帳號:guest(3.144.84.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊浩
作者(外文):Yang, Hao
論文名稱(中文):利用新穎製程和金屬摻雜提升二氧化鈦負極材料及磷酸鋰錳正極材料於高功率鋰離子電池之應用潛力
論文名稱(外文):Exploration of TiO2 Anode Materials and LiMnPO4 Cathode Materials through Novel Fabrication Method and Cation Substitution for High-rate Li-ion Batteries
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):胡啟章
吳志明
陳金銘
蕭立殷
口試委員(外文):Hu, Chi-Chang
Wu, Jyh-Ming
Chen, Jin-Ming
Hsiao, Li-Yin
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031575
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:248
中文關鍵詞:鋰離子電池鈉離子電池二氧化鈦磷酸鋰錳摻雜結構設計
外文關鍵詞:Li-ion batteryNa-ion batteryTitanium oxideLithium manganese phosphateDopingArchitecture design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:131
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
鋰離子二次電池由於具有優異的循環穩定性及較高的能量密度而成為最有潛力的能源儲存系統。到目前為止,提升正極/負極材料的結構穩定性、能量密度、功率密度及安全性仍是開發電池中甚為重要的一塊,增加電池的安全性可以減少電池爆炸的可能性,而在開發的材料之中,負極的二氧化鈦及正極的磷酸鋰錳具有優異的安全性,本研究將聚焦於利用奈米化粉體、形貌控制、表面改質及異質元素摻雜改善這兩種能源材料的電學性質。
在負極材料,由於銳鈦礦的二氧化鈦之工作電壓高於1V,避免惰性膜的大量生成,相較其他高安全性的負極材料(例如: 鈦酸鋰)具有更高的理論電容量(334 mAhg-1)。然而二氧化鈦的缺點係其較差的導電度和導離子率,所以研究的第一部分將聚焦於藉由結合粒徑縮小、形貌控制及元素摻雜提升二氧化鈦的電學性質。在水熱法中,將五價鈮元素摻雜入空心狀的二氧化鈦可以製備中片狀的二氧化鈦奈米粉末,片狀結構具有適合鋰離子脫嵌的(001)面,並展現出優異的電容量(127 mAhg-1,10 C)及循環穩定性(10,000圈,20C)。藉由分析不同速率下的循環伏安圖,發現其優異的電化學性能是來自表面偽電容的存在,大幅提升了鋰離子脫嵌材料表面的速度。在第二部分,研究致力於了解二氧化鈦在鈉離子電池的發展潛力,藉由在溶膠凝膠法中加入對苯二酸可以製備出具有均勻孔洞的片狀二氧化鈦,並具有10奈米的粒徑。在電性上,較高結晶度的片狀二氧化鈦展現出優異的電容量及穩定度(53 mAhg-1,30C)。藉由非臨場的XRD及XPS分析,發現到二氧化鈦會因為鈉離子的嵌入而逐漸結構扭曲並且非晶化,雖然展現出Ti4+/Ti3+的可逆反應,但也伴隨著Ti金屬的出現。雖然起初二氧化鈦的電容量來自於偽電容,但隨著活化反應出現了明顯的脫嵌現象,證明片狀二氧化鈦具有可以穩定儲存鈉離子的結構。
在正極材料,橄欖石結構的磷酸鋰錳具有優異的熱穩定、便宜及良好的循環穩定性等優點,磷酸鋰錳具有小於電解液裂解的電壓(4.1V)及較高的能量密度(701 Whkg-1),未來具有取代磷酸鋰鐵的潛力。然而其具有極差的導電度及導離子率,必須藉由粒徑縮小、表面鍍碳及元素摻雜來改善電化學性質。在本研究中,首先利用溶劑熱法在常壓高溫下製備磷酸鋰錳的奈米粉末,並添加對苯二胺抑制粒徑成長,對苯二胺是一個具有平面狀結構的有機鹼,可以吸附氫離子並減少氫氧化鋰的添加量。當磷酸鋰錳以蔗糖作為碳源時,可以展現穩定的電容量(134 mAhg-1, 0.1C)。另外,在合成時,將對苯二胺與對苯二醯氯聚合,經過高溫燒結後,可以在磷酸鋰錳表面直接生成均勻的氮摻雜碳膜。研究證明,氮摻雜碳膜具有較高的導離子率及較佳的附著性,更提升磷酸鋰錳的電化學性質。進而磷酸鋰錳的電學性質可以藉由摻雜四價釩離子而大幅提升(157 mAhg-1,0.1C及106 mAhg-1, 20C),釩離子抑制晶粒大小並使其展現出適合鋰離子脫嵌的(020)面,摻雜小於二價錳離子半徑的四價釩離子,可以收縮晶格及產生陽離子空缺。在臨場的同步輻射分析中,發現在電化學循環過程中,釩離子具有V5+/V4+及V4+/V3+兩種價數轉換,使得磷酸鋰錳有更高的理論電容量。另外,在脫鋰的過程中,磷酸鋰錳因摻雜釩而展現出更迅速的非晶化反應,這表示磷酸鋰錳可以快速的扭曲結構,使得鋰離子能迅速的進出材料內部。
本研究利用發展出的新穎製程,並將粉末奈米化、形貌控制、表面改質及元素摻雜等技術引入製程,使二氧化鈦及磷酸鋰錳展現出極度優異的電化學性能,這代表高安全性的正負極材料在未來的高功率電池的發展上有極大的優勢。
Li-ion batteries (LIBs) are the most promising energy storage system because of their long cycle life and high energy density. However, it is vital for anode and cathode materials which store Li-ions in their host structure to pursue higher energy density, power density, and safety. Increasing the stability of batteries prevents the damage as well as the explosion of batteries. Therefore, it is aimed to develop high-capacity and high-rate LIBs on high-safety anode/ cathode materials, anatase TiO2 and olivine LiMnPO4, by using the strategies of nano technology, morphology control, surface coating, and cation doping/substitution.
For anode materials, anatase TiO2 is a high-safety material as the operating voltage is above 1 V (v.s. Li/Li+) higher than the voltage range to form severe SEI layer. Anatase TiO2 has the high theoretical capacity (334 mAhg-1) among other high-safety materials, yet using the strategies as mentioned above is essential since it has a poor electrical conductivity and Li-ion diffusivity. The first part in this study aims to enhance the cycling life and rate capability of anatase TiO2 by combining the size reduction, morphology control, and cation substitution into one step. Nb-substituted TiO2 nanoplates (Nb-TiO2) were synthesized from hollow TiO2 in a hydrothermal process. Substituting large amounts of Nb5+ into anatase TiO2 promotes the morphology transformation from hollow to plate. Nb-TiO2 nanoplates with (001) preferred orientation show superior rate capability of 127 mAhg-1 at 10 C and cycling stability of 10,000 cycles at 20 C. By applying the cyclic voltammetry in wide scan rates, the mechanism of high rate is due to the enhanced pseudocapacitance which promotes fast Li-ion insertion/ extraction behaviors near the surface of Nb-TiO2.
In the second part, the study aims to improve the utility potential of anatase TiO2 in LIBs and SIBs (Na-ion batteries). Therefore, a novel preparation method is invented. The anatase TiO2 nanoplates with 10 nm particle sizes and uniform pores are produced by pyrolysing titanium-terephthalate hybrid materials. In SIBs, high-crystallinity anatase exhibits good rate capability, delivering 53 mAhg-1 at 30 C. Ex-situ XRD and XPS analysis show that anatase TiO2 forms metallic Ti and amorphous sodium titanate which is reversible with Ti4+/Ti 3+ redox reaction. Pseudocapacitance is found to comprise most capacity in the first cycle, and then the insertion capacity will enhance after activation, which proves that anatase TiO2 is a suitable host for accommodating Na-ion.
For cathode materials, LiMnPO4 is one of the olivine materials which show the features of high thermal stability, cost efficiency, and cycle life. LiMnPO4 with higher operating voltage (4.1 V v.s. Li/Li+) and energy density (701 Whkg-1) is expected to replace the commercialized LiFePO4. However, LiMnPO4 suffers from poor electric conductivity (< 10-9 Scm-1) and Li-ion diffusivity (< 10-14 cm2s-1) which limit its potential. Therefore, coating carbon, reducing particle size, and doping cation into LiMnPO4 is essential to improve the electrochemical performance. So far, LiMnPO4 is generally synthesized from the hydrothermal process since the produced particles are highly crystalline and small, but the yields are meager.
The study of LiMnPO4 in the first part reveals a novel preparation method, called diamine-assisted polymerization method to synthesize nano LiMnPO4 coated with homogenous N-doped carbon derived from polyamides. The p-phenylenediamine (PPD) is added into the synthesis process to suppress the particle growth. Moreover, PPD maintains the reaction pH, preventing the impurity formation. When coated carbon is prepared with sucrose, the LiMnPO4/C prepared with large amounts of PPD exhibits 134 mAhg-1 at 0.1 C. To cover a more homogenous and conductive carbon on LiMnPO4, PPD and acyl chlorides are in-situ polymerized into aromatic and semi-aliphatic polyamide. N-doped carbon pyrolyzed from the polyamide allows a fast Li-ion migration into the LiMnPO4. It is demonstrated that N is bonding with P and Mn on the LiMnPO4 surface, decreasing the contact resistance of carbon. Thus, LiMnPO4/N-doped C exhibits superior cycling performance.
In the final part, V4+ is substituted into LiMnPO4 to improve rate capability and relieve the strain during phase transition. V4+ acts to suppress the grain growth and promote (020) preferred orientation. The accommodation of V4+ on Mn site is accompanied with Mn vacancy. The carbon-coated LiMn1-2xVxPO4 exhibits a superior rate capability of 157 mAhg-1 at 0.1 C and 106 mAhg-1 at 20 C. In-situ XANES reveals that a continuous V3+/4+ and V4+/5+ redox reactions occur in the range of 2.0-3.5 V and 3.5-4.3 V. The V3+/4+ redox reaction promotes the solid-solution reaction and additional capacity below 3.5 V. Furthermore, in-situ XRD shows that the LiMn1-2xVxPO4 undergoes a fast crystalline-to-amorphous reaction. The formation of a metastable amorphous phase with wide Li contents will relieve the interfacial strain, which explains why the olivine with sluggish phase transition can exhibit fast lithiation/ delithiation after substituting with V4+.
Therefore, both anatase TiO2 and olivine LiMnPO4 exhibit outstanding performance, especially on rate capability by using novel preparation methods and several improving strategies. The electrochemical mechanisms are completely revealed which becomes the foundation to develop high-safety materials with superior performance.
List of Tables IX
Figure Captions X
Abstract XXI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivations and objectives in this study 2
1.2.1 Improving the electrochemical performance of anatase TiO2 by the utilization of cation substitution and architecture control 2
1.2.2 Unfolding the electrochemical behavior of TiO2 in Na-ion batteries by designing a novel porous nanoplate structure 4
1.2.3 Directly synthesizing nano-LiMnPO4 with N-doped carbon by developing a novel diamine-assisted polymerization method for high-performance Li-ion batteries 6
1.2.4 Achieving the high-rate performance of LiMnPO4 by a high concentration vanadium substitution and revealing the electrochemical mechanism by in-situ analysis 8
Chapter 2 Literature Review 11
2.1 The introduction of Li-ion batteries (LIBs) 11
2.1.1 Evolution of LIBs 11
2.1.2 Working principle of conventional Li-ion batteries 12
2.1.3 Anode materials 14
2.1.4 Cathode materials 17
2.2 High-safety Ti-based anode materials 41
2.2.1 TiO2 anode materials 41
2.2.2 TiO2: anatase phase 43
2.2.3 Shortening the Li-ion diffusion length and exposing Li-active facets through architecture control 44
2.2.4 Increasing the conductivity via cation doping/ substitution 46
2.2.5 Anatase TiO2 in Na-ion batteries (SIBs) 48
2.3 Olivine LiMnPO4 cathode material 60
2.3.1 The phase transition of LiFePO4 in micro-/nano-sized particles 62
2.3.2 The phase transition of LiMnPO4 64
2.3.3 Improving the Li-ion kinetics by particle size reduction 66
2.3.4 Increasing the extrinsic conductivity via carbon coating 68
2.3.5 Increasing the intrinsic conductivity via cation substitution 70
2.3.6 The phase transition of high power LiMnyFe1-y PO4 72
2.3.7 The amorphization of olivine materials during cycling 73
2.3.8 The aliovalent substitution: V ion 75
Chapter 3 Experimental Design 100
3.1 Synthesis procedure 100
3.1.1 Improving the electrochemical performance of anatase TiO2 by the utilization of cation substitution and architecture control 100
3.1.2 Unfolding the electrochemical behavior of TiO2 in Na-ion batteries by designing a novel porous nanoplate structure 101
