|
[1] Hall, Peter J. "Energy storage: The route to liberation from the fossil fuel economy" Energy Policy 36.12 (2008): 4363-4367. [2] Size, Earphones Headphones Market. "Share Trends Analysis Report by Product." By Application, By Region, And Segment Forecasts 2027 (2020). [3] International Energy Agency. Global EV Outlook 2019; International Energy Agency: Paris, France, 2019; p. 231. [4] Yun, Qinbai, et al. "Chemical dealloying derived 3D porous current collector for Li metal anodes." Advanced Materials 28.32 (2016): 6932-6939. [5] Nitta, Naoki, et al. "Li-ion battery materials: present and future." Materials today 18.5 (2015): 252-264. [6] Nazri, Gholam-Abbas, and Gianfranco Pistoia, eds. Lithium batteries: science and technology. Springer Science & Business Media, 2008. [7] Broussely, Michel, and Gianfranco Pistoia, eds. Industrial applications of batteries: from cars to aerospace and energy storage. Elsevier, 2007. [8] Abraham, K. M., D. M. Pasquariello, and D. A. Schwartz. "Practical rechargeable lithium batteries." Journal of Power Sources 26.1-2 (1989): 247-255. [9] Brandt, K., and F. C. Laman. "Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries." Journal of power sources 25.4 (1989): 265-276. [10] Dan, P., et al. "Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell." Journal of power sources 54.1 (1995): 143-145. [11] Etacheri, Vinodkumar, et al. "Challenges in the development of advanced Li-ion batteries: a review." Energy & Environmental Science 4.9 (2011): 3243-3262. [12] Verma, Pallavi, Pascal Maire, and Petr Novák. "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries." Electrochimica Acta 55.22 (2010): 6332-6341. [13] Guyomard, D., and Jean-Marie Tarascon. "Li Metal‐Free Rechargeable LiMn2 O 4/Carbon Cells: Their Understanding and Optimization." Journal of the Electrochemical Society 139.4 (1992): 937. [14] Tarascon, J. M., et al. "Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2 O 4." Journal of The Electrochemical Society 141.6 (1994): 1421. [15] Lu, Wenquan, et al. "Electrochemical and thermal behaviour of LiNi0. 8Co0. 2O2 cathode in sealed 18650 Li-ion cells." Journal of applied electrochemistry 30.10 (2000): 1119-1124. [16] Aurbach, Doron, Yair Ein‐Ely, and Arie Zaban. "The surface chemistry of lithium electrodes in alkyl carbonate solutions." Journal of the Electrochemical Society 141.1 (1994): L1. [17] Balbuena, Perla B., and Yi Xuan Wang, eds. Lithium-ion batteries: solid-electrolyte interphase. World Scientific, 2004. [18] Padhi, Akshaya K., Kirakodu S. Nanjundaswamy, and John B. Goodenough. "Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries." Journal of the electrochemical society 144.4 (1997): 1188. [19] Zhang, Wei-Jun. "Structure and performance of LiFePO4 cathode materials: A review." Journal of Power Sources 196.6 (2011): 2962-2970. [20] Kang, Byoungwoo, and Gerbrand Ceder. "Battery materials for ultrafast charging and discharging." Nature 458.7235 (2009): 190-193. [21] Yaakov, David, et al. "On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range." Journal of the Electrochemical Society 157.12 (2010): A1383. [22] Liu, Yan, et al. "Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2." Journal of Electroanalytical Chemistry 628.1-2 (2009): 73-80. [23] Majumder, S. B., S. Nieto, and R. S. Katiyar. "Synthesis and electrochemical properties of LiNi0. 80 (Co0. 20− xAlx) O2 (x= 0.0 and 0.05) cathodes for Li ion rechargeable batteries." Journal of power sources 154.1 (2006): 262-267. [24] Xiao, Jie, Natasha A. Chernova, and M. Stanley Whittingham. "Influence of Manganese Content on the Performance of LiNi0. 9− y Mn y Co0. 1O2 (0.45≤ y≤ 0.60) as a Cathode Material for Li-Ion Batteries." Chemistry of Materials 22.3 (2010): 1180-1185. [25] Cameán, Ignacio, et al. "On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries." Fuel 89.5 (2010): 986-991. [26] Zhang, Sheng Shui. "A review on the separators of liquid electrolyte Li-ion batteries." Journal of power sources 164.1 (2007): 351-364. [27] Xu, Li‐Yang, et al. "Effect of external field on the lamellar crystalline structure and properties of poly (4‐methyl‐1‐pentene) casting film." Journal of Applied Polymer Science 136.13 (2019): 47293 [28] Tabatabaei, Seyed H., Pierre J. Carreau, and Abdellah Ajji. "Microporous membranes obtained from PP/HDPE multilayer films by stretching." Journal of membrane science 345.1-2 (2009): 148-159. [29] Saffar, Amir, et al. "Influence of stretching on the performance of polypropylene-based microporous membranes." Industrial & Engineering Chemistry Research 53.36 (2014): 14014-14021. [30] Tabatabaei, Seyed H., Pierre J. Carreau, and Abdellah Ajji. "Microporous membranes obtained from polypropylene blend films by stretching." Journal of Membrane Science 325.2 (2008): 772-782. [31] Arora, Pankaj, and Zhengming Zhang. "Battery separators." Chemical reviews 104.10 (2004): 4419-4462. [32] Yang, Min, and Junbo Hou. "Membranes in lithium ion batteries." Membranes 2.3 (2012): 367-383. [32] Kim, Jun Young, Yongbeom Lee, and Dae Young Lim. "Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery." Electrochimica Acta 54.14 (2009): 3714-3719. [33] Moutloali, R., and K. Sikhwivhilu. "Modification of polyethersulfone by grafting acrylic-acid based monomers for improved hydrophilicity and pH-responsive properties of membranes." (2016). [34] Kim, Ki Jae, et al. "Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride–hexafluoropropylene co-polymer for Li-ion batteries." Journal of power Sources 198 (2012): 298-302. [35] Jung, Yoon Seok, et al. "Improved functionality of lithium‐ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes." Advanced Energy Materials 2.8 (2012): 1022-1027. [36] Tao, Zhi-Yong, et al. "Development and evaluation of a prototype non-woven fabric filter for purification of malaria-infected blood." Malaria journal 10.1 (2011): 1-8. [37] Kritzer, Peter. "Nonwoven support material for improved separators in Li–polymer batteries." Journal of power sources 161.2 (2006): 1335-1340. [38] Ashida, Tetsuya, and Takahiro Tsukuda. "Nonwoven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same." U.S. Patent No. 6,200,706. 13 Mar. 2001. [39] Lee, Hun, et al. "A review of recent developments in membrane separators for rechargeable lithium-ion batteries." Energy & Environmental Science 7.12 (2014): 3857-3886. [40] Miao, Yue-E., et al. "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries." Journal of Power Sources 226 (2013): 82-86. [41] Kim, Jeong Rae, et al. "Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries." Electrochimica Acta 50.1 (2004): 69-75. [42] Hwang, Kyungho, Byeongmin Kwon, and Hongsik Byun. "Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators." Journal of membrane science 378.1-2 (2011): 111-116. [43] Choi, Sung-Seen, et al. "Electrospun PVDF nanofiber web as polymer electrolyte or separator." Electrochimica Acta 50.2-3 (2004): 339-343. [44] Khan, Waseem Sabir, et al. "Enhancing thermal and ionic conductivities of electrospun PAN and PMMA nanofibers by graphene nanoflake additions for battery‐separator applications." International Journal of Energy Research 38.15 (2014): 2044-2051. [45] Sabetzadeh, Niloufar, Ali Akbar Gharehaghaji, and Mehran Javanbakht. "Porous PAN micro/nanofiber separators for enhanced lithium-ion battery performance." Solid State Ionics 325 (2018): 251-257. [46] Miao, Yue-E., et al. "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries." Journal of Power Sources 226 (2013): 82-86. [47] Shayapat, Jaritphun, Ok Hee Chung, and Jun Seo Park. "Electrospun polyimide-composite separator for lithium-ion batteries." Electrochimica Acta 170 (2015): 110-121. [48] Pai, Jui-Yu, et al. "Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells." Journal of Power Sources 482 (2021): 229054. [49] Locquet, J-P., et al. "Doubling the critical