帳號:guest(18.117.105.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊晴瑜
作者(外文):Yang, Ching-Yu
論文名稱(中文):以大氣電漿合成仿生金屬氧化物應用於自潔與油水分離
論文名稱(外文):Atmospheric Pressure Plasma-assisted Bio-inspired Metal Oxide for Self-cleaning and Oil/water Separation
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po Yu
口試委員(中文):杜正恭
吳志明
童國倫
Vollmer, Doris
鄭信民
黃俊仁
口試委員(外文):Duh, Jenq-Gong
Wu, Jyh-Ming
Tung, Kuo-Lung
Vollmer, Doris
Cheng, Hsin-Ming
Huang, Chun-Jen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031804
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:156
中文關鍵詞:大氣電漿潤濕性液體抗沾多階層結構油水分離
外文關鍵詞:atmospheric pressure plasmaliquid repellenthierarchical structureoil/water separation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:851
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
本研究著眼於利用新穎且低成本的技術進行表面潤濕性之改質,從親水表面改質成超親水表面,抑或是液體抗沾表面(即具備超疏水或疏油特性)於空氣中或是油/水系統中。吾人成功研發出以大氣電漿束合成自我組裝的多階層奈米結構,由於沉積速率快,在數秒之內即可均勻地沉積出薄膜,且此技術適用於各式基板表面,如玻璃、金屬、紙張、高分子表面等。利用大氣電漿束所沉積出來具有奈米結構的薄膜本質上為超親水,經過利用過氟矽烷長鏈修飾的氟化過程,可表現出優異的超疏水性及疏油性,且具有好的耐久性質。此外,透過將部分區域以矽氧樹脂膠帶封閉,可達到選擇性修飾基板為超疏水或超親水。而不同於一般的液體抗沾表面(在空氣中),水中疏油表面也可直接透過所合成的多階層結構薄膜以水先浸潤,即可達到良好的水中疏油性質,毋須進一步的化學表面改質。由於該多階層結構薄膜有著極大的表面積,所捕捉住的液體層可以提供非常優異的抗沾特性,使表面不被油汙所沾染,可進一步將此薄膜搭配不銹鋼網利用於重力驅動之油水分離。而有關油水分離的實驗重要因子,也在本研究中有詳細討論。另一方面,為了探討同時在水相與油相中同時能具備抗沾特性的表面,吾人利用冷凍鑄造法合成的矽藻土多孔膜以進一步研究。由於矽殼擁有精細複雜的奈米多孔結構,經由冷凍鑄造,形成規則排列的微米通道,此多階層結構造成了此多孔膜得以同時在油相與水相表現出液體抗沾特性。此外,即使該多孔膜受到外力破壞其表面結構,其抗沾特性仍能維持。綜合以上,本研究提供了對於設計抗沾表面的創見與重要準則,可望應用於自潔表面,減少拖曳力,以及油水分離等領域。
This study focuses on manipulating surface wettability from hydrophilic to superhydrophilic or super-liquid repellent in air or oil/water system by using a novel and cost-effective approach. The hierarchically structured surfaces are synthesized by a plasma-assisted nanofabrication method under atmospheric pressure. Due to the fast deposition rate of nanoparticles, a uniformed thin film can be formed on various substrates within a few seconds. After fluorination with perfluoroalkylsilane, it becomes a superhydrophobic and oleophobic surface with good durability. This versatile methodology can even selectively render the surface superhydrophobic by simply blocking area with silicone tapes. Distinguished from the liquid-repellent surfaces in air, the underwater superoleophobic surface can be obtained directly by pre-wetting the as-synthesized structures by water. Owing to the hierarchical structure and large surface area, the entrapped liquid layer is able to avoid the contamination by oils. The critical factors for the membrane used for oil/water separation are also discussed in this research. On the other hand, to further investigate surfaces with dual superlyophobicity in oil/water system by the effect of hierarchically porous structures, which has not been comprehensively studied in literature, a bio-inspired diatomite membrane is synthesized by a freeze casting method. The synergistic effect of sophisticated nano-porous structures of frustules and the micro-channels induces super-liquid repellent property in both oil and water system. This research provides insights for rational designs of a liquid repellent surface either in air or liquids (oils or water), and might further lead to practical applications in self-cleaning, drag reduction and oil/water separation.
Abstract 2
摘 要 3
Acknowledgement 4
致 謝 6
Table of Content 7
Chap 1 Introduction 10
1.1 Super-liquid repellent surfaces in air 10
1.2 Underwater Super-liquid repellent Surfaces 12
Chap 2 Motivation and Outline 15
Chap 3 Theory 17
3.1 Definition of Wettability 17
3.1.1 Static and dynamic contact angles 17
3.1.2 Morphology affecting super-liquid repellency 20
3.2 Approaches for fabricating super-liquid repellent surfaces 25
3.2.1 Randomly hierarchical structured coatings 26
3.2.2 Overhanging micro-structures in periodic array 30
3.3 Plasma technique and its applications for non-wetting surfaces 33
3.3.1 Plasma polymerization for superhydrophobic surfaces 34
3.3.2 Atmospheric pressure plasma-assisted nanofabrication 35
Chap 4 Principle of Characterization Methods 37
4.1 Electron microscopy (EM) 37
4.2 Atomic force microscopy (AFM) 39
4.3 X-ray photoelectron spectroscopy (XPS) 41
Chap 5 Research Project (I): Stalagmite-like Self-cleaning Surfaces Prepared by Silanization of Plasma-assisted Metal-oxide Nanostructures 44
5.1 Introduction 45
5.2 Experimental Section 47
5.2.1 Customized Atmospheric Pressure Plasma System 47
5.2.2 Coating Procedure 48
5.2.3 Material Characterization 49
5.2.4 Contact Angle Measurements 50
5.2.5 Dynamic Behaviour Observations of a Water Bouncing Drop 50
5.3 Results and Discussion 51
5.3.1 Preparation and Characterization of Hierarchically Structured Coatings 51
5.3.2 Multilayer Growth of FAS 62
5.3.3 Dynamic Behaviour of Water Droplets on SCWO Surfaces 66
5.3.4 Evaluation of Stability and Multifunctional Properties 70
5. 4. Summary 84
Chap 6 Research Project (II): Rapid Deposition of Superhydrophilic Stalagmite-like Protrusions for Underwater Selective Superwettability 85
6.1 Introduction 86
6.2 Experimental section 88
6.2.1 Materials and Reagents 88
6.2.2 Fabrication of underwater superoleophobic surface 88
6.2.3 Material Characterizations 88
6.2.4 Contact angle measurements (in air and underwater) 89
6.2.5 Gravity oil-water separation 89
6.3 Results and discussion 90
6.3.1 Superhydrophilic surfaces for underwater super-antiwettability 90
6.3.2 Robust underwater superoleophobicity 96
6.3.3 The effect of surface roughness and pore size 102
6.3.4 Summary 108
Chap 7 Research Project (III): Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation 110
7.1 Introduction 111
7.2 Experimental Section 113
7.2.1 Materials and Reagents 113
7.2.2 Preparation of diatomite scaffold and diatomite membrane 113
7.2.3 Characterization techniques 114
7.2.4 Oil/water separation 116
7.3 Results and Discussions 116
7.3.1 Bioinspired diatomite membrane 116
7.3.2 Selective wettability in liquid systems 120
7.3.3 Intrusion Pressure Measurement 128
7.3.4 Mechanical durability and anti-fouling property 129
7.3.5 Water Flux Measurement 131
7.4 Summary 134
Chap 8 Conclusions and Outlook 136
8.1 Conclusions 136
8.2 Outlook 138
References 140

References
[1] Thomson J. Internet Encyclopedia of Philosophy. A Peer-reviewed Academic Resource.
[2] Barthlott W, Ehler N. Raster-Elektronen-mikroskopie der Epidermis-Oberflachen von Spermatophyten. Scanning electron microscopy of epidermal surfaces of Spermatophyta) Abh Akad Wiss Lit Mainz, Math-Naturwiss Klasse, Trop Subtrop Pflanzenwelt. 1977;19:367-467.
[3] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1-8.
[4] Darmanin T, Guittard F. Superhydrophobic and superoleophobic properties in nature. Materials Today. 2015;18:273-85.
[5] Bush JWM, Hu DL, Prakash M. The Integument of Water-walking Arthropods: Form and Function. In: Casas J, Simpson SJ, editors. Advances in Insect Physiology: Academic Press; 2007. p. 117-92.
[6] Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science. 2009;54:137-78.
[7] Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, et al. The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water. Adv Mater. 2010;22:2325-8.
[8] Azimi G, Dhiman R, Kwon H-M, Paxson AT, Varanasi KK. Hydrophobicity of rare-earth oxide ceramics. Nat Mater. 2013;12:315-20.
[9] Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. Wetting and spreading. Reviews of Modern Physics. 2009;81:739-805.
[10] Adams J, Pendlebury D. Global Research Report: Materials Science and Technology. Global Research Report: Materials Science and Technology, Thomson Reuters ScienceWatch2011. p. 1-16.
[11] Cassie ABD, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society. 1944;40:546-51.
[12] Kalaugher L. Lotus effect shakes off dirt. http://nanotechweb.org; 2008.
[13] Wang L, Zhou Q, Zheng Y, Xu S. Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Progress in Natural Science. 2009;19:1657-64.
[14] Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen F, et al. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. The Journal of Experimental Biology. 2010;213:1115-25.
[15] Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477:443-7.
[16] Epstein AK, Wong T-S, Belisle RA, Boggs EM, Aizenberg J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc Natl Acad Sci USA. 2012;109:13182-7.
[17] Leslie DC, Waterhouse A, Berthet JB, Valentin TM, Watters AL, Jain A, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotech. 2014;32:1134-40.
[18] Kreder MJ, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews Materials. 2016;1:15003.
[19] Cai Y, Lin L, Xue Z, Liu M, Wang S, Jiang L. Filefish-Inspired Surface Design for Anisotropic Underwater Oleophobicity. Advanced Functional Materials. 2014;24:809-16.
[20] Liu X, Zhou J, Xue Z, Gao J, Meng J, Wang S, et al. Clam's Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity. Adv Mater. 2012;24:3401-5.
[21] Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, et al. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Adv Mater. 2011;23:4270-3.
[22] Dong Y, Li J, Shi L, Wang X, Guo Z, Liu W. Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem Comm. 2014;50:5586-9.
[23] Fan J-B, Song Y, Wang S, Meng J, Yang G, Guo X, et al. Directly Coating Hydrogel on Filter Paper for Effective Oil–Water Separation in Highly Acidic, Alkaline, and Salty Environment. Adv Funct Mater. 2015;25:5368-75.
[24] Chu Z, Feng Y, Seeger S. Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angew Chem Int Ed. 2015;54:2328-38.
[25] Chen P-C, Xu Z-K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci Rep. 2013;3:2776.
[26] Jacobs E. 20 questions: Sir James Dyson, Industrial designer. United Kingdom: FINANCIAL TIMES; 2010.
[27] Meyers MA, Chen P-Y, Lin AY-M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science. 2008;53:1-206.
[28] Liu K, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science. 2013;58:503-64.
[29] Young T. An Essay on the Cohesion of Fluids. Philos Trans R Soc Lond. 1805;95:65-87.
[30] Law K-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. The Journal of Physical Chemistry Letters. 2014;5:686-8.
[31] Gao L, McCarthy TJ. Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization. Langmuir. 2008;24:9183-8.
[32] Samuel B, Zhao H, Law K-Y. Study of Wetting and Adhesion Interactions between Water and Various Polymer and Superhydrophobic Surfaces. The Journal of Physical Chemistry C. 2011;115:14852-61.
[33] Schellenberger F, Encinas N, Vollmer D, Butt H-J. How Water Advances on Superhydrophobic Surfaces. Phys Rev Lett. 2016;116:096101.
[34] Wong T-S, Sun T, Feng L, Aizenberg J. Interfacial materials with special wettability. MRS Bull. 2013;38:366-71.
[35] Yadav PS, Bahadur P, Tadmor R, Chaurasia K, Leh A. Drop Retention Force as a Function of Drop Size. Langmuir. 2008;24:3181-4.
[36] Golovin K, Lee DH, Mabry JM, Tuteja A. Transparent, Flexible, Superomniphobic Surfaces with Ultra-Low Contact Angle Hysteresis. Angew Chem Int Ed. 2013;52:13007-11.
[37] Bellanger H, Darmanin T, Taffin de Givenchy E, Guittard F. Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories. Chem Rev. 2014;114:2694-716.
[38] Verho T, Korhonen JT, Sainiemi L, Jokinen V, Bower C, Franze K, et al. Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc Natl Acad Sci USA. 2012;109:10210-3.
[39] Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE. Robust omniphobic surfaces. Proc Natl Acad Sci USA. 2008.
[40] Helbig R, Nickerl J, Neinhuis C, Werner C. Smart skin patterns protect springtails. PloS one. 2011;6:e25105.
[41] Hensel R, Helbig R, Aland S, Voigt A, Neinhuis C, Werner C. Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater. 2013;5:e37.
[42] Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, et al. Designing Superoleophobic Surfaces. Science. 2007;318:1618-22.
[43] Pan S, Kota AK, Mabry JM, Tuteja A. Superomniphobic Surfaces for Effective Chemical Shielding. J Am Chem Soc. 2013;135:578-81.
[44] Burns HD, Mitchell MA, McMillian JH, Farner BR, Harper SA, Peralta SF, et al. Replacement of Hydrochlorofluorocarbon-225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems NASA/TP-2015-218207. 2015:519.
[45] Deng X, Mammen L, Butt H-J, Vollmer D. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science. 2012;335:67-70.
[46] Geyer F, Schönecker C, Butt H-J, Vollmer D. Enhancing CO2 Capture using Robust Superomniphobic Membranes. Adv Mater. 2017;29:1603524-n/a.
[47] Gao L, McCarthy TJ. A Perfectly Hydrophobic Surface (θA/θR = 180°/180°). J Am Chem Soc. 2006;128:9052-3.
[48] Artus GRJ, Jung S, Zimmermann J, Gautschi HP, Marquardt K, Seeger S. Silicone Nanofilaments and Their Application as Superhydrophobic Coatings. Adv Mater. 2006;18:2758-62.
[49] Zimmermann J, Reifler FA, Fortunato G, Gerhardt L-C, Seeger S. A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles. Adv Funct Mater. 2008;18:3662-9.
[50] Cheng Y-T, Rodak DE. Is the lotus leaf superhydrophobic? Appl Phys Lett. 2005;86:144101.
[51] Liu TL, Kim C-JC. Turning a surface superrepellent even to completely wetting liquids. Science. 2014;346:1096-100.
[52] Pan S, Kota AK, Mabry JM, Tuteja A. Superomniphobic Surfaces for Effective Chemical Shielding. J Am Chem Soc. 2012;135:578-81.
[53] Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, et al. Pulsed Plasma Deposition of Super-Hydrophobic Nanospheres. Chem Mater. 2002;14:4566-71.
[54] Ji Y-Y, Kim S-S, Kwon OP, Lee S-H. Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process. Appl Surf Sci. 2009;255:4575-8.
[55] Irzh A, Ghindes L, Gedanken A. Rapid Deposition of Transparent Super-Hydrophobic Layers on Various Surfaces Using Microwave Plasma. ACS Appl Mater Interfaces. 2011;3:4566-72.
[56] Li P, Li L, Wang W, Jin W, Liu X, Yeung KWK, et al. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Applied Surface Science. 2014;297:109-15.
[57] Schutze A, Jeong JY, Babayan SE, Jaeyoung P, Selwyn GS, Hicks RF. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science. 1998;26:1685-94.
[58] Mariotti D, Bose AC, Ostrikov K. Atmospheric-Microplasma-Assisted Nanofabrication: Metal and Metal–Oxide Nanostructures and Nanoarchitectures. IEEE Transactions on Plasma Science. 2009;37:1027-33.
[59] Niaz M. Wave–Particle Duality: De Broglie, Einstein, and Schrödinger. Critical Appraisal of Physical Science as a Human Enterprise: Dynamics of Scientific Progress. 2009:159-65.
[60] Carter CB, Williams DB. Transmission electron microscopy: Springer-Verlag US; 2009.
[61] Goodman JW. Introduction to Fourier optics: Roberts and Company Publishers; 2005.
[62] Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, et al. Scanning Electron Microscopy and X-ray Microanalysis. Third Edition ed: Springer US; 2003.
[63] Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930.
[64] Eaton P, West P. Atomic force microscopy: Oxford University Press; 2010.
[65] Bhushan B, Marti O. Nanotribology and Nanomechanics I: Springer-Verlag Berlin Heidelberg; 2011.
[66] "The Nobel Prize in Physics 1921" Nobelprizeorg Nobel Media AB 2014 Web.15 May 2017. <http://www.nobelprize.org/nobel_prizes/physics/laureates/1921/>.
[67] "The Nobel Prize in Physics 1981", Nobelprizeorg Nobel Media AB 2014 Web.16 May, 2017. <http://www.nobelprize.org/nobel_prizes/physics/laureates/1981/>.
[68] van der Heide P. XPS Instrumentation. X-Ray Photoelectron Spectroscopy: John Wiley & Sons, Inc.; 2011. p. 27-60.
[69] Yang C-Y, Chuang S-I, Lo Y-H, Cheng H-M, Duh J-G, Chen P-Y. Stalagmite-like self-cleaning surfaces prepared by silanization of plasma-assisted metal-oxide nanostructures. J Mater Chem A. 2016;4:3406-14.
[70] Liu M, Wang S, Wei Z, Song Y, Jiang L. Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Adv Mater. 2009;21:665-9.
[71] Zhang P, Lin L, Zang D, Guo X, Liu M. Designing Bioinspired Anti-Biofouling Surfaces based on a Superwettability Strategy. Small. 2016:n/a-n/a.
[72] Tian X, Jokinen V, Li J, Sainio J, Ras RHA. Unusual Dual Superlyophobic Surfaces in Oil–Water Systems: The Design Principles. Adv Mater. 2016:n/a-n/a.
[73] Wen L, Tian Y, Jiang L. Bioinspired Super-Wettability from Fundamental Research to Practical Applications. Angew Chem Int Ed. 2015;54:3387-99.
[74] Tian Y, Jiang L. Wetting: Intrinsically robust hydrophobicity. Nat Mater. 2013;12:291-2.
[75] Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun. 2013;4.
[76] Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun. 2012;3:1247.
[77] Quéré D. Wetting and Roughness. Annual Review of Materials Research. 2008;38:71-99.
[78] Kota AK, Kwon G, Tuteja A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014;6:e109.
[79] Vogel N, Belisle RA, Hatton B, Wong T-S, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat Commun. 2013;4:2176.
[80] Xu L, Karunakaran RG, Guo J, Yang S. Transparent, Superhydrophobic Surfaces from One-Step Spin Coating of Hydrophobic Nanoparticles. ACS Appl Mater Interfaces. 2012;4:1118-25.
[81] Kong J-H, Kim T-H, Kim JH, Park J-K, Lee D-W, Kim S-H, et al. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique. Nanoscale. 2014;6:1453-61.
[82] Zhang X, Wang L, Levanen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013;3:12003-20.
[83] Cao L, Jones AK, Sikka VK, Wu J, Gao D. Anti-Icing Superhydrophobic Coatings. Langmuir. 2009;25:12444-8.
[84] Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J. Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets. ACS Nano. 2010;4:7699-707.
[85] Ganesh VA, Raut HK, Nair AS, Ramakrishna S. A review on self-cleaning coatings. J Mater Chem. 2011;21:16304-22.
[86] Li J, Cheng HM, Chan CY, Ng PF, Chen L, Fei B, et al. Superhydrophilic and underwater superoleophobic mesh coating for efficient oil-water separation. RSC Adv. 2015;5:51537-41.
[87] Darmanin T, de Givenchy ET, Amigoni S, Guittard F. Superhydrophobic Surfaces by Electrochemical Processes. Adv Mater. 2013;25:1378-94.
[88] Choi H-J, Choo S, Shin J-H, Kim K-I, Lee H. Fabrication of Superhydrophobic and Oleophobic Surfaces with Overhang Structure by Reverse Nanoimprint Lithography. The Journal of Physical Chemistry C. 2013;117:24354-9.
[89] Wang B, Liang W, Guo Z, Liu W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44:336-61.
[90] Wang J, Ober CK. Self-Organizing Materials with Low Surface Energy:  The Synthesis and Solid-State Properties of Semifluorinated Side-Chain Ionenes. Macromolecules. 1997;30:7560-7.
[91] Davide M, Sankaran RM. Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics. 2010;43:323001.
[92] Shimizu Y, Sasaki T, Chandra Bose A, Terashima K, Koshizaki N. Development of wire spraying for direct micro-patterning via an atmospheric-pressure UHF inductively coupled microplasma jet. Surface and Coatings Technology. 2006;200:4251-6.
[93] Yoshiki S, Arumugam Chandra B, Davide M, Takeshi S, Kazuhiro K, Tsunehisa S, et al. Reactive Evaporation of Metal Wire and Microdeposition of Metal Oxide Using Atmospheric Pressure Reactive Microplasma Jet. Jpn J Appl Phys. 2006;45:8228.
[94] van der Heide P. Glossary of Terms. X-Ray Photoelectron Spectroscopy: John Wiley & Sons, Inc.; 2011. p. 215-20.
[95] Bunker BC, Carpick RW, Assink RA, Thomas ML, Hankins MG, Voigt JA, et al. The Impact of Solution Agglomeration on the Deposition of Self-Assembled Monolayers. Langmuir. 2000;16:7742-51.
[96] Richard D, Clanet C, Quere D. Surface phenomena: Contact time of a bouncing drop. Nature. 2002;417:811-.
[97] Bird JC, Dhiman R, Kwon H-M, Varanasi KK. Reducing the contact time of a bouncing drop. Nature. 2013;503:385-8.
[98] Liu Y, Moevius L, Xu X, Qian T, Yeomans JM, Wang Z. Pancake bouncing on superhydrophobic surfaces. Nat Phys. 2014;10:515-9.
[99] Jung YC, Bhushan B. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces. Langmuir. 2008;24:6262-9.
[100] Brunet P, Lapierre F, Thomy V, Coffinier Y, Boukherroub R. Extreme Resistance of Superhydrophobic Surfaces to Impalement: Reversible Electrowetting Related to the Impacting/Bouncing Drop Test. Langmuir. 2008;24:11203-8.
[101] Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir. 2009;25:12293-8.
[102] Hee Kwon D, Joon Lee S. Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces. Appl Phys Lett. 2012;100:171601.
[103] Kulinich SA, Honda M, Zhu AL, Rozhin AG, Du XW. The icephobic performance of alkyl-grafted aluminum surfaces. Soft Matter. 2015;11:856-61.
[104] van Ooij WJ, Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, et al. Corrosion Protection Properties of Organofunctional Silanes—An Overview. Tsinghua Science & Technology. 2005;10:639-64.
[105] Boinovich LB, Emelyanenko AM, Ivanov VK, Pashinin AS. Durable Icephobic Coating for Stainless Steel. ACS Appl Mater Interfaces. 2013;5:2549-54.
[106] Kulinich SA, Farzaneh M. On ice-releasing properties of rough hydrophobic coatings. Cold Regions Science and Technology. 2011;65:60-4.
[107] Kulinich SA, Farhadi S, Nose K, Du XW. Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir. 2011;27:25-9.
[108] Lazauskas A, Guobienė A, Prosyčevas I, Baltrušaitis V, Grigaliūnas V, Narmontas P, et al. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles. Mater Charact. 2013;82:9-16.
[109] Heintzenberg J, Raes F, Schwartz SE. In Atmospheric Chemistry in a Changing World. Berlin: Springer; 2003.
[110] Ohring M. Materials Science of Thin Film. 2nd ed: ELSEVIER; 2002.
[111] Demiryont H, Nietering KE. Tungsten oxide films by reactive and conventional evaporation techniques. Appl Opt. 1989;28:1494-500.
[112] NANOVEA. Nano Scratch Testing of Thin Film on Glass Substrate. 2004.
[113] Bull SJ. Failure modes in scratch adhesion testing. Surf Coat Technol. 1991;50:25-32.
[114] Yang C-Y, Lo Y-H, Liu C, Cheng H-M, Duh J-G, Chen P-Y. Rapid deposition of superhydrophilic stalagmite-like protrusions for underwater selective superwettability. RSC Adv. 2016;6:89298-304.
[115] Wade T, Cohen L. Shell Oil Spill Dumps Thousands Of Barrels Of Crude Into Gulf Of Mexico. The Houffington Post; 2016.
[116] Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci. 1998;151:13-28.
[117] Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew Chem. 2004;116:2046-8.
[118] Zhang J, Seeger S. Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Adv Funct Mater. 2011;21:4699-704.
[119] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, et al. Carbon Nanotube Sponges. Adv Mater. 2010;22:617-21.
[120] Wang S, Li M, Lu Q. Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension. ACS Appl Mater Interfaces. 2010;2:677-83.
[121] Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A. Hygro-responsive membranes for effective oil–water separation. Nat Commun. 2012;3:1025.
[122] Brown PS, Bhushan B. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation. Sci Rep. 2015;5:8701.
[123] Yoon H, Na S-H, Choi J-Y, Latthe SS, Swihart MT, Al-Deyab SS, et al. Gravity-Driven Hybrid Membrane for Oleophobic–Superhydrophilic Oil–Water Separation and Water Purification by Graphene. Langmuir. 2014;30:11761-9.
[124] Gondal MA, Sadullah MS, Dastageer MA, McKinley GH, Panchanathan D, Varanasi KK. Study of Factors Governing Oil–Water Separation Process Using TiO2 Films Prepared by Spray Deposition of Nanoparticle Dispersions. ACS Appl Mater Interfaces. 2014;6:13422-9.
[125] Sinha S, Mahmoud KA, Das S. Conditions for spontaneous oil-water separation with oil-water separators. RSC Adv. 2015;5:80184-91.
[126] Bixler GD, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 2013;5:7685-710.
[127] Cheng Q, Li M, Zheng Y, Su B, Wang S, Jiang L. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter. 2011;7:5948-51.
[128] Waghmare PR, Gunda NSK, Mitra SK. Under-water superoleophobicity of fish scales. Sci Rep. 2014;4:7454.
[129] Sang-Joon L, Bu-Geun P, Guk-Bae K, Young-Gil J. Self-Cleaning Features of Plasma-Treated Surfaces with Self-Assembled Monolayer Coating. Jpn J Appl Phys. 2006;45:912.
[130] Wenzel RN. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind Eng Chem. 1936;28:988-94.
[131] Good RJ, Islam M. Liquid bridges and the oil agglomeration method of coal beneficiation: an elementary theory of stability. Langmuir. 1991;7:3219-21.
[132] Journet C, Moulinet S, Ybert C, Purcell ST, Bocquet L. Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhys Lett. 2005;71:104.
[133] Yuan Y, Lee TR. Contact Angle and Wetting Properties. In: Bracco G, Holst B, editors. Surface Science Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 3-34.
[134] White LR. Capillary rise in powders. J Colloid Interface Sci. 1982;90:536-8.
[135] Lo Y-H, Yang C-Y, Chang H-K, Hung W-C, Chen P-Y. Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation. Sci Rep. 2017;7:1426.
[136] Yu K, Fan T, Lou S, Zhang D. Biomimetic optical materials: Integration of nature’s design for manipulation of light. Progress in Materials Science. 2013;58:825-73.
[137] Yuan T, Meng J, Hao T, Wang Z, Zhang Y. A Scalable Method toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation. ACS Appl Mater Interfaces. 2015;7:14896-904.
[138] Zhu Y, Zhang F, Wang D, Pei XF, Zhang W, Jin J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J Mater Chem A. 2013;1:5758-65.
[139] Pan Y, Shi K, Peng C, Wang W, Liu Z, Ji X. Evaluation of Hydrophobic Polyvinyl-Alcohol Formaldehyde Sponges As Absorbents for Oil Spill. ACS Appl Mater Interfaces. 2014;6:8651-9.
[140] Li L, Liu L, Lei J, He J, Li N, Pan F. Intelligent sponge with reversibly tunable super-wettability: robust for effective oil-water separation as both the absorber and filter tolerate fouling and harsh environments. J Mater Chem A. 2016;4:12334-40.
[141] Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A. 2013;1:5386-93.
[142] Li J, Yan L, Li H, Li W, Zha F, Lei Z. Underwater superoleophobic palygorskite coated meshes for efficient oil/water separation. J Mater Chem A. 2015;3:14696-702.
[143] Huang K-T, Yeh S-B, Huang C-J. Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil–Water Separation. ACS Appl Mater Interfaces. 2015;7:21021-9.
[144] Manna U, Lynn DM. Synthetic Surfaces with Robust and Tunable Underwater Superoleophobicity. Adv Funct Mater. 2015;25:1672-81.
[145] Sumper M, Brunner E. Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica. Adv Funct Mater. 2006;16:17-26.
[146] Losic D, Mitchell JG, Voelcker NH. Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv Mater. 2009;21:2947-58.
[147] Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy & Environmental Science. 2011;4:3930-41.
[148] Lopez PJ, Descles J, Allen AE, Bowler C. Prospects in diatom research. Current Opinion in Biotechnology. 2005;16:180-6.
[149] Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 2009;27:116-27.
[150] Inglethorpe SDJ. Industrial minerals laboratory manual: diatomite. Mineralogy and Petrology Series. Nottingham, United Kindom1993. p. WG/92/39.
[151] Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27:5480-9.
[152] Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, Bio-Inspired Hybrid Materials. Science. 2008;322:1516-20.
[153] Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23-36.
[154] Zhang H, Hussain I, Brust M, Butler MF, Rannard SP, Cooper AI. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater. 2005;4:787-93.
[155] Halloran J. Making Better Ceramic Composites with Ice. Science. 2006;311:479-80.
[156] ASTM I. Standard Practice for the Preparation of Substitute Ocean Water. 2013. p. D1141-98.
[157] Lo Y-H. Underwater superoleophobic diatomite-based porous plate synthesized by freeze casting technique for high efficient oil/water separation. Hsinchu, Taiwan: National Tsinghua University; 2016.
[158] Brown PS, Atkinson ODLA, Badyal JPS. Ultrafast Oleophobic–Hydrophilic Switching Surfaces for Antifogging, Self-Cleaning, and Oil–Water Separation. ACS Appl Mater Interfaces. 2014;6:7504-11.
[159] Noureddini H, Teoh BC, Clements LD. Viseosities of Vegetable Oils and Fatty Acids. Journal of American oil Chemists' society. 1992;69:3.
[160] Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik. 1905;322:549-60.
[161] Speight J. Lange's Handbook of Chemistry, Sixteenth Edition: McGraw-Hill Education: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto; 2005.
[162] Bracco G, Holst B. Surface Science Techniques: Springer-Verlag Berlin Heidelberg; 2013.
[163] Deville S. Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Adv Eng Mater. 2008;10:155-69.
[164] Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J. Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano. 2014;8:6344-52.
[165] Dou X-Q, Zhang D, Feng C, Jiang L. Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS Nano. 2015;9:10664-72.
[166] Einstein A. Living philosophies: Ams Pr Inc; 1931.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以大氣電漿及矽烷化處理於羽毛表面合成多功能超疏水及疏油塗層
2. Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
3. 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
4. 烏賊骨板之結構與機械性質設計研究
5. 以化學氣相沉積法增強陶瓷支架之機械性質
6. 鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究
7. 兩種水棲昆蟲之吸附結構與機制研究:以石蛉幼蟲與網蚊幼蟲為啟發
8. 甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
9. 鯊魚牙齒之多尺度結構觀察與機械性質研究
10. 以扶桑及多孔植物為模板- 凝膠溶膠法合成TiO2及CaCO3 之研究
11. Multi-scale Structural Characterization and Attachment Mechanisms of the Hillstream River Loach (Sinogastromyzon puliensis)
12. Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
13. 以冷凍鑄造法及矽藻土合成具多階層孔洞結構之仿生複合材料
14. 以冷凍鑄造及高分子聚合法合成多功能具多階層孔洞之矽藻土基複合材料
15. 以魚鱗為原料合成氫氧基磷灰石多孔材料應用於生醫領域及重金屬吸附功能之研究
 
* *