3.1.3 Directly synthesizing nano-LiMnPO4 with N-doped carbon by developing a novel diamine-assisted polymerization method for high-performance Li-ion batteries 102
3.1.4 Achieving the high-rate performance of LiMnPO4 by a high concentration vanadium substitution and revealing the electrochemical mechanism by in-situ analysis 103
3.2 Characterization and analysis 104
3.2.1 Phase identification (XRD) 104
3.2.2 Composition analysis (ICP-OES) 105
3.2.3 Morphology and microstructure observation (SEM, TEM) 105
3.2.4 Surface chemistry analysis (XPS, Raman analysis) 105
3.2.5 Surface area measurement (BET) 105
3.2.6 Electrochemical characterization 106
3.2.7 EX-situ XRD and XPS analysis (the study of SIBs) 107
3.2.8 In-situ XRD and XANES analysis (the study of V-substituted LiMnPO4) 108
Chapter 4 Achieving the High-rate Performance of Anatase TiO2 Anode Materials by Architecture Control and Cation Substitution 109
4.1 Synthesizing high-rate TiO2 by the combination of nanoplate morphology and Nb5+ substitution 110
4.1.1 The morphology and microstructures of pure TiO2 and Nb-TiO2 110
4.1.2 Surface properties and oxidation states of Nb-TiO2 112
4.1.3 Electrochemical performance of pure TiO2 and Nb-TiO2 114
4.1.4 Revealing the Li-ion storage mechanism in Nb-TiO2 116
4.1.5 Calculating the charge-transfer resistance and Li-ion diffusivity 119
4.2 Facilely Synthesizing TiO2 nanoplates with uniform nanoplates from MOFs for LIBs and SIBs 131
4.2.1 The structure properties of as-synthesized compounds and TiO2 nanoplates 131
4.2.2 The morphology and microstructures of anatase TiO2 nanoplates 132
4.2.3 Electrochemical performance of anatase TiO2 nanoplates in LIBs 133
4.2.4 Electrochemical performance of anatase TiO2 nanoplates in SIBs 133
4.2.5 Studying the electrochemical behaviors by cyclic voltammetry and AC-impedance analysis 136
4.2.6 Unfolding the phase transition of anatase TiO2 in SIBs by ex-situ XRD measurement 137
4.2.7 Studying the oxidation states of anatase TiO2 in SIBs by ex-situ XPS analysis 138
4.2.8 Revealing the Li-ion/Na-ion storage mechanism of anatase TiO2 in LIBs and SIBs 140
4.2.9 The long cycling performance in LIBs and SIBs 141
Chapter 5 Improving the Cycling Performance of LiMnPO4 by Size reduction, In-situ carbon coating, and Cation substitution 158
5.1 Developing a diamine-assisted polymerization method to synthesize nano LiMnPO4/C and LiMnPO4/N-doped C composites 159
5.1.1 Morphology and microstructures of nano-sized LiMnPO4 160
5.1.2 The preparation and microstructures of LiMnPO4/N-doped C 161
5.1.3 The characteristics of polyamides and N-doped carbon 163
5.1.4 Realizing the bonding of N-doped carbon by XPS 165
5.1.5 Analyzing the physical properties of N-doped carbon 167
5.1.6 Electrochemical performance of LiMnPO4/C prepared with different PPD ratio 167
5.1.7 Electrochemical studies of the stoichiometric and non-stoichiometric LiMnPO4 in different cut-off currents 169
5.1.8 Electrochemical performance of LiMnPO4/N-doped carbon 171
5.1.9 Calculating the charge-transfer ability and Li-ion diffusivity 173
5.2 Enhancing the rate capability of nano-sized LiMnPO4/C by high V4+ substitution 195
5.2.1 Phases identification and microstructures of LiMn1-2xVxPO4 195
5.2.2 Analyzing the cation concentration in V-substituted LiMnPO4 197
5.2.3 Studying the formation of intermediate compounds during the synthesis procedure 198
5.2.4 Determining the oxidation states of V-substituted LiMnPO4 by XANES 200
5.2.5 Electrochemical performance of V-substituted LiMnPO4 202
5.2.6 Investigating the variation of V oxidation states during cycling by XENES 204
5.2.7 Studying the phase transition of pure LiMnPO4 and V-substituted LiMnPO4 during cycling 205
5.2.8 Revealing the charge-transfer ability and Li-ion diffusivity 208
Chapter 6 Conclusions 228
References 231
[1] H. Yang, C.-K. Lan, J.-G. Duh, Journal of Power Sources, 288 (2015) 401-408.
[2] M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju, U. Müller, Microporous and Mesoporous Materials, 157 (2012) 131-136.
[3] M. Sabo, W. Böhlmann, S. Kaskel, J. Mater. Chem., 16 (2006) 2354-2357.
[4] Z. Wang, X. Li, H. Xu, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, G. Qian, Journal of Materials Chemistry A, 2 (2014) 12571.
[5] A. Tekiel, J.S. Prauzner-Bechcicki, S. Godlewski, J. Budzioch, M. Szymonski, The Journal of Physical Chemistry C, 112 (2008) 12606-12609.
[6] G. Kim, C. Jo, W. Kim, J. Chun, S. Yoon, J. Lee, W. Choi, Energy & Environmental Science, 6 (2013) 2932.
[7] W. Wen, J.M. Wu, Y.Z. Jiang, S.L. Yu, J.Q. Bai, M.H. Cao, J. Cui, Sci Rep, 5 (2015) 11804.
[8] B. Zhao, Z. Shao, The Journal of Physical Chemistry C, 116 (2012) 17440-17447.
[9] H. Yang, J.-G. Duh, RSC Advances, 6 (2016) 37160-37166.
[10] H. Yang, Y. Wang, J.-G. Duh, ACS Sustainable Chemistry & Engineering, 6 (2018) 13302-13311.
[11] C. Liu, Z.G. Neale, G. Cao, Materials Today, 19 (2016) 109-123.
[12] J.B. Goodenough, Y. Kim, Chemistry of Materials, 22 (2010) 587-603.
[13] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Materials Today, 18 (2015) 252-264.
[14] J.-K. Park, WILEY-VCH, (2012).
[15] Y.-S. Lin, J.-G. Duh, D.-T. Shieh, M.-H. Yang, Journal of Alloys and Compounds, 490 (2010) 393-398.
[16] M.R. Palacin, Chem Soc Rev, 38 (2009) 2565-2575.
[17]
[18] T. Fang, J.-G. Duh, Surface and Coatings Technology, 201 (2006) 1886-1893.
[19] G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature, 392 (1998) 694-696.
[20] R. Alcántara, J.C. Jumas, P. Lavela, J. Olivier-Fourcade, C. Pérez-Vicente, J.L. Tirado, Journal of Power Sources, 81-82 (1999) 547-553.
[21] S. Madhavi, G.V. Subba Rao, B.V.R. Chowdari, S.F.Y. Li, Electrochimica Acta, 48 (2002) 219-226.
[22] J. Cho, Y.J. Kim, T.-J. Kim, B. Park, Angewandte Chemie, 113 (2001) 3471-3473.
[23] P.-Y. Liao, J.-G. Duh, J.-F. Lee, Journal of Power Sources, 189 (2009) 9-15.
[24] I. Bloom, S.A. Jones, V.S. Battaglia, G.L. Henriksen, J.P. Christophersen, R.B. Wright, C.D. Ho, J.R. Belt, C.G. Motloch, Journal of Power Sources, 124 (2003) 538-550.
[25] Y. Itou, Y. Ukyo, Journal of Power Sources, 146 (2005) 39-44.
[26] W.-Y. Chou, Y.-C. Jin, J.-G. Duh, C.-Z. Lu, S.-C. Liao, Applied Surface Science, 355 (2015) 1272-1278.
[27] Y.-C. Jin, J.-G. Duh, RSC Advances, 5 (2015) 6919-6924.
[28] C.-Y. Lin, J.-G. Duh, C.-H. Hsu, J.-M. Chen, Materials Letters, 64 (2010) 2328-2330.
[29] A.K. Padhi, Journal of The Electrochemical Society, 144 (1997) 1609.
[30] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chemistry of Materials, 17 (2005) 5085-5092.
[31] K. Zaghib, J. Dubé, A. Dallaire, K. Galoustov, A. Guerfi, M. Ramanathan, A. Benmayza, J. Prakash, A. Mauger, C.M. Julien, Journal of Power Sources, 219 (2012) 36-44.
[32] A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva, V.O. Sycheva, N.R. Khasanova, E.V. Antipov, Electrochimica Acta, 55 (2010) 2939-2950.
[33] C. Julien, A. Mauger, K. Zaghib, H. Groult, Inorganics, 2 (2014) 132-154.
[34] A.K. Padhi, Journal of The Electrochemical Society, 144 (1997) 1188.
[35] X. Yan, Z. Wang, M. He, Z. Hou, T. Xia, G. Liu, X. Chen, Energy Technology, 3 (2015) 801-814.
[36] W.L. Wang, J.-Y. Park, V.H. Nguyen, E.M. Jin, H.-B. Gu, Ceramics International, 42 (2016) 598-606.
[37] Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, Advanced Materials, 18 (2006) 1421-1426.
[38] C. Jiang, I. Honma, T. Kudo, H. Zhou, Electrochemical and Solid-State Letters, 10 (2007) A127.
[39] W. Li, Y. Bai, W. Zhuang, K.-Y. Chan, C. Liu, Z. Yang, X. Feng, X. Lu, The Journal of Physical Chemistry C, 118 (2014) 3049-3055.
[40] Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Angew Chem Int Ed Engl, 51 (2012) 2164-2167.
[41] S. Lunell, A. Stashans, L. Ojamäe, H. Lindström, A. Hagfeldt, Journal of the American Chemical Society, 119 (1997) 7374-7380.
[42] C.L. Olson, J. Nelson, M.S. Islam, J Phys Chem B, 110 (2006) 9995-10001.
[43] R. Hengerer, L. Kavan, P. Krtil, M. Grätzel, Journal of The Electrochemical Society, 147 (2000) 1467.
[44] M. Smirnov, R. Baddour-Hadjean, J Chem Phys, 121 (2004) 2348-2355.
[45] H. Liu, C.P. Grey, Journal of Materials Chemistry A, 4 (2016) 6433-6446.
[46] U. Lafont, D. Carta, G. Mountjoy, A.V. Chadwick, E.M. Kelder, The Journal of Physical Chemistry C, 114 (2009) 1372-1378.
[47] P. Balaya, Energy & Environmental Science, 1 (2008) 645.
[48] D. Fattakhova-Rohlfing, M. Wark, T. Brezesinski, B.M. Smarsly, J. Rathouský, Advanced Functional Materials, 17 (2007) 123-132.
[49] V. Augustyn, E.R. White, J. Ko, G. Grüner, B.C. Regan, B. Dunn, Mater. Horiz., 1 (2014) 219-223.
[50] E. Dy, R. Hui, J. Zhang, Z.-S. Liu, Z. Shi, The Journal of Physical Chemistry C, 114 (2010) 13162-13167.
[51] Y. Furubayashi, N. Yamada, Y. Hirose, Y. Yamamoto, M. Otani, T. Hitosugi, T. Shimada, T. Hasegawa, Journal of Applied Physics, 101 (2007) 093705.
[52] S.K. Das, M. Patel, A.J. Bhattacharyya, ACS Applied Materials & Interfaces, 2 (2010) 2091-2099.
[53] X. Xin, X. Zhou, J. Wu, X. Yao, Z. Liu, ACS Nano, 6 (2012) 11035-11043.
[54] C. Jiang, J. Zhang, Journal of Materials Science & Technology, 29 (2013) 97-122.
[55] M. Wagemaker, F.M. Mulder, Acc Chem Res, 46 (2013) 1206-1215.
[56] M. Wagemaker, W.J. Borghols, F.M. Mulder, J Am Chem Soc, 129 (2007) 4323-4327.
[57] C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, Journal of Power Sources, 166 (2007) 239-243.
[58] B. Hao, Y. Yan, X. Wang, G. Chen, ACS Appl Mater Interfaces, 5 (2013) 6285-6291.
[59] V. Augustyn, P. Simon, B. Dunn, Energy & Environmental Science, 7 (2014) 1597.
[60] M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Graetzel, Chemistry of Materials, 17 (2005) 1248-1255.
[61] J. Wang, J. Polleux, J. Lim, B. Dunn, The Journal of Physical Chemistry C, 111 (2007) 14925-14931.
[62] C.H. Sun, X.H. Yang, J.S. Chen, Z. Li, X.W. Lou, C. Li, S.C. Smith, G.Q. Lu, H.G. Yang, Chem Commun (Camb), 46 (2010) 6129-6131.
[63] L. Wu, B.X. Yang, X.H. Yang, Z.G. Chen, Z. Li, H.J. Zhao, X.Q. Gong, H.G. Yang, CrystEngComm, 15 (2013) 3252-3255.
[64] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature, 453 (2008) 638-641.
[65] A.M. Ruiz, G. Dezanneau, J. Arbiol, A. Cornet, J.R. Morante, Chemistry of Materials, 16 (2004) 862-871.
[66] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, Nat Mater, 12 (2013) 518-522.
[67] X. Lu, W. Yang, Z. Quan, T. Lin, L. Bai, L. Wang, F. Huang, Y. Zhao, J Am Chem Soc, 136 (2014) 419-426.
[68] B.K. Kaleji, R. Sarraf-Mamoory, A. Fujishima, Materials Chemistry and Physics, 132 (2012) 210-215.
[69] R.M. Pittman, A.T. Bell, The Journal of Physical Chemistry, 97 (1993) 12178-12185.
