|
References [1] Thomson J. Internet Encyclopedia of Philosophy. A Peer-reviewed Academic Resource. [2] Barthlott W, Ehler N. Raster-Elektronen-mikroskopie der Epidermis-Oberflachen von Spermatophyten. Scanning electron microscopy of epidermal surfaces of Spermatophyta) Abh Akad Wiss Lit Mainz, Math-Naturwiss Klasse, Trop Subtrop Pflanzenwelt. 1977;19:367-467. [3] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1-8. [4] Darmanin T, Guittard F. Superhydrophobic and superoleophobic properties in nature. Materials Today. 2015;18:273-85. [5] Bush JWM, Hu DL, Prakash M. The Integument of Water-walking Arthropods: Form and Function. In: Casas J, Simpson SJ, editors. Advances in Insect Physiology: Academic Press; 2007. p. 117-92. [6] Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science. 2009;54:137-78. [7] Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, et al. The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water. Adv Mater. 2010;22:2325-8. [8] Azimi G, Dhiman R, Kwon H-M, Paxson AT, Varanasi KK. Hydrophobicity of rare-earth oxide ceramics. Nat Mater. 2013;12:315-20. [9] Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. Wetting and spreading. Reviews of Modern Physics. 2009;81:739-805. [10] Adams J, Pendlebury D. Global Research Report: Materials Science and Technology. Global Research Report: Materials Science and Technology, Thomson Reuters ScienceWatch2011. p. 1-16. [11] Cassie ABD, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society. 1944;40:546-51. [12] Kalaugher L. Lotus effect shakes off dirt. http://nanotechweb.org; 2008. [13] Wang L, Zhou Q, Zheng Y, Xu S. Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Progress in Natural Science. 2009;19:1657-64. [14] Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen F, et al. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. The Journal of Experimental Biology. 2010;213:1115-25. [15] Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477:443-7. [16] Epstein AK, Wong T-S, Belisle RA, Boggs EM, Aizenberg J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc Natl Acad Sci USA. 2012;109:13182-7. [17] Leslie DC, Waterhouse A, Berthet JB, Valentin TM, Watters AL, Jain A, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotech. 2014;32:1134-40. [18] Kreder MJ, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews Materials. 2016;1:15003. [19] Cai Y, Lin L, Xue Z, Liu M, Wang S, Jiang L. Filefish-Inspired Surface Design for Anisotropic Underwater Oleophobicity. Advanced Functional Materials. 2014;24:809-16. [20] Liu X, Zhou J, Xue Z, Gao J, Meng J, Wang S, et al. Clam's Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity. Adv Mater. 2012;24:3401-5. [21] Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, et al. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Adv Mater. 2011;23:4270-3. [22] Dong Y, Li J, Shi L, Wang X, Guo Z, Liu W. Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem Comm. 2014;50:5586-9. [23] Fan J-B, Song Y, Wang S, Meng J, Yang G, Guo X, et al. Directly Coating Hydrogel on Filter Paper for Effective Oil–Water Separation in Highly Acidic, Alkaline, and Salty Environment. Adv Funct Mater. 2015;25:5368-75. [24] Chu Z, Feng Y, Seeger S. Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angew Chem Int Ed. 2015;54:2328-38. [25] Chen P-C, Xu Z-K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci Rep. 2013;3:2776. [26] Jacobs E. 20 questions: Sir James Dyson, Industrial designer. United Kingdom: FINANCIAL TIMES; 2010. [27] Meyers MA, Chen P-Y, Lin AY-M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science. 2008;53:1-206. [28] Liu K, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science. 2013;58:503-64. [29] Young T. An Essay on the Cohesion of Fluids. Philos Trans R Soc Lond. 1805;95:65-87. [30] Law K-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. The Journal of Physical Chemistry Letters. 2014;5:686-8. [31] Gao L, McCarthy TJ. Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization. Langmuir. 2008;24:9183-8. [32] Samuel B, Zhao H, Law K-Y. Study of Wetting and Adhesion Interactions between Water and Various Polymer and Superhydrophobic Surfaces. The Journal of Physical Chemistry C. 2011;115:14852-61. [33] Schellenberger F, Encinas N, Vollmer D, Butt H-J. How Water Advances on Superhydrophobic Surfaces. Phys Rev Lett. 2016;116:096101. [34] Wong T-S, Sun T, Feng L, Aizenberg J. Interfacial materials with special wettability. MRS Bull. 2013;38:366-71. [35] Yadav PS, Bahadur P, Tadmor R, Chaurasia K, Leh A. Drop Retention Force as a Function of Drop Size. Langmuir. 2008;24:3181-4. [36] Golovin K, Lee DH, Mabry JM, Tuteja A. Transparent, Flexible, Superomniphobic Surfaces with Ultra-Low Contact Angle Hysteresis. Angew Chem Int Ed. 2013;52:13007-11. [37] Bellanger H, Darmanin T, Taffin de Givenchy E, Guittard F. Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories. Chem Rev. 2014;114:2694-716. [38] Verho T, Korhonen JT, Sainiemi L, Jokinen V, Bower C, Franze K, et al. Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc Natl Acad Sci USA. 2012;109:10210-3. [39] Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE. Robust omniphobic surfaces. Proc Natl Acad Sci USA. 2008. [40] Helbig R, Nickerl J, Neinhuis C, Werner C. Smart skin patterns protect springtails. PloS one. 2011;6:e25105. [41] Hensel R, Helbig R, Aland S, Voigt A, Neinhuis C, Werner C. Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater. 2013;5:e37. [42] Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, et al. Designing Superoleophobic Surfaces. Science. 2007;318:1618-22. [43] Pan S, Kota AK, Mabry JM, Tuteja A. Superomniphobic Surfaces for Effective Chemical Shielding. J Am Chem Soc. 2013;135:578-81. [44] Burns HD, Mitchell MA, McMillian JH, Farner BR, Harper SA, Peralta SF, et al. Replacement of Hydrochlorofluorocarbon-225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems NASA/TP-2015-218207. 2015:519. [45] Deng X, Mammen L, Butt H-J, Vollmer D. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science. 2012;335:67-70. [46] Geyer F, Schönecker C, Butt H-J, Vollmer D. Enhancing CO2 Capture using Robust Superomniphobic Membranes. Adv Mater. 2017;29:1603524-n/a. [47] Gao L, McCarthy TJ. A Perfectly Hydrophobic Surface (θA/θR = 180°/180°). J Am Chem Soc. 2006;128:9052-3. [48] Artus GRJ, Jung S, Zimmermann J, Gautschi HP, Marquardt K, Seeger S. Silicone Nanofilaments and Their Application as Superhydrophobic Coatings. Adv Mater. 2006;18:2758-62. [49] Zimmermann J, Reifler FA, Fortunato G, Gerhardt L-C, Seeger S. A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles. Adv Funct Mater. 2008;18:3662-9. [50] Cheng Y-T, Rodak DE. Is the lotus leaf superhydrophobic? Appl Phys Lett. 2005;86:144101. [51] Liu TL, Kim C-JC. Turning a surface superrepellent even to completely wetting liquids. Science. 2014;346:1096-100. [52] Pan S, Kota AK, Mabry JM, Tuteja A. Superomniphobic Surfaces for Effective Chemical Shielding. J Am Chem Soc. 2012;135:578-81. [53] Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, et al. Pulsed Plasma Deposition of Super-Hydrophobic Nanospheres. Chem Mater. 2002;14:4566-71. [54] Ji Y-Y, Kim S-S, Kwon OP, Lee S-H. Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process. Appl Surf Sci. 2009;255:4575-8. [55] Irzh A, Ghindes L, Gedanken A. Rapid Deposition of Transparent Super-Hydrophobic Layers on Various Surfaces Using Microwave Plasma. ACS Appl Mater Interfaces. 