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid," Carbon, vol. 59, pp. 418-429, Aug 2013.
[143]A. Du Pasquier, I. Plitz, S. Menocal, and G. Amatucci, "A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications," Journal of Power Sources, vol. 115, pp. 171-178, Mar 2003.
[144]C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density," Nano Letters, vol. 10, pp. 4863-4868, Dec 2010.
[145]N. V. Plechkova and K. R. Seddon, "Applications of ionic liquids in the chemical industry," Chemical Society Reviews, vol. 37, pp. 123-150, 2008.
[146]A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, et al., "High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte," Journal of Power Sources, vol. 165, pp. 922-927, Mar 2007.
[147]H. W. Wang, C. Guan, X. F. Wang, and H. J. Fan, "A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode," Small, vol. 11, pp. 1470-1477, Mar 2015.
[148]K. Naoi, S. Ishimoto, J. Miyamoto, and W. Naoi, "Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices," Energy & Environmental Science, vol. 5, pp. 9363-9373, Nov 2012.
[149]Z. S. Wu, W. C. Ren, D. W. Wang, F. Li, B. L. Liu, and H. M. Cheng, "High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors," Acs Nano, vol. 4, pp. 5835-5842, Oct 2010.
[150]E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001.
[151]K. Naoi, "'Nanohybrid Capacitor': The Next Generation Electrochemical Capacitors," Fuel Cells, vol. 10, pp. 825-833, Oct 2010.
[152]M. Morita, Y. Noguchi, M. Tokita, N. Yoshimoto, K. Fujii, and T. Utsunomiya, "Influences of Residual Water in High Specific Surface Area Carbon on the Capacitor Performances in an Organic Electrolyte Solution," Electrochimica Acta, vol. 206, pp. 427-431, Jul 2016.
[153]A. Krause and A. Balducci, "High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes," Electrochemistry Communications, vol. 13, pp. 814-817, Aug 2011.
[154]S. Pohlmann and A. Balducci, "A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors," Electrochimica Acta, vol. 110, pp. 221-227, Nov 2013.
[155]H. H. Shen and C. C. Hu, "Capacitance Enhancement of Activated Carbon Modified in the Propylene Carbonate Electrolyte," Journal of the Electrochemical Society, vol. 161, pp. A1828-A1835, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *