帳號:guest(18.225.175.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高子倫
作者(外文):Kao, Tzu-Lun
論文名稱(中文):無機奈米材料於電池與產氫之應用:合成與添加劑輔助
論文名稱(外文):The Applications of Inorganic Nanomaterials in Batteries and Hydrogen Production : Synthesis and Additives Mediation
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
袁芳偉
張恕豪
口試委員(外文):Chou, Kan-Sen
Tseng, Yuan-Chieh
Yuan, Fang-Wei
Chang, Shu-Hao
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032809
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:磷化錫鋰離子電池切片損失矽鹼蝕刻產氫
外文關鍵詞:tin phosphidelithium-ion batterieskerf loss siliconbase-catalyzed etchinghydrogen production
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
鉍催化淚滴狀磷化錫奈米粒子是以雙[雙(三甲基矽烷基)氨基]錫(II)及三辛基膦分別作為錫與磷的前驅物,經由鉍晶種催化在超臨界流體甲苯中所合成而得。2-乙基己酸鉍以溶於油胺的形式添加於系統中,從而產生鉍奈米粒子做為晶種,而使其晶體以超臨界流體-液-固(SFLS, supercritical fluid-liquid-solid)的機制在超臨界流體環境中成長。一般而言,晶種催化晶體經此機制生長通常會獲得奈米線,而其淚滴狀形貌與無添加晶種之文獻類似,此現象如同晶種催化奈米錐,根據文獻,此例是由於磷與錫不只能由晶種進入以SFLS機制進行晶體成長,也能從磷化錫表面進入使晶體成長,而使晶體傾向於如此形貌。故以不同變因進行了多次合成實驗探討其前驅物物種、濃度、界面活性劑、合成方法將如何影響其產物的外貌及晶體結構。磷化錫奈米粒子作為陽極材料與鋰金屬組成了鈕扣型(CR2032)半電池,並在0.01與1.5伏特區間以0.1C速率進行等電流充放電測試,其放電電容在五十循環後仍能保持在815 mA h g-1,以及在5C高速率下也仍有412 mA h g-1的不錯表現,優於其他使用磷化錫作為鋰離子電池或鈉離子電池文獻。
矽在鹼催化下與水進行化學蝕刻而產生矽酸根離子與氫氣,表示可將矽視為能量載體,然而矽作為主要反應物,為節省成本而需要大量低價矽,同時也需要達到高速及高產率生產才能滿足工業化所需條件。本研究是以從太陽能級矽晶圓切割所產生並回收之微米級矽粉(切片損失矽,kerf loss silicon)經由濕式化學蝕刻進行氫氣生產。加入不同比例的矽酸以及矽酸鈉等添加劑,加速水分解反應而加強其產氫表現,其最佳化產率達92%,而其產氫速率則達4.72×10-3 g(H2) s-1 g-1(Si),是微米級矽文獻中的最佳速率值。除此之外,為實際展現kerf loss silicon作為能量載體的便利性,將其置於耐高壓之不銹鋼反應器中與水反應產氫,可與燃料電池搭配將氫氣轉化為電能或是與另一高壓槽連接作為儲氫之用。
關鍵字:磷化錫、鋰離子電池、矽、鹼蝕刻、產氫
Bi-seeded teardrop-shaped SnP0.94 nanoparticles were synthesized in supercritical fluid toluene with bis[bis(trimethylsilyl)amino]tin(II) (Sn[N(TMS)2]2) and trioctylphosphine (TOP) as the precursors of tin and phosphorus, respectively. The addition of bismuth 2-ethylhexanoate which was dissolved in oleylamine (OLA) resulted in the formation of bismuth nanoparticles acting as crystal seed, causing the crystal growth follow the SFLS (supercritical fluid-liquid-solid) mechanism in supercritical fluid environment. Generally, seeded growth mechanism usually leads to the formation of nanowires. The teardrop-shaped morphology, which is similar to the case in the absence of crystal seed in the previous report, could be attributed to the diffusing of tin and phosphorus into SnP0.94 via the sidewall, allowing SnP0.94 to grow freely, which made this morphology favorable like those reported nanocones. Several experiments were carried out to investigate how different precursors, concentrations, and synthetic methods would affect the morphology and the crystallinity of the resulting product. Nanowires accompanied with many particles with two tin phosphide phases were found in the product from reacting tin(II) acetate dissolved in oleylamine (OLA) with trioctylphosphine with the presence of bismuth precursor through the hot-injection method. The electrochemical performance of SnP0.94 nanoparticles was explored with charge/discharge galvanostatic cycles in a CR2032 coin cell using lithium metal as the counter electrode between 0.01 and 1.5 V, showing a discharge capacity of 815 mA h g-1 at a rate of 0.1 C after 50 cycles and a good discharge capacity of 412 mA h g-1 at the 5 C rate, which is better than other tin phosphides in LIBs or SIBs.
The chemical etching of silicon catalyzed by base in water can produce hydrogen and dissociated orthosilicic acid (SiO2(OH)22-), suggesting silicon can be qualified as an energy carrier. However, large amount of low-priced silicon is needed as the essential reactive material for cost saving and faster and high-yield hydrogen production, making this process agreeable for industrialization. In this study, high-performance hydrogen production via wet chemical etching of micrometer-sized kerf loss silicon recovered from the sawing process of solar-grade wafer is reported. Additives including sodium metasilicate (Na2SiO3) and metasilicic acid (H2SiO3) were employed to accelerate the water splitting reaction, resulting in an optimized hydrogen production rate of 4.72×10-3 g(H2) s-1 g-1(Si) and a yield of 92% that ranks the best performance in the reported literature on a micrometer-sized silicon basis. In addition, a proof-of-concept example is conducted by using a kerf loss silicon-based hydrogen production reactor in coordinate with either a fuel cell converting the supplied hydrogen to electricity or a high-pressure tank for hydrogen storage, showing kerf loss silicon is a convenient energy carrier. The silicate salt existing in the resulting solution can be separated by adding coagulant, which forms precipitates with silicate salt, and then it can be removed from the solution simply by filtration or centrifugation.
Keywords: tin phosphide, lithium-ion batteries, silicon, base-catalyzed etching, hydrogen production
中文摘要 I
Abstract II
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Synthesis of Bi-Seeded Teardrop-Shaped SnP0.94 Nanoparticles and Its Performance as Anode of Lithium-Ion Batteries 1
1-1 Introduction 1
1-2 Experimental 7
1-2-1 Materials 7
1-2-2 Characterization 7
1-2-3 Preparation of 0.02M bismuth precursor solution 8
1-2-4 Synthesis of tin phosphide in solution phase 8
1-2-5 Synthesis of tin phosphide in supercritical fluid toluene in a batch manner 9
1-2-6 Synthesis of tin phosphide in supercritical fluid toluene in a semi-batch manner 10
1-2-7 Fabrication of LIBs 11
1-3 Results and Discussion 12
1-4 Conclusion 23
1-5 References 24
Chapter 2 Additive-Mediated Rapid Hydrogen Production by the Base-Catalyzed Etching of Kerf Loss Silicon 30
2-1 Introduction 30
2-2 Experimental 35
2-2-1 Materials 35
2-2-2 Characterization 35
2-2-3 Hydrogen generation process using kerf loss silicon as a reactant 36
2-2-4 Large-scale hydrogen generation process 37
2-2-5 Hydrogen generation system integrated as electricity generator 37
2-2-6 Hydrogen generation system integrated for hydrogen storage 38
2-3 Results and Discussion 38
2-4 Conclusion 51
2-5 References 52

Chapter 1.
1. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21 (27), 9938-9954.
2. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195 (9), 2419-2430.
3. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
4. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Adv. Mater. 2011, 23 (15), 1695-1715.
5. Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L., An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays. Nano Lett. 2012, 12 (5), 2520-2523.
6. Deng, J. W.; Yan, C. L.; Yang, L. C.; Baunack, S.; Oswald, S.; Wendrock, H.; Mei, Y. F.; Schmidt, O. G., Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano 2013, 7 (8), 6948-6954.
7. Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M., Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries. ACS Nano 2013, 7 (7), 6001-6006.
8. Xin, X.; Zhou, X. F.; Wu, J. H.; Yao, X. Y.; Liu, Z. P., Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano 2012, 6 (12), 11035-11043.
9. Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L., Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell. Nano Lett. 2012, 12 (9), 5048-5054.
10. Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L., Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode. ACS Nano 2013, 7 (11), 10307-10318.
11. Lee, S. W.; Gallant, B. M.; Byon, H. R.; Hammond, P. T.; Shao-Horn, Y., Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ. Sci. 2011, 4 (6), 1972-1985.
12. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3 (1), 31-35.
13. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Appl. Mater. & Interfaces 2012, 4 (9), 4658-4664.
14. Yuan, F. W.; Yang, H. J.; Tuan, H. Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano 2012, 6 (11), 9932-9942.
15. Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. J. Am. Chem. Soc. 2002, 124 (7), 1424-1429.
16. Tuan, H. Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals. Chem. Mater. 2005, 17 (23), 5705-5711.
17. Lu, X. M.; Korgel, B. A.; Johnston, K. P., High yield of germanium nanocrystals synthesized from germanium diiodide in solution. Chem. Mater. 2005, 17 (25), 6479-6485.
18. Liang, W. T.; Yang, H.; Fan, F. F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S. L., Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4), 3427-3433.
19. Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y., Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes. Nano Lett. 2014, 14 (8), 4573-4580.
20. Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C., Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis. ACS Nano 2014, 8 (8), 8121-8129.
21. Zhang, H. T.; Ha, D. H.; Hovden, R.; Kourkoutis, L. F.; Robinson, R. D., Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri-n-octylphosphine Oxide as a Phosphorus Source. Nano Lett. 2011, 11 (1), 188-197.
22. Gillot, F.; Monconduit, L.; Doublet, M. L., Electrochemical Behaviors of binary and ternary manganese phosphides. Chem. Mater. 2005, 17 (23), 5817-5823.
23. Hall, J. W.; Membreno, N.; Wu, J.; Celio, H.; Jones, R. A.; Stevenson, K. J., Low-Temperature Synthesis of Amorphous FeP2 and Its Use as Anodes for Li Ion Batteries. J. Am. Chem. Soc. 2012, 134 (12), 5532-5535.
24. Ueda, A.; Nagao, M.; Inoue, A.; Hayashi, A.; Seino, Y.; Ota, T.; Tatsumisago, M., Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode. J. Power Sources 2013, 244, 597-600.
25. Kim, Y.; Hwang, H.; Yoon, C. S.; Kim, M. G.; Cho, J., Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles: An anode material for lithium-ion batteries. Adv. Mater. 2007, 19 (1), 92.
26. Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T., Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J. Electrochem. Soc. 2004, 151 (6), A933-A937.
27. Wu, J. J.; Fu, Z. W., Pulsed-Laser-Deposited Sn4P3 Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2009, 156 (1), A22-A26.
28. Liu, S. L.; Zhang, H. Z.; Xu, L. Q.; Ma, L. B.; Chen, X. X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 2016, 304, 346-353.
29. Courtney, I. A.; Dahn, J. R., Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144 (6), 2045-2052.
30. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23 (8), 947-958.
31. Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2 (7), 710-721.
32. Pan, H.; Hu, Y.-S.; Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6 (8), 2338-2360.
33. Songster, J.; Pelton, A. D., The na-si (sodium-silicon) system. Journal of Phase Equilibria 1992, 13 (1), 67-69.
34. Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S., Red Phosphorus Single-Walled Carbon Nanotube Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano 2015, 9 (3), 3254-3264.
35. Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H., High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. 2013, 125 (17), 4731-4734.
36. Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N.-S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T., Tin Phosphide as a Promising Anode Material for Na-Ion Batteries. Adv. Mater. 2014, 26 (24), 4139-4144.
37. Shin, H.-S.; Jung, K.-N.; Jo, Y. N.; Park, M.-S.; Kim, H.; Lee, J.-W., Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance. Sci. Rep. 2016, 6, 26195.
38. Zheng, L.; Dunlap, R. A.; Obrovac, M. N., The Electrochemical Reaction Mechanism of Tin Phosphide with Sodium. J. Electrochem. Soc. 2016, 163 (7), A1188-A1191.
39. Li, Q.; Li, Z.; Zhang, Z.; Li, C.; Ma, J.; Wang, C.; Ge, X.; Dong, S.; Yin, L., Low-Temperature Solution-Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries. Adv. Energy Mater. 2016, 1600376, 1-10.
40. Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.-C.; Wang, C., Superior Stable Self-Healing SnP3 Anode for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5 (18), 1500174, 1-7.
41. Donohue, P. C., Synthesis, structure, and superconducting properties of new high-pressure forms of tin phosphide. Inorg. Chem. 1970, 9 (2), 335-337.
42. Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L., Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492 (7427), 90.
43. Woo, R. L.; Gao, L.; Goel, N.; Hudait, M. K.; Wang, K. L.; Kodambaka, S.; Hicks, R. F., Kinetic Control of Self-Catalyzed Indium Phosphide Nanowires, Nanocones, and Nanopillars. Nano Lett. 2009, 9, (6), 2207-2211.
44. Bae, J.; Kulkarni, N. N.; Zhou, J. P.; Ekerdt, J. G.; Shih, C.-K., VLS growth of Si nanocones using Ga and Al catalysts. J. Cryst. Growth 2008, 310, (20), 4407-4411.
45. Ameruddin, A. S.; Caroff, P.; Tan, H. H.; Jagadish, C.; Dubrovskii, V. G., Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires. Nanoscale 2015, 7, 16266-16272.
46. Zheng, X.; Yuan, S.; Tian, Z.; Yin, S.; He, J.; Liu, K.; Liu, L., One-pot synthesis of hollow nickel phosphide nanoparticles with tunable void sizes using triphenylphosphine. Mater. Lett. 2009, 63 (27), 2283-2285.
47. Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Humphrey, M. G.; Zhang, C., Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373-382.
48. Huang, X.; Cui, S.; Chang, J.; Hallac, P. B.; Fell, C. R.; Luo, Y.; Metz, B.; Jiang, J.; Hurley, P. T.; Chen, J., A Hierarchical Tin/Carbon Composite as an Anode for Lithium-Ion Batteries with a Long Cycle Life. Angew. Chem. 2015, 127, 1510-1513.
49. Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y., Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17, 1240-1247.

Chapter 2.
1. Carbajal-Ramos, I. A.; Gomez, M. F.; Condó, A. M.; Bengió, S.; Andrade-Gamboa, J. J.; Abello, M. C.; Gennari, F. C., Catalytic behavior of Ru supported on Ce0.8Zr0.2O2 for hydrogen production. Appl. Catal., B 2016, 181, 58-70.
2. Sánchez-Sánchez, M. C.; Navarro, R. M.; Fierro, J. L. G., Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catal. Today 2007, 129 (3–4), 336-345.
3. Zhang, L.; Li, W.; Liu, J.; Guo, C.; Wang, Y.; Zhang, J., Ethanol steam reforming reactions over Al2O3 · SiO2-supported Ni–La catalysts. Fuel 2009, 88 (3), 511-518.
4. Zanchet, D.; Santos, J. B. O.; Damyanova, S.; Gallo, J. M. R.; C. Bueno, J. M., Toward Understanding Metal-Catalyzed Ethanol Reforming. ACS Catal.s 2015, 5 (6), 3841-3863.
5. Osterloh, F. E.; Parkinson, B. A., Recent developments in solar water-splitting photocatalysis. MRS Bull. 2011, 36 (01), 17-22.
6. Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7 (8), 2504-2517.
7. Zhang, C.; Fan, W.; Bai, H.; Yu, X.; Chen, C.; Zhang, R.; Shi, W., Sandwich-Nanostructured NiO–ZnO Nanowires@α-Fe2O3 Film Photoanode with a Synergistic Effect and p–n Junction for Efficient Photoelectrochemical Water Splitting. ChemElectroChem 2014, 1 (12), 2089-2097.
8. Yavor, Y.; Goroshin, S.; Bergthorson, J. M.; Frost, D. L., Comparative reactivity of industrial metal powders with water for hydrogen production. Int. J. Hydrogen Energy 2015, 40 (2), 1026-1036.
9. Budzianowski, W. M., Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors. Energy 2012, 41 (1), 280-297.
10. MacLean, H. L.; Lave, L. B., Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 2003, 29 (1), 1-69.
11. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The hydrogen economy. Physics Today 2004, 57 (12), 39-44.
12. Fujita, S.-i.; Kawamori, H.; Honda, D.; Yoshida, H.; Arai, M., Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Appl. Catal., B 2016, 181, 818-824.
13. Gradisher, L.; Dutcher, B.; Fan, M., Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Appl. Energy 2015, 139, 335-349.
14. Cargnello, M.; Gasparotto, A.; Gombac, V.; Montini, T.; Barreca, D.; Fornasiero, P., Photocatalytic H2 and Added-Value By-Products – The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. Eur. J. Inorg. Chem. 2011, 2011 (28), 4309-4323.
15. Shimura, K.; Yoshida, H., Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 2011, 4 (7), 2467-2481.
16. Navarro, R. M.; Sanchez-Sanchez, M. C.; Alvarez-Galvan, M. C.; Valle, F. d.; Fierro, J. L. G., Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci. 2009, 2 (1), 35-54.
17. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2 (7), 1262-1267.
18. Wang, M.; Chen, L.; Sun, L., Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy & Environ. Sci. 2012, 5 (5), 6763-6778.
19. van de Krol, R.; Liang, Y.; Schoonman, J., Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18 (20), 2311-2320.
20. Miller, E. L., Photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8 (10), 2809-2810.
21. Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., Photocatalyst releasing hydrogen from water. Nature 2006, 440 (7082), 295-295.
22. Zhang, Y.; Liu, J.; Wu, G.; Chen, W., Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012, 4 (17), 5300-5303.
23. Yang, G.; Yan, W.; Zhang, Q.; Shen, S.; Ding, S., One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 2013, 5 (24), 12432-12439.
24. Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R., Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ. Sci. 2013, 6 (11), 3229-3234.
25. Brack, P.; Dann, S. E.; Wijayantha, K. G. U.; Adcock, P.; Foster, S., An old solution to a new problem? Hydrogen generation by the reaction of ferrosilicon with aqueous sodium hydroxide solutions. Energy Sci. Eng. 2015, 3 (6), 535-540.
26. Hu, Y.; Yan, H.; Liu, K.; Cao, H.; Li, W., Hydrogen production using solar grade wasted silicon. Int. J. Hydrogen Energy 2015, 40 (28), 8633-8641.
27. Weaver, E. R., The Generation of Hydrogen by the Reaction between Ferrosilicon and a Solution of Sodium Hydroxide. J. Ind. Eng. Chem. 1920, 12 (3), 232-240.
28. Litvinenko, S.; Alekseev, S.; Lysenko, V.; Venturello, A.; Geobaldo, F.; Gulina, L.; Kuznetsov, G.; Tolstoy, V.; Skryshevsky, V.; Garrone, E.; Barbier, D., Hydrogen production from nano-porous Si powder formed by stain etching. Int. J. Hydrogen Energy 2010, 35 (13), 6773-6778.
29. Yoo, H.-S.; Ryu, H.-Y.; Cho, S.-S.; Han, M.-H.; Bae, K.-S.; Lee, J.-H., Effect of Si content on H2 production using Al–Si alloy powders. Int. J. Hydrogen Energy 2011, 36 (23), 15111-15118.
30. Bernhard, G.; Dmitry, K.; Olga, S., Nanosilicon in water as a source of hydrogen: size and pH matter. Nanotechnology 2011, 22 (30), 305402.
31. Lv, C.; Chen, Z.; Chen, Z.; Zhang, B.; Qin, Y.; Huang, Z.; Zhang, C., Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production. J. Mater. Chem. A 2015, 3 (34), 17669-17675.
32. Fan, W.; Yu, X.; Lu, H.-C.; Bai, H.; Zhang, C.; Shi, W., Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl. Catal., B 2016, 181, 7-15.
33. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M., Hydrogen from photo-catalytic water splitting process: A review. Renewable Sustainable Energy Rev. 2015, 43, 599-610.
34. Dai, F.; Zai, J.; Yi, R.; Gordin, M. L.; Sohn, H.; Chen, S.; Wang, D., Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun. 2014, 5.
35. Fatsikostas, A. N.; Kondarides, D. I.; Verykios, X. E., Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications. Chem. Commun. 2001, (9), 851-852.
36. Ni, M.; Leung, D. Y. C.; Leung, M. K. H., A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32 (15), 3238-3247.
37. Ma, H.; Zeng, L.; Tian, H.; Li, D.; Wang, X.; Li, X.; Gong, J., Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts. Appl. Catal., B 2016, 181, 321-331.
38. Kapdan, I. K.; Kargi, F., Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 2006, 38 (5), 569-582.
39. Azman, N. F.; Abdeshahian, P.; Kadier, A.; Shukor, H.; Al-Shorgani, N. K. N.; Hamid, A. A.; Kalil, M. S., Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production. Renewable Energy 2016, 93, 700-708.
40. Wen, D., Nanofuel as a potential secondary energy carrier. Energy Environ. Sci. 2010, 3 (5), 591-600.
41. Shkolnikov, E. I.; Zhuk, A. Z.; Vlaskin, M. S., Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable Sustainable Energy Rev. 2011, 15 (9), 4611-4623.
42. Beach, D. B.; Rondinone, A. J.; Sumpter, B. G.; Labinov, S. D.; Richards, R. K., Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier. J. Energy Resour. Technol. 2006, 129 (1), 29-32.
43. Auner, N.; Holl, S., Silicon as energy carrier—Facts and perspectives. Energy 2006, 31 (10–11), 1395-1402.
44. Yavor, Y.; Goroshin, S.; Bergthorson, J. M.; Frost, D. L.; Stowe, R.; Ringuette, S., Enhanced hydrogen generation from aluminum–water reactions. Int. J. Hydrogen Energy 2013, 38 (35), 14992-15002.
45. Wang, H. Z.; Leung, D. Y. C.; Leung, M. K. H.; Ni, M., A review on hydrogen production using aluminum and aluminum alloys. Renewable Sustainable Energy Rev. 2009, 13 (4), 845-853.
46. Hiraki, T.; Takeuchi, M.; Hisa, M.; Akiyama, T., Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA. MATERIALS TRANSACTIONS 2005, 46 (5), 1052-1057.
47. Cho, C.-Y.; Wang, K.-H.; Uan, J.-Y., Evaluation of a New Hydrogen Generating System: Ni-Rich Magnesium Alloy Catalyzed by Platinum Wire in Sodium Chloride Solution. MATERIALS TRANSACTIONS 2005, 46 (12), 2704-2708.
48. Grosjean, M. H.; Zidoune, M.; Roué, L.; Huot, J. Y., Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. Int. J. Hydrogen Energy 2006, 31 (1), 109-119.
49. Grosjean, M.-H.; Roué, L., Hydrolysis of Mg–salt and MgH2–salt mixtures prepared by ball milling for hydrogen production. J. Alloys Compd. 2006, 416 (1–2), 296-302.
50. Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I . Orientation Dependence and Behavior of Passivation Layers. J. Electrochem. Soc. 1990, 137 (11), 3612-3626.
51. Palik, E. D.; Bermudez, V. M.; Glembocki, O. J., Ellipsometric Study of Orientation‐Dependent Etching of Silicon in Aqueous  KOH J. Electrochem. Soc. 1985, 132 (4), 871-884.
52. Limaye, S.; Subramanian, S.; Goller, B.; Diener, J.; Kovalev, D., Scaleable synthesis route for silicon nanocrystal assemblies. physica status solidi (a) 2007, 204 (5), 1297-1301.
53. Erogbogbo, F.; Lin, T.; Tucciarone, P. M.; LaJoie, K. M.; Lai, L.; Patki, G. D.; Prasad, P. N.; Swihart, M. T., On-Demand Hydrogen Generation using Nanosilicon: Splitting Water without Light, Heat, or Electricity. Nano Lett. 2013, 13 (2), 451-456.
54. Soler, L.; Candela, A. M.; Macanás, J.; Muñoz, M.; Casado, J., Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide. Int. J. Hydrogen Energy 2009, 34 (20), 8511-8518.
55. Albertini, V. R.; Paci, B.; Nobili, F.; Marassi, R.; Di Michiel, M., Time/Space-Resolved Studies of the Nafion Membrane Hydration Profile in a Running Fuel Cell. Adv. Mater. 2009, 21 (5), 578-583.
56. Kosuge, K.; Kikukawa, N.; Takemori, M., One-Step Preparation of Porous Silica Spheres from Sodium Silicate Using Triblock Copolymer Templating. Chem. Mater. 2004, 16, (21), 4181-4186.
57. Zulfiqar, U.; Subhani, T.; Wilayat Husain, S., Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol-Gel Sci. Technol. 2016, 77, (3), 753-758.
58. Cheng, H.-H.; Chen, S.-S.; Yang, S.-R., In-line coagulation/ultrafiltration for silica removal from brackish water as RO membrane pretreatment. Sep. Purif. Technol. 2009, 70, (1), 112-117.
59. Chuang, S. H.; Chang, T. C.; Ouyang, C. F.; Leu, J. M., Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park. Water Sci. Technol. 2007, 55, (1-2), 187.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *