|
Chapter 1. 1. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21 (27), 9938-9954. 2. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195 (9), 2419-2430. 3. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367. 4. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Adv. Mater. 2011, 23 (15), 1695-1715. 5. Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L., An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays. Nano Lett. 2012, 12 (5), 2520-2523. 6. Deng, J. W.; Yan, C. L.; Yang, L. C.; Baunack, S.; Oswald, S.; Wendrock, H.; Mei, Y. F.; Schmidt, O. G., Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano 2013, 7 (8), 6948-6954. 7. Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M., Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries. ACS Nano 2013, 7 (7), 6001-6006. 8. Xin, X.; Zhou, X. F.; Wu, J. H.; Yao, X. Y.; Liu, Z. P., Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano 2012, 6 (12), 11035-11043. 9. Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L., Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell. Nano Lett. 2012, 12 (9), 5048-5054. 10. Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L., Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode. ACS Nano 2013, 7 (11), 10307-10318. 11. Lee, S. W.; Gallant, B. M.; Byon, H. R.; Hammond, P. T.; Shao-Horn, Y., Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ. Sci. 2011, 4 (6), 1972-1985. 12. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3 (1), 31-35. 13. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Appl. Mater. & Interfaces 2012, 4 (9), 4658-4664. 14. Yuan, F. W.; Yang, H. J.; Tuan, H. Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano 2012, 6 (11), 9932-9942. 15. Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. J. Am. Chem. Soc. 2002, 124 (7), 1424-1429. 16. Tuan, H. Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals. Chem. Mater. 2005, 17 (23), 5705-5711. 17. Lu, X. M.; Korgel, B. A.; Johnston, K. P., High yield of germanium nanocrystals synthesized from germanium diiodide in solution. Chem. Mater. 2005, 17 (25), 6479-6485. 18. Liang, W. T.; Yang, H.; Fan, F. F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S. L., Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4), 3427-3433. 19. Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y., Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes. Nano Lett. 2014, 14 (8), 4573-4580. 20. Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C., Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis. ACS Nano 2014, 8 (8), 8121-8129. 21. Zhang, H. T.; Ha, D. H.; Hovden, R.; Kourkoutis, L. F.; Robinson, R. D., Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri-n-octylphosphine Oxide as a Phosphorus Source. Nano Lett. 2011, 11 (1), 188-197. 22. Gillot, F.; Monconduit, L.; Doublet, M. L., Electrochemical Behaviors of binary and ternary manganese phosphides. Chem. Mater. 2005, 17 (23), 5817-5823. 23. Hall, J. W.; Membreno, N.; Wu, J.; Celio, H.; Jones, R. A.; Stevenson, K. J., Low-Temperature Synthesis of Amorphous FeP2 and Its Use as Anodes for Li Ion Batteries. J. Am. Chem. Soc. 2012, 134 (12), 5532-5535. 24. Ueda, A.; Nagao, M.; Inoue, A.; Hayashi, A.; Seino, Y.; Ota, T.; Tatsumisago, M., Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode. J. Power Sources 2013, 244, 597-600. 25. Kim, Y.; Hwang, H.; Yoon, C. S.; Kim, M. G.; Cho, J., Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles: An anode material for lithium-ion batteries. Adv. Mater. 2007, 19 (1), 92. 26. Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T., Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J. Electrochem. Soc. 2004, 151 (6), A933-A937. 27. Wu, J. J.; Fu, Z. W., Pulsed-Laser-Deposited Sn4P3 Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2009, 156 (1), A22-A26. 28. Liu, S. L.; Zhang, H. Z.; Xu, L. Q.; Ma, L. B.; Chen, X. X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 2016, 304, 346-353. 29. Courtney, I. A.; Dahn, J. R., Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144 (6), 2045-2052. 30. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23 (8), 947-958. 31. Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2 (7), 710-721. 32. Pan, H.; Hu, Y.