temperature of La 1.9 Sr 0.1 CuO 4 using epitaxial strain." Nature 394.6692 (1998): 453-456. [50] Croce, F., et al. "Physical and chemical properties of nanocomposite polymer electrolytes." The Journal of Physical Chemistry B 103.48 (1999): 10632-10638. [51] Kim, Young-Jin, et al. "Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte." Materials Chemistry and Physics 127.1-2 (2011): 137-142. [52] Chung, S. H., et al. "Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides." Journal of power sources 97 (2001): 644-648. [53] Kinouchi, Masayuki, et al. "Battery separator and lithium secondary battery." U.S. Patent No. 6,627,346. 30 Sep. 2003. [54] Kim, Min, et al. "Preparation of a trilayer separator and its application to lithium-ion batteries." Journal of Power Sources 195.24 (2010): 8302-8305. [55] Jeong, Hyun-Seok, and Sang-Young Lee. "Closely packed SiO2 nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries." Journal of Power Sources 196.16 (2011): 6716-6722. [56] Rhee, Jang-weon, et al. "Microporous polyolefin multi layer film and preparing method thereof." U.S. Patent No. 8,003,204. 23 Aug. 2011. [57] Jeong, Hyun-Seok, et al. "Effect of phase inversion on microporous structure development of Al2O3/poly (vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries." Journal of Power Sources 195.18 (2010): 6116-6121. [58] Li, Dan, et al. "Poly (ether ether ketone)(PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries." Journal of membrane science 530 (2017): 125-131. [59] Liu, Junchen, et al. "Ultrastrong and heat-resistant poly (ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries." ACS Applied Energy Materials 2.5 (2019): 3886-3895. [60] Li, Hai, et al. "Electrospun poly (ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries." Journal of The Electrochemical Society 165.5 (2018): A939. [61] Baird, Donald G., and Dimitris I. Collias. Polymer processing: principles and design. John Wiley & Sons, 2014. [62] Zhu, Peng-Wei, and Graham Edward. "Orientational distribution of parent–daughter structure of isotactic polypropylene: a study using simultaneous synchrotron WAXS and SAXS." Journal of materials science 43.19 (2008): 6459-6467. [63] Johnson, Matthew B., and Garth L. Wilkes. "Microporous membranes of isotactic poly (4‐methyl‐1‐pentene) from a melt‐extrusion process. I. Effects of resin variables and extrusion conditions." Journal of applied polymer science 83.10 (2002): 2095-2113. [64] Piorkowska, Ewa, and Gregory C. Rutledge, eds. Handbook of polymer crystallization. John Wiley & Sons, 2013. [65] Sadeghi, Farhad, Abdellah Ajji, and Pierre J. Carreau. "Analysis of row nucleated lamellar morphology of polypropylene obtained from the cast film process: Effect of melt rheology and process conditions." Polymer Engineering & Science 47.7 (2007): 1170-1178. [65] Somani, Rajesh H., et al. "Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies." Macromolecules 35.24 (2002): 9096-9104. [66] Haggenmueller, Reto, John E. Fischer, and Karen I. Winey. "Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites." Macromolecules 39.8 (2006): 2964-2971. [67] Al-Shatty, Wafaa, et al. "Tunable surface properties of aluminum oxide nanoparticles from highly hydrophobic to highly hydrophilic." ACS omega 2.6 (2017): 2507-2514. [68] Zhang, Hui, et al. "Amino‐Functionalized Al2O3 Particles Coating Separator with Excellent Lithium‐Ion Transport Properties for High‐Power Density Lithium‐Ion Batteries." Advanced Engineering Materials 22.11 (2020): 1901545. [69] Hsu, Wen-Dung, et al. "Preferential lattice expansion of polypropylene in a trilayer polypropylene/polyethylene/polypropylene microporous separator in Li-ion batteries." Scientific reports 11.1 (2021): 1-15. [70 ] Xu, Liyang, et al. "Influence of annealing treatment on the structure and properties of poly (4‐methyl‐1‐pentene)‐based films and membranes." Journal of Applied Polymer Science 135.28 (2018): 46491.
|