2011;3:4566-72. [56] Li P, Li L, Wang W, Jin W, Liu X, Yeung KWK, et al. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Applied Surface Science. 2014;297:109-15. [57] Schutze A, Jeong JY, Babayan SE, Jaeyoung P, Selwyn GS, Hicks RF. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science. 1998;26:1685-94. [58] Mariotti D, Bose AC, Ostrikov K. Atmospheric-Microplasma-Assisted Nanofabrication: Metal and Metal–Oxide Nanostructures and Nanoarchitectures. IEEE Transactions on Plasma Science. 2009;37:1027-33. [59] Niaz M. Wave–Particle Duality: De Broglie, Einstein, and Schrödinger. Critical Appraisal of Physical Science as a Human Enterprise: Dynamics of Scientific Progress. 2009:159-65. [60] Carter CB, Williams DB. Transmission electron microscopy: Springer-Verlag US; 2009. [61] Goodman JW. Introduction to Fourier optics: Roberts and Company Publishers; 2005. [62] Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, et al. Scanning Electron Microscopy and X-ray Microanalysis. Third Edition ed: Springer US; 2003. [63] Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930. [64] Eaton P, West P. Atomic force microscopy: Oxford University Press; 2010. [65] Bhushan B, Marti O. Nanotribology and Nanomechanics I: Springer-Verlag Berlin Heidelberg; 2011. [66] "The Nobel Prize in Physics 1921" Nobelprizeorg Nobel Media AB 2014 Web.15 May 2017. <http://www.nobelprize.org/nobel_prizes/physics/laureates/1921/>. [67] "The Nobel Prize in Physics 1981", Nobelprizeorg Nobel Media AB 2014 Web.16 May, 2017. <http://www.nobelprize.org/nobel_prizes/physics/laureates/1981/>. [68] van der Heide P. XPS Instrumentation. X-Ray Photoelectron Spectroscopy: John Wiley & Sons, Inc.; 2011. p. 27-60. [69] Yang C-Y, Chuang S-I, Lo Y-H, Cheng H-M, Duh J-G, Chen P-Y. Stalagmite-like self-cleaning surfaces prepared by silanization of plasma-assisted metal-oxide nanostructures. J Mater Chem A. 2016;4:3406-14. [70] Liu M, Wang S, Wei Z, Song Y, Jiang L. Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Adv Mater. 2009;21:665-9. [71] Zhang P, Lin L, Zang D, Guo X, Liu M. Designing Bioinspired Anti-Biofouling Surfaces based on a Superwettability Strategy. Small. 2016:n/a-n/a. [72] Tian X, Jokinen V, Li J, Sainio J, Ras RHA. Unusual Dual Superlyophobic Surfaces in Oil–Water Systems: The Design Principles. Adv Mater. 2016:n/a-n/a. [73] Wen L, Tian Y, Jiang L. Bioinspired Super-Wettability from Fundamental Research to Practical Applications. Angew Chem Int Ed. 2015;54:3387-99. [74] Tian Y, Jiang L. Wetting: Intrinsically robust hydrophobicity. Nat Mater. 2013;12:291-2. [75] Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun. 2013;4. [76] Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun. 2012;3:1247. [77] Quéré D. Wetting and Roughness. Annual Review of Materials Research. 2008;38:71-99. [78] Kota AK, Kwon G, Tuteja A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014;6:e109. [79] Vogel N, Belisle RA, Hatton B, Wong T-S, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat Commun. 2013;4:2176. [80] Xu L, Karunakaran RG, Guo J, Yang S. Transparent, Superhydrophobic Surfaces from One-Step Spin Coating of Hydrophobic Nanoparticles. ACS Appl Mater Interfaces. 2012;4:1118-25. [81] Kong J-H, Kim T-H, Kim JH, Park J-K, Lee D-W, Kim S-H, et al. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique. Nanoscale. 2014;6:1453-61. [82] Zhang X, Wang L, Levanen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013;3:12003-20. [83] Cao L, Jones AK, Sikka VK, Wu J, Gao D. Anti-Icing Superhydrophobic Coatings. Langmuir. 2009;25:12444-8. [84] Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J. Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets. ACS Nano. 2010;4:7699-707. [85] Ganesh VA, Raut HK, Nair AS, Ramakrishna S. A review on self-cleaning coatings. J Mater Chem. 2011;21:16304-22. [86] Li J, Cheng HM, Chan CY, Ng PF, Chen L, Fei B, et al. Superhydrophilic and underwater superoleophobic mesh coating for efficient oil-water separation. RSC Adv. 2015;5:51537-41. [87] Darmanin T, de Givenchy ET, Amigoni S, Guittard F. Superhydrophobic Surfaces by Electrochemical Processes. Adv Mater. 2013;25:1378-94. [88] Choi H-J, Choo S, Shin J-H, Kim K-I, Lee H. Fabrication of Superhydrophobic and Oleophobic Surfaces with Overhang Structure by Reverse Nanoimprint Lithography. The Journal of Physical Chemistry C. 2013;117:24354-9. [89] Wang B, Liang W, Guo Z, Liu W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44:336-61. [90] Wang J, Ober CK. Self-Organizing Materials with Low Surface Energy: The Synthesis and Solid-State Properties of Semifluorinated Side-Chain Ionenes. Macromolecules. 1997;30:7560-7. [91] Davide M, Sankaran RM. Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics. 2010;43:323001. [92] Shimizu Y, Sasaki T, Chandra Bose A, Terashima K, Koshizaki N. Development of wire spraying for direct micro-patterning via an atmospheric-pressure UHF inductively coupled microplasma jet. Surface and Coatings Technology. 2006;200:4251-6. [93] Yoshiki S, Arumugam Chandra B, Davide M, Takeshi S, Kazuhiro K, Tsunehisa S, et al. Reactive Evaporation of Metal Wire and Microdeposition of Metal Oxide Using Atmospheric Pressure Reactive Microplasma Jet. Jpn J Appl Phys. 2006;45:8228. [94] van der Heide P. Glossary of Terms. X-Ray Photoelectron Spectroscopy: John Wiley & Sons, Inc.; 2011. p. 215-20. [95] Bunker BC, Carpick RW, Assink RA, Thomas ML, Hankins MG, Voigt JA, et al. The Impact of Solution Agglomeration on the Deposition of Self-Assembled Monolayers. Langmuir. 2000;16:7742-51. [96] Richard D, Clanet C, Quere D. Surface phenomena: Contact time of a bouncing drop. Nature. 2002;417:811-. [97] Bird JC, Dhiman R, Kwon H-M, Varanasi KK. Reducing the contact time of a bouncing drop. Nature. 2013;503:385-8. [98] Liu Y, Moevius L, Xu X, Qian T, Yeomans JM, Wang Z. Pancake bouncing on superhydrophobic surfaces. Nat Phys. 2014;10:515-9. [99] Jung YC, Bhushan B. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces. Langmuir. 2008;24:6262-9. [100] Brunet P, Lapierre F, Thomy V, Coffinier Y, Boukherroub R. Extreme Resistance of Superhydrophobic Surfaces to Impalement: Reversible Electrowetting Related to the Impacting/Bouncing Drop Test. Langmuir. 2008;24:11203-8. [101] Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir. 2009;25:12293-8. [102] Hee Kwon D, Joon Lee S. Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces. Appl Phys Lett. 2012;100:171601. [103] Kulinich SA, Honda M, Zhu AL, Rozhin AG, Du XW. The icephobic performance of alkyl-grafted aluminum surfaces. Soft Matter. 2015;11:856-61. [104] van Ooij WJ, Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, et al. Corrosion Protection Properties of Organofunctional Silanes—An Overview. Tsinghua Science & Technology. 2005;10:639-64. [105] Boinovich LB, Emelyanenko AM, Ivanov VK, Pashinin AS. Durable Icephobic Coating for Stainless Steel. ACS Appl Mater Interfaces. 2013;5:2549-54. [106] Kulinich SA, Farzaneh M. On ice-releasing properties of rough hydrophobic coatings. Cold Regions Science and Technology. 2011;65:60-4. [107] Kulinich SA, Farhadi S, Nose K, Du XW. Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir. 2011;27:25-9. [108] Lazauskas A, Guobienė A, Prosyčevas I, Baltrušaitis V, Grigaliūnas V, Narmontas P, et al. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles. Mater Charact. 2013;82:9-16. [109] Heintzenberg J, Raes F, Schwartz SE. In Atmospheric Chemistry in a Changing World. Berlin: Springer; 2003. [110] Ohring M. Materials Science of Thin Film. 2nd ed: ELSEVIER; 2002. [111] Demiryont H, Nietering KE. Tungsten oxide films by reactive and conventional evaporation techniques. Appl Opt. 1989;28:1494-500. [112] NANOVEA. Nano Scratch Testing of Thin Film on Glass Substrate. 2004. [113] Bull SJ. Failure modes in scratch adhesion testing. Surf Coat Technol. 1991;50:25-32. [114] Yang C-Y, Lo Y-H, Liu C, Cheng H-M, Duh J-G, Chen P-Y. Rapid deposition of superhydrophilic stalagmite-like protrusions for underwater selective superwettability. RSC Adv. 2016;6:89298-304. [115] Wade T, Cohen L. Shell Oil Spill Dumps Thousands Of Barrels Of Crude Into Gulf Of Mexico. The Houffington Post; 2016. [116] Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci. 1998;151:13-28. [117] Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew Chem. 2004;116:2046-8. [118] Zhang J, Seeger S. Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Adv Funct Mater. 2011;21:4699-704. [119] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, et al. Carbon Nanotube Sponges. Adv Mater. 2010;22:617-21. [120] Wang S, Li M, Lu Q. Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension. ACS Appl Mater Interfaces. 2010;2:677-83. [121] Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A. Hygro-responsive membranes for effective oil–water separation. Nat Commun. 2012;3:1025. [122] Brown PS, Bhushan B. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation. Sci Rep. 2015;5:8701. [123] Yoon H, Na S-H, Choi J-Y, Latthe SS, Swihart MT, Al-Deyab SS, et al. Gravity-Driven Hybrid Membrane for Oleophobic–Superhydrophilic Oil–Water Separation and Water Purification by Graphene. Langmuir. 2014;30:11761-9. [124] Gondal MA, Sadullah MS, Dastageer MA, McKinley GH, Panchanathan D, Varanasi KK. Study of Factors Governing Oil–Water Separation Process Using TiO2 Films Prepared by Spray Deposition of Nanoparticle Dispersions. ACS Appl Mater Interfaces. 2014;6:13422-9. [125] Sinha S, Mahmoud KA, Das S. Conditions for spontaneous oil-water separation with oil-water separators. RSC Adv. 2015;5:80184-91. [126] Bixler GD, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 2013;5:7685-710. [127] Cheng Q, Li M, Zheng Y, Su B, Wang S, Jiang L. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter. 2011;7:5948-51. [128] Waghmare PR, Gunda NSK, Mitra SK. Under-water superoleophobicity of fish scales. Sci Rep. 2014;4:7454. [129] Sang-Joon L, Bu-Geun P, Guk-Bae K, Young-Gil J. Self-Cleaning Features of Plasma-Treated Surfaces with Self-Assembled Monolayer Coating. Jpn J Appl Phys. 2006;45:912. [130] Wenzel RN. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind Eng Chem. 1936;28:988-94. [131] Good RJ, Islam M. Liquid bridges and the oil agglomeration method of coal beneficiation: an elementary theory of stability. Langmuir. 1991;7:3219-21. [132] Journet C, Moulinet S, Ybert C, Purcell ST, Bocquet L. Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhys Lett. 2005;71:104. [133] Yuan Y, Lee TR. Contact Angle and Wetting Properties. In: Bracco G, Holst B, editors. Surface Science Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 3-34. [134] White LR. Capillary rise in powders. J Colloid Interface Sci. 1982;90:536-8. [135] Lo Y-H, Yang C-Y, Chang H-K, Hung W-C, Chen P-Y. Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation. Sci Rep. 2017;7:1426. [136] Yu K, Fan T, Lou S, Zhang D. Biomimetic optical materials: Integration of nature’s design for manipulation of light. Progress in Materials Science. 2013;58:825-73. [137] Yuan T, Meng J, Hao T, Wang Z, Zhang Y. A Scalable Method toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation. ACS Appl Mater Interfaces. 2015;7:14896-904. [138] Zhu Y, Zhang F, Wang D, Pei XF, Zhang W, Jin J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J Mater Chem A. 2013;1:5758-65. [139] Pan Y, Shi K, Peng C, Wang W, Liu Z, Ji X. Evaluation of Hydrophobic Polyvinyl-Alcohol Formaldehyde Sponges As Absorbents for Oil Spill. ACS Appl Mater Interfaces. 2014;6:8651-9. [140] Li L, Liu L, Lei J, He J, Li N, Pan F. Intelligent sponge with reversibly tunable super-wettability: robust for effective oil-water separation as both the absorber and filter tolerate fouling and harsh environments. J Mater Chem A. 2016;4:12334-40. [141] Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A. 2013;1:5386-93. [142] Li J, Yan L, Li H, Li W, Zha F, Lei Z. Underwater superoleophobic palygorskite coated meshes for efficient oil/water separation. J Mater Chem A. 2015;3:14696-702. [143] Huang K-T, Yeh S-B, Huang C-J. Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil–Water Separation. ACS Appl Mater Interfaces. 2015;7:21021-9. [144] Manna U, Lynn DM. Synthetic Surfaces with Robust and Tunable Underwater Superoleophobicity. Adv Funct Mater. 2015;25:1672-81. [145] Sumper M, Brunner E. Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica. Adv Funct Mater. 2006;16:17-26. [146] Losic D, Mitchell JG, Voelcker NH. Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv Mater. 2009;21:2947-58. [147] Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy & Environmental Science. 2011;4:3930-41. [148] Lopez PJ, Descles J, Allen AE, Bowler C. Prospects in diatom research. Current Opinion in Biotechnology. 2005;16:180-6. [149] Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 2009;27:116-27. [150] Inglethorpe SDJ. Industrial minerals laboratory manual: diatomite. Mineralogy and Petrology Series. Nottingham, United Kindom1993. p. WG/92/39. [151] Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27:5480-9. [152] Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, Bio-Inspired Hybrid Materials. Science. 2008;322:1516-20. [153] Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23-36. [154] Zhang H, Hussain I, Brust M, Butler MF, Rannard SP, Cooper AI. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater. 2005;4:787-93. [155] Halloran J. Making Better Ceramic Composites with Ice. Science. 2006;311:479-80. [156] ASTM I. Standard Practice for the Preparation of Substitute Ocean Water. 2013. p. D1141-98. [157] Lo Y-H. Underwater superoleophobic diatomite-based porous plate synthesized by freeze casting technique for high efficient oil/water separation. Hsinchu, Taiwan: National Tsinghua University; 2016. [158] Brown PS, Atkinson ODLA, Badyal JPS. Ultrafast Oleophobic–Hydrophilic Switching Surfaces for Antifogging, Self-Cleaning, and Oil–Water Separation. ACS Appl Mater Interfaces. 2014;6:7504-11. [159] Noureddini H, Teoh BC, Clements LD. Viseosities of Vegetable Oils and Fatty Acids. Journal of American oil Chemists' society. 1992;69:3. [160] Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik. 1905;322:549-60. [161] Speight J. Lange's Handbook of Chemistry, Sixteenth Edition: McGraw-Hill Education: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto; 2005. [162] Bracco G, Holst B. Surface Science Techniques: Springer-Verlag Berlin Heidelberg; 2013. [163] Deville S. Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Adv Eng Mater. 2008;10:155-69. [164] Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J. Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano. 2014;8:6344-52. [165] Dou X-Q, Zhang D, Feng C, Jiang L. Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS Nano. 2015;9:10664-72. [166] Einstein A. Living philosophies: Ams Pr Inc; 1931.
|