[70] A. Sasahara, M. Tomitori, The Journal of Physical Chemistry C, 117 (2013) 17680-17686.
[71] A.K. Chandiran, F. Sauvage, M. Casas-Cabanas, P. Comte, S.M. Zakeeruddin, M. Graetzel, The Journal of Physical Chemistry C, 114 (2010) 15849-15856.
[72] T. Hitosugi, H. Kamisaka, K. Yamashita, H. Nogawa, Y. Furubayashi, S. Nakao, N. Yamada, A. Chikamatsu, H. Kumigashira, M. Oshima, Y. Hirose, T. Shimada, T. Hasegawa, Applied Physics Express, 1 (2008) 111203.
[73] S.-I. Chuang, H. Yang, H.-W. Chen, J.-G. Duh, Thin Solid Films, 596 (2015) 250-255.
[74] E. Ventosa, W. Xia, S. Klink, F. La Mantia, B. Mei, M. Muhler, W. Schuhmann, Chemistry, 19 (2013) 14194-14199.
[75] C.T. Cherian, M.V. Reddy, T. Magdaleno, C.-H. Sow, K.V. Ramanujachary, G.V.S. Rao, B.V.R. Chowdari, CrystEngComm, 14 (2012) 978-986.
[76] S. Yoon, C.A. Bridges, R.R. Unocic, M.P. Paranthaman, Journal of Materials Science, 48 (2013) 5125-5131.
[77] Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu, X. Ji, Advanced Functional Materials, 27 (2017).
[78] J. Qiu, S. Li, E. Gray, H. Liu, Q.-F. Gu, C. Sun, C. Lai, H. Zhao, S. Zhang, The Journal of Physical Chemistry C, 118 (2014) 8824-8830.
[79] E. Ventosa, T. Loffler, F. La Mantia, W. Schuhmann, Chem Commun (Camb), 52 (2016) 11524-11526.
[80] K. Tang, L. Fu, R.J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Advanced Energy Materials, 2 (2012) 873-877.
[81] B. Jache, P. Adelhelm, Angew Chem Int Ed Engl, 53 (2014) 10169-10173.
[82] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat Commun, 5 (2014) 4033.
[83] Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.-S. Hu, H. Li, L. Chen, X. Huang, Journal of Materials Chemistry A, 3 (2015) 71-77.
[84] A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, Journal of Materials Chemistry A, 1 (2013) 2653.
[85] P. Senguttuvan, G. Rousse, H. Vezin, J.M. Tarascon, M.R. Palacín, Chemistry of Materials, 25 (2013) 2391-2393.
[86] P.J.P. Naeyaert, M. Avdeev, N. Sharma, H.B. Yahia, C.D. Ling, Chemistry of Materials, 26 (2014) 7067-7072.
[87] M.M. Doeff, J. Cabana, M. Shirpour, Journal of Inorganic and Organometallic Polymers and Materials, 24 (2013) 5-14.
[88] L. Wu, D. Bresser, D. Buchholz, S. Passerini, Journal of the Electrochemical Society, 162 (2014) A3052-A3058.
[89] H.A. Cha, H.M. Jeong, J.K. Kang, J. Mater. Chem. A, 2 (2014) 5182-5186.
[90] J.-Y. Hwang, S.-T. Myung, J.-H. Lee, A. Abouimrane, I. Belharouak, Y.-K. Sun, Nano Energy, 16 (2015) 218-226.
[91] L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro, A. Ochel, S. Passerini, Advanced Energy Materials, 5 (2015) 1401142.
[92] P. Gao, D. Bao, Y. Wang, Y. Chen, L. Wang, S. Yang, G. Chen, G. Li, Y. Sun, W. Qin, ACS Appl Mater Interfaces, 5 (2013) 368-373.
[93] K.T. Kim, G. Ali, K.Y. Chung, C.S. Yoon, H. Yashiro, Y.K. Sun, J. Lu, K. Amine, S.T. Myung, Nano Lett, 14 (2014) 416-422.
[94] L. Wu, D. Buchholz, D. Bresser, L. Gomes Chagas, S. Passerini, Journal of Power Sources, 251 (2014) 379-385.
[95] Y. Xu, E.M. Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, D. Mitlin, Chem Commun (Camb), 49 (2013) 8973-8975.
[96] S.M. Oh, J.Y. Hwang, C.S. Yoon, J. Lu, K. Amine, I. Belharouak, Y.K. Sun, ACS Appl Mater Interfaces, 6 (2014) 11295-11301.
[97] J.R. González, R. Alcántara, F. Nacimiento, G.F. Ortiz, J.L. Tirado, CrystEngComm, 16 (2014) 4602-4609.
[98] M. Madian, A. Eychmüller, L. Giebeler, Batteries, 4 (2018) 7.
[99] A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, Y. Nishi, Journal of Power Sources, 119-121 (2003) 232-238.
[100] Z.X. Nie, C.Y. Ouyang, J.Z. Chen, Z.Y. Zhong, Y.L. Du, D.S. Liu, S.Q. Shi, M.S. Lei, Solid State Communications, 150 (2010) 40-44.
[101] G. Li, H. Azuma, M. Tohda, Electrochemical and Solid-State Letters, 5 (2002) A135.
[102] S.-W. Kim, J. Kim, H. Gwon, K. Kang, Journal of The Electrochemical Society, 156 (2009) A635.
[103] J. Kim, K.-Y. Park, I. Park, J.-K. Yoo, D.-H. Seo, S.-W. Kim, K. Kang, Journal of The Electrochemical Society, 159 (2012) A55.
[104] S.P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Electrochemistry Communications, 12 (2010) 427-430.
[105] S.K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi, I. Exnar, Journal of The Electrochemical Society, 156 (2009) A541.
[106] D. Li, H. Zhou, Materials Today, 17 (2014) 451-463.
[107] A. Yamada, H. Koizumi, S. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat Mater, 5 (2006) 357-360.
[108] V. Srinivasan, J. Newman, Electrochemical and Solid-State Letters, 9 (2006) A110.
[109] D.A. Cogswell, M.Z. Bazant, Nano Lett, 13 (2013) 3036-3041.
[110] G. Oyama, Y. Yamada, R.-i. Natsui, S.-i. Nishimura, A. Yamada, The Journal of Physical Chemistry C, 116 (2012) 7306-7311.
[111] G. Chen, X. Song, T.J. Richardson, Electrochemical and Solid-State Letters, 9 (2006) A295.
[112] L. Suo, W. Han, X. Lu, L. Gu, Y.S. Hu, H. Li, D. Chen, L. Chen, S. Tsukimoto, Y. Ikuhara, Phys Chem Chem Phys, 14 (2012) 5363-5367.
[113] U. Boesenberg, F. Meirer, Y. Liu, A.K. Shukla, R. Dell'anna, T. Tyliszczak, G. Chen, J.C. Andrews, T.J. Richardson, R. Kostecki, J. Cabana, Chem Mater, 25 (2013) 1664-1672.
[114] R. Malik, F. Zhou, G. Ceder, Nat Mater, 10 (2011) 587-590.
[115] P. Bai, D.A. Cogswell, M.Z. Bazant, Nano Lett, 11 (2011) 4890-4896.
[116] N. Meethong, H.-Y.S. Huang, W.C. Carter, Y.-M. Chiang, Electrochemical and Solid-State Letters, 10 (2007) A134.
[117] N. Meethong, Y.-H. Kao, S.A. Speakman, Y.-M. Chiang, Advanced Functional Materials, 19 (2009) 1060-1070.
[118] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat Mater, 1 (2002) 123-128.
[119] N. Meethong, H.Y.S. Huang, S.A. Speakman, W.C. Carter, Y.M. Chiang, Advanced Functional Materials, 17 (2007) 1115-1123.
[120] Y.-H. Kao, M. Tang, N. Meethong, J. Bai, W.C. Carter, Y.-M. Chiang, Chemistry of Materials, 22 (2010) 5845-5855.
[121] J. Niu, A. Kushima, X. Qian, L. Qi, K. Xiang, Y.M. Chiang, J. Li, Nano Lett, 14 (2014) 4005-4010.
[122] H. Liu, F.C. Strobridge, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, P.J. Chupas, C.P. Grey, Science, 344 (2014) 1252817.
[123] M. Hess, T. Sasaki, C. Villevieille, P. Novak, Nat Commun, 6 (2015) 8169.
[124] K. Xiang, W. Xing, D.B. Ravnsbaek, L. Hong, M. Tang, Z. Li, K.M. Wiaderek, O.J. Borkiewicz, K.W. Chapman, P.J. Chupas, Y.M. Chiang, Nano Lett, 17 (2017) 1696-1702.
[125] G. Chen, T.J. Richardson, Journal of The Electrochemical Society, 156 (2009) A756.
[126] A. Yamada, Y. Kudo, K.-Y. Liu, Journal of The Electrochemical Society, 148 (2001) A1153.
[127] C. Delacourt, P. Poizot, M. Morcrette, J.M. Tarascon, C. Masquelier, Chemistry of Materials, 16 (2004) 93-99.
[128] N. Meethong, Y.-H. Kao, M. Tang, H.-Y. Huang, W.C. Carter, Y.-M. Chiang, Chemistry of Materials, 20 (2008) 6189-6198.
[129] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Tarascon, C. Masquelier, J. Electrochem. Soc., 152 (2005) A913.
[130] T. Drezen, N.-H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, Journal of Power Sources, 174 (2007) 949-953.
[131] V. Aravindan, J. Gnanaraj, Y.-S. Lee, S. Madhavi, Journal of Materials Chemistry A, 1 (2013) 3518.
[132] Y. Wang, H. Yang, C.-Y. Wu, J.-G. Duh, Journal of Materials Chemistry A, 5 (2017) 18674-18683.
[133] J. Yang, J.J. Xu, Journal of The Electrochemical Society, 153 (2006) A716.
[134] N.-H. Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono, M. Graetzel, Electrochemical and Solid-State Letters, 9 (2006) A277.
[135] Y. Wang, C.-Y. Wu, H. Yang, J.-G. Duh, Journal of Materials Chemistry A, 6 (2018) 10395-10403.
[136] D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N.-H. Kwon, J.H. Miners, L. Poletto, M. Grätzel, Journal of Power Sources, 189 (2009) 624-628.
[137] T.R. Kim, D.H. Kim, H.W. Ryu, J.H. Moon, J.H. Lee, S. Boo, J. Kim, Journal of Physics and Chemistry of Solids, 68 (2007) 1203-1206.
[138] Z. Bakenov, I. Taniguchi, Electrochemistry Communications, 12 (2010) 75-78.
[139] Z. Bakenov, I. Taniguchi, J. Power Sources, 195 (2010) 7445-7451.
[140] T.N.L. Doan, I. Taniguchi, Journal of Power Sources, 196 (2011) 1399-1408.
[141] C. Delacourt, C. Wurm, P. Reale, M. Morcrette, C. Masquelier, Solid State Ionics, 173 (2004) 113-118.
[142] J. Xiao, W. Xu, D. Choi, J.-G. Zhang, Journal of The Electrochemical Society, 157 (2010) A142.
[143] H. Yoo, M. Jo, B.-S. Jin, H.-S. Kim, J. Cho, Advanced Energy Materials, 1 (2011) 347-351.
[144] Q.D. Truong, M.K. Devaraju, Y. Ganbe, T. Tomai, I. Honma, Sci Rep, 4 (2014) 3975.
[145] Q.D. Truong, M.K. Devaraju, I. Honma, J. Mater. Chem. A, 2 (2014) 17400-17407.
[146] P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, X. Zhang, CrystEngComm, 14 (2012) 4284.
[147] L. Bao, G. Xu, J. Wang, H. Zong, L. Li, R. Zhao, S. Zhou, G. Shen, G. Han, CrystEngComm, 17 (2015) 6399-6405.
[148] L. Bao, G. Xu, H. Zeng, L. Li, R. Zhao, G. Shen, G. Han, S. Zhou, CrystEngComm, 18 (2016) 2385-2391.
[149] X. Qin, J. Wang, J. Xie, F. Li, L. Wen, X. Wang, Phys Chem Chem Phys, 14 (2012) 2669-2677.
[150] L. Chen, E. Dilena, A. Paolella, G. Bertoni, A. Ansaldo, M. Colombo, S. Marras, B. Scrosati, L. Manna, S. Monaco, ACS Appl Mater Interfaces, 8 (2016) 4069-4075.
[151] J. Fan, Y. Yu, Y. Wang, Q.-H. Wu, M. Zheng, Q. Dong, Electrochimica Acta, 194 (2016) 52-58.
[152] L. Zhang, Q. Qu, L. Zhang, J. Li, H. Zheng, J. Mater. Chem. A, 2 (2014) 711-719.
[153] Y. Hong, Z. Tang, S. Wang, W. Quan, Z. Zhang, Journal of Materials Chemistry A, 3 (2015) 10267-10274.
[154] Q. Xia, T. Liu, J. Xu, X. Cheng, W. Lu, X. Wu, Journal of Materials Chemistry A, 3 (2015) 6301-6305.
[155] H. Li, H. Zhou, Chem Commun (Camb), 48 (2012) 1201-1217.
[156] S.-M. Oh, S.-W. Oh, C.-S. Yoon, B. Scrosati, K. Amine, Y.-K. Sun, Adv. Funct. Mater., 20 (2010) 3260-3265.