-S.; Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6 (8), 2338-2360. 33. Songster, J.; Pelton, A. D., The na-si (sodium-silicon) system. Journal of Phase Equilibria 1992, 13 (1), 67-69. 34. Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S., Red Phosphorus Single-Walled Carbon Nanotube Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano 2015, 9 (3), 3254-3264. 35. Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H., High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. 2013, 125 (17), 4731-4734. 36. Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N.-S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T., Tin Phosphide as a Promising Anode Material for Na-Ion Batteries. Adv. Mater. 2014, 26 (24), 4139-4144. 37. Shin, H.-S.; Jung, K.-N.; Jo, Y. N.; Park, M.-S.; Kim, H.; Lee, J.-W., Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance. Sci. Rep. 2016, 6, 26195. 38. Zheng, L.; Dunlap, R. A.; Obrovac, M. N., The Electrochemical Reaction Mechanism of Tin Phosphide with Sodium. J. Electrochem. Soc. 2016, 163 (7), A1188-A1191. 39. Li, Q.; Li, Z.; Zhang, Z.; Li, C.; Ma, J.; Wang, C.; Ge, X.; Dong, S.; Yin, L., Low-Temperature Solution-Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries. Adv. Energy Mater. 2016, 1600376, 1-10. 40. Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.-C.; Wang, C., Superior Stable Self-Healing SnP3 Anode for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5 (18), 1500174, 1-7. 41. Donohue, P. C., Synthesis, structure, and superconducting properties of new high-pressure forms of tin phosphide. Inorg. Chem. 1970, 9 (2), 335-337. 42. Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L., Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492 (7427), 90. 43. Woo, R. L.; Gao, L.; Goel, N.; Hudait, M. K.; Wang, K. L.; Kodambaka, S.; Hicks, R. F., Kinetic Control of Self-Catalyzed Indium Phosphide Nanowires, Nanocones, and Nanopillars. Nano Lett. 2009, 9, (6), 2207-2211. 44. Bae, J.; Kulkarni, N. N.; Zhou, J. P.; Ekerdt, J. G.; Shih, C.-K., VLS growth of Si nanocones using Ga and Al catalysts. J. Cryst. Growth 2008, 310, (20), 4407-4411. 45. Ameruddin, A. S.; Caroff, P.; Tan, H. H.; Jagadish, C.; Dubrovskii, V. G., Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires. Nanoscale 2015, 7, 16266-16272. 46. Zheng, X.; Yuan, S.; Tian, Z.; Yin, S.; He, J.; Liu, K.; Liu, L., One-pot synthesis of hollow nickel phosphide nanoparticles with tunable void sizes using triphenylphosphine. Mater. Lett. 2009, 63 (27), 2283-2285. 47. Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Humphrey, M. G.; Zhang, C., Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373-382. 48. Huang, X.; Cui, S.; Chang, J.; Hallac, P. B.; Fell, C. R.; Luo, Y.; Metz, B.; Jiang, J.; Hurley, P. T.; Chen, J., A Hierarchical Tin/Carbon Composite as an Anode for Lithium-Ion Batteries with a Long Cycle Life. Angew. Chem. 2015, 127, 1510-1513. 49. Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y., Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17, 1240-1247.
Chapter 2. 1. Carbajal-Ramos, I. A.; Gomez, M. F.; Condó, A. M.; Bengió, S.; Andrade-Gamboa, J. J.; Abello, M. C.; Gennari, F. C., Catalytic behavior of Ru supported on Ce0.8Zr0.2O2 for hydrogen production. Appl. Catal., B 2016, 181, 58-70. 2. Sánchez-Sánchez, M. C.; Navarro, R. M.; Fierro, J. L. G., Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catal. Today 2007, 129 (3–4), 336-345. 3. Zhang, L.; Li, W.; Liu, J.; Guo, C.; Wang, Y.; Zhang, J., Ethanol steam reforming reactions over Al2O3 · SiO2-supported Ni–La catalysts. Fuel 2009, 88 (3), 511-518. 4. Zanchet, D.; Santos, J. B. O.; Damyanova, S.; Gallo, J. M. R.; C. Bueno, J. M., Toward Understanding Metal-Catalyzed Ethanol Reforming. ACS Catal.s 2015, 5 (6), 3841-3863. 5. Osterloh, F. E.; Parkinson, B. A., Recent developments in solar water-splitting photocatalysis. MRS Bull. 2011, 36 (01), 17-22. 6. Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7 (8), 2504-2517. 7. Zhang, C.; Fan, W.; Bai, H.; Yu, X.; Chen, C.; Zhang, R.; Shi, W., Sandwich-Nanostructured NiO–ZnO Nanowires@α-Fe2O3 Film Photoanode with a Synergistic Effect and p–n Junction for Efficient Photoelectrochemical Water Splitting. ChemElectroChem 2014, 1 (12), 2089-2097. 8. Yavor, Y.; Goroshin, S.; Bergthorson, J. M.; Frost, D. L., Comparative reactivity of industrial metal powders with water for hydrogen production. Int. J. Hydrogen Energy 2015, 40 (2), 1026-1036. 9. Budzianowski, W. M., Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors. Energy 2012, 41 (1), 280-297. 10. MacLean, H. L.; Lave, L. B., Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 2003, 29 (1), 1-69. 11. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The hydrogen economy. Physics Today 2004, 57 (12), 39-44. 12. Fujita, S.-i.; Kawamori, H.; Honda, D.; Yoshida, H.; Arai, M., Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Appl. Catal., B 2016, 181, 818-824. 13. Gradisher, L.; Dutcher, B.; Fan, M., Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Appl. Energy 2015, 139, 335-349. 14. Cargnello, M.; Gasparotto, A.; Gombac, V.; Montini, T.; Barreca, D.; Fornasiero, P., Photocatalytic H2 and Added-Value By-Products – The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. Eur. J. Inorg. Chem. 2011, 2011 (28), 4309-4323. 15. Shimura, K.; Yoshida, H., Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 2011, 4 (7), 2467-2481. 16. Navarro, R. M.; Sanchez-Sanchez, M. C.; Alvarez-Galvan, M. C.; Valle, F. d.; Fierro, J. L. G., Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci. 2009, 2 (1), 35-54. 17. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2 (7), 1262-1267. 18. Wang, M.; Chen, L.; Sun, L., Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy & Environ. Sci. 2012, 5 (5), 6763-6778. 19. van de Krol, R.; Liang, Y.; Schoonman, J., Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18 (20), 2311-2320. 20. Miller, E. L., Photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8 (10), 2809-2810. 21. Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., Photocatalyst releasing hydrogen from water. Nature 2006, 440 (7082), 295-295. 22. Zhang, Y.; Liu, J.; Wu, G.; Chen, W., Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012, 4 (17), 5300-5303. 23. Yang, G.; Yan, W.; Zhang, Q.; Shen, S.; Ding, S., One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 2013, 5 (24), 12432-12439. 24. Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R., Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ. Sci. 2013, 6 (11), 3229-3234. 25. Brack, P.; Dann, S. E.; Wijayantha, K. G. U.; Adcock, P.; Foster, S., An old solution to a new problem? Hydrogen generation by the reaction of ferrosilicon with aqueous sodium hydroxide solutions. Energy Sci. Eng. 2015, 3 (6), 535-540. 26. Hu, Y.; Yan, H.; Liu, K.; Cao, H.; Li, W., Hydrogen production using solar grade wasted silicon. Int. J. Hydrogen Energy 2015, 40 (28), 8633-8641. 27. Weaver, E. R., The Generation of Hydrogen by the Reaction between Ferrosilicon and a Solution of Sodium Hydroxide. J. Ind. Eng. Chem. 1920, 12 (3), 232-240. 28. Litvinenko, S.; Alekseev, S.; Lysenko, V.; Venturello, A.; Geobaldo, F.; Gulina, L.; Kuznetsov, G.; Tolstoy, V.; Skryshevsky, V.; Garrone, E.; Barbier, D., Hydrogen production from nano-porous Si powder formed by stain etching. Int. J. Hydrogen Energy 2010, 35 (13), 6773-6778. 29. Yoo, H.-S.; Ryu, H.-Y.; Cho, S.-S.; Han, M.-H.; Bae, K.-S.; Lee, J.-H., Effect of Si content on H2 production using Al–Si alloy powders. Int. J. Hydrogen Energy 2011, 36 (23), 15111-15118. 30. Bernhard, G.; Dmitry, K.; Olga, S., Nanosilicon in water as a source of hydrogen: size and pH matter. Nanotechnology 2011, 22 (30), 305402. 31. Lv, C.; Chen, Z.; Chen, Z.; Zhang, B.; Qin, Y.; Huang, Z.; Zhang, C., Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production. J. Mater. Chem. A 2015, 3 (34), 17669-17675. 32. Fan, W.; Yu, X.; Lu, H.-C.; Bai, H.; Zhang, C.; Shi, W., Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl. Catal., B 2016, 181, 7-15. 33. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M., Hydrogen from photo-catalytic water splitting process: A review. Renewable Sustainable Energy Rev. 2015, 43, 599-610. 34. Dai, F.; Zai, J.; Yi, R.; Gordin, M. L.; Sohn, H.; Chen, S.; Wang, D., Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun. 2014, 5. 35. Fatsikostas, A. N.; Kondarides, D. I.; Verykios, X. E., Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications. Chem. Commun. 2001, (9), 851-852. 36. Ni, M.; Leung, D. Y. C.; Leung, M. K. H., A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32 (15), 3238-3247. 37. Ma, H.; Zeng, L.; Tian, H.; Li, D.; Wang, X.; Li, X.; Gong, J., Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts. Appl. Catal., B 2016, 181, 321-331. 38. Kapdan, I. K.; Kargi, F., Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 2006, 38 (5), 569-582. 39. Azman, N. F.; Abdeshahian, P.; Kadier, A.; Shukor, H.; Al-Shorgani, N. K. N.; Hamid, A. A.; Kalil, M. S., Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production. Renewable Energy 2016, 93, 700-708. 40. Wen, D., Nanofuel as a potential secondary energy carrier. Energy Environ. Sci. 2010, 3 (5), 591-600. 41. Shkolnikov, E. I.; Zhuk, A. Z.; Vlaskin, M. S., Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable Sustainable Energy Rev. 2011, 15 (9), 4611-4623. 42. Beach, D. B.; Rondinone, A. J.; Sumpter, B. G.; Labinov, S. D.; Richards, R. K., Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier. J. Energy Resour. Technol. 2006, 129 (1), 29-32. 43. Auner, N.; Holl, S., Silicon as energy carrier—Facts and perspectives. Energy 2006, 31 (10–11), 1395-1402. 44. Yavor, Y.; Goroshin, S.; Bergthorson, J. M.; Frost, D. L.; Stowe, R.; Ringuette, S., Enhanced hydrogen generation from aluminum–water reactions. Int. J. Hydrogen Energy 2013, 38 (35), 14992-15002. 45. Wang, H. Z.; Leung, D. Y. C.; Leung, M. K. H.; Ni, M., A review on hydrogen production using aluminum and aluminum alloys. Renewable Sustainable Energy Rev. 2009, 13 (4), 845-853. 46. Hiraki, T.; Takeuchi, M.; Hisa, M.; Akiyama, T., Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA. MATERIALS TRANSACTIONS 2005, 46 (5), 1052-1057. 47. Cho, C.-Y.; Wang, K.-H.; Uan, J.-Y., Evaluation of a New Hydrogen Generating System: Ni-Rich Magnesium Alloy Catalyzed by Platinum Wire in Sodium Chloride Solution. MATERIALS TRANSACTIONS 2005, 46 (12), 2704-2708. 48. Grosjean, M. H.; Zidoune, M.; Roué, L.; Huot, J. Y., Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. Int. J. Hydrogen Energy 2006, 31 (1), 109-119. 49. Grosjean, M.-H.; Roué, L., Hydrolysis of Mg–salt and MgH2–salt mixtures prepared by ball milling for hydrogen production. J. Alloys Compd. 2006, 416 (1–2), 296-302. 50. Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I . Orientation Dependence and Behavior of Passivation Layers. J. Electrochem. Soc. 1990, 137 (11), 3612-3626. 51. Palik, E. D.; Bermudez, V. M.; Glembocki, O. J., Ellipsometric Study of Orientation‐Dependent Etching of Silicon in Aqueous KOH J. Electrochem. Soc. 1985, 132 (4), 871-884. 52. Limaye, S.; Subramanian, S.; Goller, B.; Diener, J.; Kovalev, D., Scaleable synthesis route for silicon nanocrystal assemblies. physica status solidi (a) 2007, 204 (5), 1297-1301. 53. Erogbogbo, F.; Lin, T.; Tucciarone, P. M.; LaJoie, K. M.; Lai, L.; Patki, G. D.; Prasad, P. N.; Swihart, M. T., On-Demand Hydrogen Generation using Nanosilicon: Splitting Water without Light, Heat, or Electricity. Nano Lett. 2013, 13 (2), 451-456. 54. Soler, L.; Candela, A. M.; Macanás, J.; Muñoz, M.; Casado, J., Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide. Int. J. Hydrogen Energy 2009, 34 (20), 8511-8518. 55. Albertini, V. R.; Paci, B.; Nobili, F.; Marassi, R.; Di Michiel, M., Time/Space-Resolved Studies of the Nafion Membrane Hydration Profile in a Running Fuel Cell. Adv. Mater. 2009, 21 (5), 578-583. 56. Kosuge, K.; Kikukawa, N.; Takemori, M., One-Step Preparation of Porous Silica Spheres from Sodium Silicate Using Triblock Copolymer Templating. Chem. Mater. 2004, 16, (21), 4181-4186. 57. Zulfiqar, U.; Subhani, T.; Wilayat Husain, S., Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol-Gel Sci. Technol. 2016, 77, (3), 753-758. 58. Cheng, H.-H.; Chen, S.-S.; Yang, S.-R., In-line coagulation/ultrafiltration for silica removal from brackish water as RO membrane pretreatment. Sep. Purif. Technol. 2009, 70, (1), 112-117. 59. Chuang, S. H.; Chang, T. C.; Ouyang, C. F.; Leu, J. M., Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park. Water Sci. Technol. 2007, 55, (1-2), 187.
|