[157] L.-e. Li, J. Liu, L. Chen, H. Xu, J. Yang, Y. Qian, RSC Advances, 3 (2013) 6847.
[158] Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou, Angew Chem Int Ed Engl, 47 (2008) 7461-7465.
[159] C. Zhang, H. Li, N. Ping, G. Pang, G. Xu, X. Zhang, RSC Adv., 4 (2014) 38791-38796.
[160] L. Wang, P. Zuo, G. Yin, Y. Ma, X. Cheng, C. Du, Y. Gao, Journal of Materials Chemistry A, 3 (2015) 1569-1579.
[161] J. Zhu, K. Yoo, I. El-Halees, D. Kisailus, ACS Appl Mater Interfaces, 6 (2014) 21550-21557.
[162] T. Shiratsuchi, S. Okada, T. Doi, J.-i. Yamaki, Electrochimica Acta, 54 (2009) 3145-3151.
[163] D. Wang, C. Ouyang, T. Drézen, I. Exnar, A. Kay, N.-H. Kwon, P. Gouerec, J.H. Miners, M. Wang, M. Grätzel, Journal of The Electrochemical Society, 157 (2010) A225.
[164] G. Yang, H. Ni, H. Liu, P. Gao, H. Ji, S. Roy, J. Pinto, X. Jiang, Journal of Power Sources, 196 (2011) 4747-4755.
[165] V. Ramar, P. Balaya, Phys Chem Chem Phys, 15 (2013) 17240-17249.
[166] J.-W. Lee, M.-S. Park, B. Anass, J.-H. Park, M.-S. Paik, S.-G. Doo, Electrochimica Acta, 55 (2010) 4162-4169.
[167] J. Kim, D.H. Seo, S.W. Kim, Y.U. Park, K. Kang, Chem Commun (Camb), 46 (2010) 1305-1307.
[168] D.B. Ravnsbaek, K. Xiang, W. Xing, O.J. Borkiewicz, K.M. Wiaderek, P. Gionet, K.W. Chapman, P.J. Chupas, Y.M. Chiang, Nano Lett, 14 (2014) 1484-1491.
[169] D.B. Ravnsbaek, K. Xiang, W. Xing, O.J. Borkiewicz, K.M. Wiaderek, P. Gionet, K.W. Chapman, P.J. Chupas, M. Tang, Y.M. Chiang, Nano Lett, 16 (2016) 2375-2380.
[170] M.M. Ren, Z. Zhou, L.W. Su, X.P. Gao, Journal of Power Sources, 189 (2009) 786-789.
[171] Y.-C. Lin, M.F.V. Hidalgo, I.-H. Chu, N.A. Chernova, M.S. Whittingham, S.P. Ong, Journal of Materials Chemistry A, 5 (2017) 17421-17431.
[172] X. Rui, Q. Yan, M. Skyllas-Kazacos, T.M. Lim, Journal of Power Sources, 258 (2014) 19-38.
[173] K.L. Harrison, C.A. Bridges, M.P. Paranthaman, C.U. Segre, J. Katsoudas, V.A. Maroni, J.C. Idrobo, J.B. Goodenough, A. Manthiram, Chemistry of Materials, 25 (2013) 768-781.
[174] F. Omenya, N.A. Chernova, R. Zhang, J. Fang, Y. Huang, F. Cohen, N. Dobrzynski, S. Senanayake, W. Xu, M.S. Whittingham, Chemistry of Materials, 25 (2012) 85-89.
[175] C.-Y. Chiang, H.-C. Su, P.-J. Wu, H.-J. Liu, C.-W. Hu, N. Sharma, V.K. Peterson, H.-W. Hsieh, Y.-F. Lin, W.-C. Chou, C.-H. Lee, J.-F. Lee, B.-Y. Shew, The Journal of Physical Chemistry C, 116 (2012) 24424-24429.
[176] F. Omenya, N.A. Chernova, S. Upreti, P.Y. Zavalij, K.-W. Nam, X.-Q. Yang, M.S. Whittingham, Chemistry of Materials, 23 (2011) 4733-4740.
[177] J. Ma, B. Li, H. Du, C. Xu, F. Kang, Journal of The Electrochemical Society, 158 (2011) A26.
[178] K.L. Harrison, A. Manthiram, Inorg Chem, 50 (2011) 3613-3620.
[179] A. Gutierrez, R. Qiao, L. Wang, W. Yang, F. Wang, A. Manthiram, Chemistry of Materials, 26 (2014) 3018-3026.
[180] K. Zaghib, A. Mauger, C.M. Julien, (2015) 25-65.
[181] Y. Zhu, J.W. Wang, Y. Liu, X. Liu, A. Kushima, Y. Liu, Y. Xu, S.X. Mao, J. Li, C. Wang, J.Y. Huang, Adv Mater, 25 (2013) 5461-5466.
[182] A.K. Chandiran, F.d.r. Sauvage, M. Casas-Cabanas, P. Comte, S.M. Zakeeruddin, M. Graetzel, The Journal of Physical Chemistry C, 114 (2010) 15849-15856.
[183] J. Sasaki, N.L. Peterson, K. Hoshino, Journal of Physics and Chemistry of Solids, 46 (1985) 1267-1283.
[184] U. Lafont, D. Carta, G. Mountjoy, A.V. Chadwick, E.M. Kelder, The Journal of Physical Chemistry C, 114 (2010) 1372-1378.
[185] L. Kavan, Chemical record, 12 (2012) 131-142.
[186] A.G. Dylla, G. Henkelman, K.J. Stevenson, Accounts of chemical research, 46 (2013) 1104-1112.
[187] T. Kogure, T. Umezawa, Y. Kotani, A. Matsuda, M. Tatsumisago, T. Minami, Journal of the American Ceramic Society, 82 (2004) 3248-3250.
[188] J. Wang, J. Polleux, J. Lim, B. Dunn, Journal of Physical Chemistry C, 111 (2007) 14925-14931.
[189] D. Rochefort, A.-L. Pont, Electrochemistry Communications, 8 (2006) 1539-1543.
[190] A.A. Belak, Y. Wang, A. Van der Ven, Chemistry of Materials, 24 (2012) 2894-2898.
[191] M. Fehse, S. Cavaliere, P.E. Lippens, I. Savych, A. Iadecola, L. Monconduit, D.J. Jones, J. Rozière, F. Fischer, C. Tessier, L. Stievano, The Journal of Physical Chemistry C, 117 (2013) 13827-13835.
[192] Y. Furubayashi, N. Yamada, Y. Hirose, Y. Yamamoto, M. Otani, T. Hitosugi, T. Shimada, T. Hasegawa, Journal of Applied Physics, 101 (2007) 093705.
[193] M. Śledź, J. Janczak, R. Kubiak, Journal of Molecular Structure, 595 (2001) 77-82.
[194] H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, The Journal of Physical Chemistry Letters, 2 (2011) 2560-2565.
[195] S. Xin, Y.X. Yin, Y.G. Guo, L.J. Wan, Adv Mater, 26 (2014) 1261-1265.
[196] J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Adv Mater, (2016).
[197] R.D. Shannon, Acta Crystallographica Section A, 32 (1976) 751-767.
[198] T. Brezesinski, J. Wang, R. Senter, K. Brezesinski, B. Dunn, S.H. Tolbert, ACS Nano, 4 (2010) 967-977.
[199] X. Yang, C. Wang, Y. Yang, Y. Zhang, X. Jia, J. Chen, X. Ji, J. Mater. Chem. A, 3 (2015) 8800-8807.
[200] C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.-Y. Song, Y.-B. He, B. Li, Z. Lin, J. Mater. Chem. A, 3 (2015) 13340-13349.
[201] H.A. Cha, H.M. Jeong, J.K. Kang, Journal of Materials Chemistry A, 2 (2014) 5182.
[202] P. Hartmann, C.L. Bender, M. Vracar, A.K. Durr, A. Garsuch, J. Janek, P. Adelhelm, Nat Mater, 12 (2013) 228-232.
[203] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.M. Chiang, Y. Cui, Nat Commun, 6 (2015) 7436.
[204] P.C. Howlett, D.R. MacFarlane, A.F. Hollenkamp, Journal of Power Sources, 114 (2003) 277-284.
[205] L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro, A. Ochel, S. Passerini, Advanced Energy Materials, 5 (2015) n/a-n/a.
[206] B. Zhao, Z. Shao, The Journal of Physical Chemistry C, 116 (2012) 17440-17447.
[207] J. Xiao, N.A. Chernova, S. Upreti, X. Chen, Z. Li, Z. Deng, D. Choi, W. Xu, Z. Nie, G.L. Graff, J. Liu, M.S. Whittingham, J.G. Zhang, Phys. Chem. Chem. Phys., 13 (2011) 18099-18106.
[208] H. Guo, C. Wu, L. Liao, J. Xie, S. Zhang, P. Zhu, G. Cao, X. Zhao, Inorg. Chem., 54 (2015) 667-674.
[209] Y. Hong, Z. Tang, W. Quan, S. Wang, Z. Zhang, Ceram. Int., 42 (2016) 8769-8778.
[210] F. Zhou, P. Zhu, X. Fu, R. Chen, R. Sun, C.-p. Wong, CrystEngComm, 16 (2014) 766-774.
[211] K.-Y. Park, I. Park, H. Kim, H.-d. Lim, J. Hong, J. Kim, K. Kang, Chem. Mater., 26 (2014) 5345-5351.
[212] S.M. Shebanov, I.K. Novikov, A.V. Pavlikov, O.B. Anańin, I.A. Gerasimov, Fibre Chemistry, 48 (2016) 158-164.
[213] S. Villar-Rodil, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Chem. Mater., 13 (2001) 4297-4304.
[214] N. Daems, X. Sheng, I.F.J. Vankelecom, P.P. Pescarmona, J. Mater. Chem. A, 2 (2014) 4085-4110.
[215] X. Wang, Q. Weng, X. Liu, X. Wang, D.M. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, D. Golberg, Nano Lett., 14 (2014) 1164-1171.
[216] T.C. Taucher, I. Hehn, O.T. Hofmann, M. Zharnikov, E. Zojer, J Phys Chem C Nanomater Interfaces, 120 (2016) 3428-3437.
[217] P. Voepel, C. Suchomski, A. Hofmann, S. Gross, P. Dolcet, B.M. Smarsly, CrystEngComm, 18 (2016) 316-327.
[218] F. Bigoni, F. De Giorgio, F. Soavi, C. Arbizzani, J. Electrochem. Soc., 164 (2016) A6171-A6177.
[219] J. Hu, Y. Xiao, H. Tang, H. Wang, Z. Wang, C. Liu, H. Zeng, Q. Huang, Y. Ren, C. Wang, W. Zhang, F. Pan, Nano Lett., 17 (2017) 4934-4940.
[220] I. Ismail, A. Noda, A. Nishimoto, M. Watanabe, Electrochim. Acta, 46 (2001) 1595-1603.
[221] Y. Bi, T. Wang, M. Liu, R. Du, W. Yang, Z. Liu, Z. Peng, Y. Liu, D. Wang, X. Sun, RSC Adv., 6 (2016) 19233-19237.
[222] D. Xiong, X. Li, Z. Bai, H. Shan, L. Fan, C. Wu, D. Li, S. Lu, ACS Appl Mater Interfaces, 9 (2017) 10643-10651.
[223] Z. Xie, K. Chang, B. Li, H. Tang, X. Fu, Z. Chang, X.-Z. Yuan, H. Wang, Electrochimica Acta, 189 (2016) 205-214.
[224] K. Wu, G. Hu, Z. Peng, Z. Zhang, Y. Cao, K. Du, RSC Advances, 5 (2015) 95020-95027.
[225] D. Di Lecce, T. Hu, J. Hassoun, Journal of Alloys and Compounds, 693 (2017) 730-737.
[226] O. Clemens, M. Bauer, R. Haberkorn, M. Springborg, H.P. Beck, Chemistry of Materials, 24 (2012) 4717-4724.
[227] J. Wong, F.W. Lytle, R.P. Messmer, D.H. Maylotte, Physical Review B, 30 (1984) 5596-5610.
[228] J.K. Kowalska, A.W. Hahn, A. Albers, C.E. Schiewer, R. Bjornsson, F.A. Lima, F. Meyer, S. DeBeer, Inorg Chem, 55 (2016) 4485-4497.
[229] S.R. Sutton, J. Karner, J. Papike, J.S. Delaney, C. Shearer, M. Newville, P. Eng, M. Rivers, M.D. Dyar, Geochimica et Cosmochimica Acta, 69 (2005) 2333-2348.
[230] S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar, J. Am. Chem. Soc., 125 (2003) 10402-10411.
[231] M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, Electrochem. Commun., 8 (2006) 1292-1298.
[232] X. Rui, D. Sim, C. Xu, W. Liu, H. Tan, K. Wong, H.H. Hng, T.M. Lim, Q. Yan, RSC Adv., 2 (2012) 1174-1180.
[233] M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki, R. Kanno, J Am Chem Soc, 132 (2010) 15268-15276.
[234] G. Chen, T.J. Richardson, Journal of Power Sources, 195 (2010) 1221-1224.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *