帳號:guest(18.218.55.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周子庭
作者(外文):Chou, Tzu-Ting
論文名稱(中文):利用鎳摻雜方法改質三維立體封裝中錫銀銅銲點之微觀結構、晶相特徵及改善可靠度
論文名稱(外文):Microstructure Evolution, Crystallographic Characterization and Reliability Improvement of Solder Bumps in 3D-IC Packages via Ni-doped Sn-Ag-Cu Solder Alloy
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):張守一
吳子嘉
林光隆
宋振銘
口試委員(外文):Chang, Shou-Yi
Wu, Albert T.
Lin, Kwang-Lung
Song, Jenn-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031545
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:151
中文關鍵詞:三維⽴體封裝電子構裝無鉛銲料鎳摻雜熱循環測試混合銲料
外文關鍵詞:3D-ICElectronic PackagePb-free SolderNi DopingThermal Cycling TestHybrid Solder
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
未來⾃動駕駛技術可以藉由先進駕駛輔助系統(ADAS)與遠端輔助中⼼(RAC)的協作來實現。相較3C 產品,⾞⽤晶⽚的可靠度要求將變得更嚴格,以確保乘客的⽣命安全,因之,封裝中銲點的機械和熱循環可靠度將在⾞⽤電⼦中扮演關鍵⾓⾊。此外,對於遠端輔助中⼼內的伺服器,具有⾼輸⼊/輸出(I/O)密度和⼩封裝尺⼨的三維封裝(3D-IC)將是⾼效能晶⽚的不⼆選擇。本研究將以鎳作為核⼼技術出發,對銲點的微觀結構,晶體學性質和可靠度進⾏改質。
⾸先,本研究利⽤架構改質的⽅式解決三維封裝中的問題。藉由具備兩種不同銲料複合焊點,三維封裝中熱預算、翹曲和堆疊晶⽚過重的疑慮皆可以被改善。透過結合錫-銀-銅與錫-鉍銲料,成功於185℃的迴銲溫度,將銲點接合於銅基版上。鑑於錫-銀-銅銲球有較⾼的熔點,加熱時銲球局部將不會參與反應並維持固態,此固態區域能防⽌三維結構坍塌並進⼀步避免相鄰銲點間的橋接問題。
接著,為了提升⾞⽤晶⽚中銲點之機械可靠度,本研究將對銲料合⾦進⾏改質,以提升銲點的銲球剪切強度。結果顯⽰,透過選⽤0.1 %鎳(重量百分濃度)摻雜的錫-銀-銅銲球與鎳基板的材料系統,能有效細化銲點中的錫晶粒。由於晶相結構呈現隨機晶向,故此結構是由⼤量成核點所形成的細晶結構,⽽⾮樹枝狀結構。同時,鎳細化錫晶粒的機制也會⼀併探討。再者,相較於未摻雜的銲點,銲球推⼒測試也顯⽰鎳摻雜的銲點有更⾼的球剪切強度。
最後,研究⽬標為探討晶粒結構與熱循環試驗下銲點失效模式之間的關係。藉由改質無鍍鎳鈀浸⾦(ENEPIG)球下⾦屬(UBM),具有超薄鎳鍍層之ENEPIG 能有效粗化Cu/Sn-Ag-Cu/ENEPIG 銲點中的錫晶粒。當ENEPIG 中鎳鍍層為0.26 微⽶時,破壞會沿著錫晶界發⽣。⽽若將鎳鍍層縮減⾄0.13 微⽶,由於銲點中的錫晶粒較⼤,將會在銲料中形成滑移帶。
總結來說,鎳展現出調變錫銲點中晶粒結構的能⼒。針對三維封裝與銲點可靠度所⾯臨之重要議題,本研究也透過三種改質⽅法提出了可能的解決⽅案,期望本研究之結果有助於⾃動駕駛技術之發展。
The autonomous technology can be achieved by the collaboration of Advanced Driver Assistance System (ADAS) on vehicle and Remote Assistance Center (RAC). Since the demands of reliability for automotive ICs are much higher for safe assurance, mechanical and thermal cycling reliabilities of solder joints are crucial for automotive electronics. By contrast, 3D-IC with high Input/Output (I/O) density and small package size is an appropriate choice for high-performance chips for servers of RAC. In this study, Ni is the core technology used to modify the microstructure, crystallographic properties and reliability of solder joint.
Firstly, architecture modification was employed to solve issues in 3D-IC packaging. The hybrid solder joint comprises of two different solders, which show potential to overcome the thermal budget, warpage and overweight concerns in 3D-IC packages. Via using Sn-Ag-Cu and Sn-Bi solder, the joint can be fabricated on Cu pad by reflowing at a peak temperature 185℃. Due to relatively high melting point of Sn-Ag-Cu solder ball, a portion of solder ball retained solid. The solid portions could prevent the chip from collapsing and further inhibit the bridging between adjacent solder joints under reflowing.
To improve the mechanical reliability of solder joints for automotive IC, solder alloy modification was then adopted to enhance the ball shear strength. The results show that reflowing 0.1 wt.% (weight%) Ni doped Sn-3.0Ag-0.5Cu solder alloy on Ni-based pad could completely refine the Sn grains of solder joint. The fine Sn grains in random orientation implied that it was not dendrite structure but truly fine grain structure resulting from sufficient Sn nucleation sites in solder. The refinement mechanism was addressed and discussed in detail. Furthermore, Ni-doped solder joint show higher ball shear strength as compared to those of bare solder joints.
Lastly, the purpose of final goal is to investigate the correlation between the grain structure of assembled joints and the failure mode under thermal cycling test. Through UBM modification on Electroless Ni Electroless Pd Immersion Au (ENEPIG), the Sn grain of Cu/Sn-Ag-Cu/ENEPIG joint can be effectively coarsened by using ENEPIG UBM with ultrathin Ni deposit. For ENEPIG with 0.26 μm Ni, the degradation occurred along Sn grain boundaries. As Ni of ENEPIG was reduced to 0.13 μm, slip band formed in the solder because of relatively large grain.
In summary, Ni exhibits the capability to alter Sn grain structure in Sn-based solder joint. The results of this work through three modification approach demonstrate the promising solution for critical issues of 3D-IC package and solder joint reliabilities, which is believed to be beneficial for developing autonomous technology.
Chapter II Literature Review .................................................. 9
2.1 Microelectronic Packaging ........................................................ 9
2.2 Package Technology ................................................................. 11
2.2.1 Flip-Chip Technology .............................................................................. 11
2.2.2 Three-Dimensional Integrated Circuit (3D-IC) Technology .................. 13
2.3 Solder Bump ............................................................................. 15
2.3.1 Sn-Pb Solder ............................................................................................ 16
2.3.2 Pb-Free Solder ......................................................................................... 17
2.4 Under Bump Metallurgy (UBM) ............................................. 18
2.4.1 Cu-Based UBM ........................................................................................ 19
2.4.2 Ni-Based UBM ......................................................................................... 20
2.5 Metallurgical Reaction in Pb-free Solder Joint ...................... 22
2.5.1 Metallurgical Reactions between Pb-free Solder and Cu-based UBM .. 22
2.5.2 Metallurgical Reactions between Pb-free Solder and Ni-based UBM ... 23
2.6 Crystallographic Structure of β-Sn in Pb-Free Solder Joints 23
2.6.1 Role of Sn grain structure in solder joints .............................................. 23
2.6.2 Correlation between Sn grain structure and mechanical strength in
solder joints .............................................................................................. 25
2.6.3 Correlation between Sn grain structure and thermal cycling (TC)
strength in solder joints ........................................................................... 25
2.6.4 Correlation between Sn grain structure and Electromigration (EM)
strength in solder joints ........................................................................... 27
2.7 Promising way to adjust grain structure and to improve joint
reliability by Ni-doped solder alloy & ultrathin-ENEPIG UBM ... 28
2.7.1 Fourth element addition to solder joints material system to refine β-Sn
.................................................................................................................. 28
2.7.2 Potential of Novel Ni-doped Sn-Ag-Cu solder alloy ............................... 29
2.7.3 Potential of ultrathin-ENEPIG UBM...................................................... 29
2.8 Thesis Overview ...................................................................... 30
2.8.1 Reducing thermal budget of bonding in 3D-IC via employing collapsefree
hybrid solder ..................................................................................... 30
2.8.2 Influence of doping minor Ni into Sn-based solder alloy on Sn grain
structure and orientation in solder joints ............................................... 31
2.8.3 Microstructure and mechanism of Sn grain refinement in Ni-doped
solder joints .............................................................................................. 32
2.8.4 Improving ball shear strength of Sn-Ag-Cu solder joints by using Nidoped
solder and Ni-based UBM ............................................................ 32
2.8.5 Investigating the effects of grain structure on thermal shock behavior
in Cu/Sn-Ag-Cu/ENEPIG joint assembly by modifying thickness of Ni
deposit in ENEPIG .................................................................................. 33
Chapter III Experimental Procedure ................................. 52
3.1 Solder Joint Fabrication ......................................................... 52
3.1.1 Sn-Ag-Cu Solder Joints with Cu-based or Ni-based UBM .................... 52
3.1.2 Sn-Ag-Cu/Cu and Sn-Ag-Cu/Ni Solder Joints with Minor Ni Doping .. 53
3.1.3 Sn-Ag-Cu/Sn-Bi/Cu Hybrid Solder Joints .............................................. 54
3.1.4 Conventional-ENEPIG/Sn-Ag-Cu/Cu and ultrathin-ENEPIG/Sn-Ag-
Cu/Cu joints assembly ............................................................................. 54
3.2 Sample Preparation for Characterization .............................. 55
3.3 Characterization and Analysis ............................................... 56
3.3.1 Microstructure Observation .................................................................... 56
3.3.2 Composition Analysis .............................................................................. 57
3.3.3 Grain Structure Evaluation ..................................................................... 57
3.4 Reliability Tests ....................................................................... 58
3.4.1 Ball Shear Testing .................................................................................... 58
3.4.2 Thermal Shock Testing ............................................................................ 59
Chapter IV Results and Discussion .................................... 66
4.1 Reducing thermal budget of bonding in 3D package via
employing collapse-free hybrid solder ............................................ 66
4.1.1 Microstructure of hybrid solder joints ................................................... 66
4.1.2 Interfacial IMC at SB/Cu interface ......................................................... 67
4.1.3 Micro-Ag3Sn particles in SAC/SB/Cu hybrid solder joint ..................... 67
4.1.4 Micro-Ag3Sn particles in SACN/SB/Cu hybrid solder joint .................. 69
4.2 Influence of doping minor Ni into Sn-based solder alloy on Sn
grain structure and orientation in solder joints ............................. 76
4.2.1 Characterization of β-Sn grains and orientation .................................... 76
4.2.2 Grain boundaries character maps of β-Sn .............................................. 78
4.2.3 The distribution of grain boundaries angle ............................................ 80
4.3 Microstructure and mechanism of Sn grain refinement in Nidoped
solder joints ........................................................................... 85
4.3.1 Microstructure of solder matrix of Ni-doped solder/OSP Cu joints ...... 85
4.3.2 Mechanism of grain refinement in Ni-doped solder/OSP Cu joints ...... 86
4.3.3 Microstructure of solder matrix of Ni-doped solder/NiAu joints .......... 88
4.3.4 Mechanism of grain refinement of Ni-doped solder/NiAu joints ........... 89
4.4 Improving ball shear strength of Sn-Ag-Cu solder joints by
using Ni-doped solder and Ni-based UBM ..................................... 98
4.4.1 Ball shear strength of Sn-Ag-Cu solder joints with and without Nidoping
....................................................................................................... 98
4.4.2 Fracture surface of Sn-Ag-Cu solder joints with and without Ni-doping
after ball shear testing ............................................................................. 98
4.4.3 Analyzing the flat and dimpled region of fracture surface after ball
shear testing ............................................................................................. 99
4.4.4 Cross-sectional view of Sn-Ag-Cu solder joints with and without Nidoping
after ball shear testing ............................................................... 100
4.4.5 Elemental analysis on cross-sectional view of Sn-Ag-Cu solder joints
with and without Ni-doping after ball shear testing ............................. 102
4.5 Investigating the effects of grain structure on thermal shock
behavior in Cu/Sn-Ag-Cu/ENEPIG joint assembly by modifying
thickness of Ni deposit in ENEPIG ............................................... 108
4.5.1 Microstructure and grain structure of as-fabricated solder joints ...... 108
4.5.2 Interfacial IMC in as-fabricated solder joints ...................................... 110
4.5.3 Degradation of solder joints after thermal shock test .......................... 111
4.5.4 Interfacial IMC in solder joints after thermal shock test ..................... 112
4.5.5 Variation of interfacial IMC thickness ................................................. 115
4.5.6 Consumption of Ni deposit in UBM ...................................................... 116
4.5.7 Evolution of interfacial IMC formation and growth ............................ 117
Chapter V Conclusions....................................................... 129
References ............................................................................. 133
Paper Publication .................................................................. 148
International Conference Publication .................................. 150
[1] R.-T. Juang, Data Recording for Remote Monitoring of Autonomous Vehicles, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 13 (2019) 5-9.
[2] T. Litman, Autonomous vehicle implementation predictions, 2019.
[3] S. Jones, D. Barbé, R. Ellinger, E. Kural, A.F. Parrilla, VIRTUAL development of energy optimal ADAS functionality for electrified vehicles, IET International Conference on Intelligent and Connected Vehicles (ICV 2016), 2016, pp. 1-5.
[4] L.F. Miller, Controlled Collapse Reflow Chip Joining, IBM Journal of Research and Development 13 (1969) 239-250.
[5] J.H. Lau, McGraw-Hill, , New York, 1996.
[6] G.R. Blackwell, CRC Press, Boca Raton, Florida, 1999.
[7] E. Rymaszewski, J. Walsh, G. Leehan, Semiconductor logic technology in IBM, IBM Journal of Research and Development 25 (1981) 603-616.
[8] P. Ramm, A. Klumpp, J. Weber, M.M.V. Taklo, 3D System-on-Chip technologies for More than Moore systems, Microsystem Technologies 16 (2010) 1051-1055.
[9] K. Tzu-Ying, C. Shu-Ming, S. Ying-Ching, C. Chia-Wen, H. Chao-Kai, L. Ching Kuan, L. Chun-Te, C. Yu-Hua, L. Wei-Chung, Reliability tests for a three dimensional chip stacking structure with through silicon via connections and low cost, 2008 58th Electronic Components and Technology Conference, 2008, pp. 853-858.
[10] C. Li, X. Wang, S. Song, S. Liu, 21-Layer 3-D Chip Stacking Based on Cu-Sn Bump Bonding, IEEE Transactions on Components, Packaging and Manufacturing Technology 5 (2015) 627-635.
[11] Y. Kurita, S. Matsui, N. Takahashi, K. Soejima, M. Komuro, M. Itou, M. Kawano, Vertical Integration of Stacked DRAM and High-Speed Logic Device Using SMAFTI Technology, IEEE Transactions on Advanced Packaging 32 (2009) 657-665.
[12] K.-L. Lin, Fundamentals of Solder Alloys in 3D Packaging, in: Y. Li, D. Goyal (Eds.), 3D Microelectronic Packaging: From Fundamentals to Applications, Springer International Publishing, Cham, 2017, pp. 205-222.
[13] J.H. Lau, Evolution, challenge, and outlook of TSV, 3D IC integration and 3d silicon integration, 2011 International Symposium on Advanced Packaging Materials (APM), 2011, pp. 462-488.
[14] J. Knechtel, O. Sinanoglu, I.M. Elfadel, J. Lienig, C.C.N. Sze, Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration, IPSJ Transactions on System LSI Design Methodology 10 (2017) 45-62.
[15] S.F. Al-Sarawi, D. Abbott, P.D. Franzon, A review of 3-D packaging technology, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B 21 (1998) 2-14.
[16] J. Schmitz, Low temperature thin films for next-generation microelectronics (invited), Surface and Coatings Technology 343 (2018) 83-88.
[17] T. Wang, P. Bex, G. Capuz, F. Duval, F. Inoue, C. Gerets, J. Bertheau, K.J. Rebibis, A. Miller, G. Beyer, E. Beyne, M. Natsukawa, K. Mitsukura, K. Hatakeyama, 3D IC assembly using thermal compression bonding and wafer-level underfill - Strategies for quality improvement and throughput enhancement, 2016 IEEE 18th Electronics Packaging Technology
Conference (EPTC), 2016, pp. 791-796.
[18] J. Shen, Y. Pu, H. Yin, D. Luo, J. Chen, Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn–Bi based solder alloys, J. Alloys Compd. 614 (2014) 63-70.
[19] K. Murayama, M. Aizawa, K. Oi, Effects of Au and Pd in Pad Surface Finish on Electro-Migration of Flip Chip Interconnection Between Cu-Pillar and Sn-Bi Solder Alloy System, 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, pp. 875-881.
[20] K. Murayama, M. Aizawa, T. Kurihara, Study of Crystal Orientation and Microstructure in Sn-Bi and Sn-Ag-Cu Solder with Thermal Compression Bonding and Mass Reflow, 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 909-916.
[21] J. Karppinen, J. Li, J. Pakarinen, T.T. Mattila, M. Paulasto-Kröckel, Shock impact reliability characterization of a handheld product in accelerated tests and use environment, Microelectron. Reliab. 52 (2012) 190-198.
[22] J.-M. Song, Y.-R. Liu, Y.-S. Lai, Y.-T. Chiu, N.-C. Lee, Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints, Microelectron. Reliab. 52 (2012) 180-189.
[23] A. Agwai, I. Guven, E. Madenci, Drop-Shock Failure Prediction in Electronic Packages by Using Peridynamic Theory, IEEE Transactions on Components, Packaging and Manufacturing Technology 2 (2012) 439-447.
[24] Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, R. Mahajan, Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates:I. Effects of Loading and Processing Conditions, J. Electron. Mater. 41 (2012) 375-389.
[25] P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, R. Mahajan, Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map, J. Electron. Mater. 41 (2012) 412-424.
[26] J.C. Suhling, H.S. Gale, R.W. Johnson, M.N. Islam, T. Shete, P. Lall, M.J. Bozack, J.L. Evans, S. Ping, T. Gupta, J.R. Thompson, Thermal cycling reliability of lead free solders for automotive applications, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543), 2004, pp. 350-357.
[27] W.L. Winterbottom, Converting to lead-free solders: An automotive industry perspective, JOM 45 (1993) 20-24.
[28] P. Lall, M.N. Islam, N. Singh, J.C. Suhling, R. Darveaux, Model for BGA and CSP reliability in automotive underhood applications, IEEE CMPT 27 (2004) 585-593.
[29] R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics, IEEE Transactions on Electronics Packaging Manufacturing 27 (2004) 164-176.
[30] Y.-H. Ko, S.-H. Yoo, C.-W. Lee, Evaluation on reliability of high temperature lead-free solder for automotive electronics, Journal of the Microelectronics and Packaging Society 17 (2010) 35-40.
[31] G. Whitten, Lead-free solder implementation for automotive electronics, 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070), 2000, pp. 1410-1415.
[32] C.-Y. Yu, T.-K. Lee, M. Tsai, K.-C. Liu, J.-G. Duh, Effects of Minor Ni Doping on Microstructural Variations and Interfacial Reactions in Cu/Sn-3.0Ag-0.5Cu-xNi/Au/Ni Sandwich Structures, J. Electron. Mater. 39 (2010) 2544-2552.
[33] I.E. Anderson, J.L. Harringa, Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints, J. Electron. Mater. 35 (2006) 94-106.
[34] I.E. Anderson, Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications, J. Mater. Sci. - Mater. Electron. 18 (2007) 55-76.
[35] M.G. Cho, S.K. Kang, D.-Y. Shih, H.M. Lee, Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging, J. Electron. Mater. 36 (2007) 1501-1509.
[36] S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-i. Cho, J. Yu, W.K. Choi, Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying, JOM 56 (2004) 34.
[37] F. Wang, X. Ma, Y. Qian, Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition, Scripta Mater. 53 (2005) 699-702.
[38] C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions, Mater. Sci. Eng., R 44 (2004) 1-44.
[39] j.s. Michael quirk, Semiconductor Manufacturing Technology, Pearson, United States, 2000.
[40] R. Tummala, Rymaszewski, Eugene J., Klopfenstein, Alan G., Microelectronics packaging handbook, Van Nostrand Reihold, New York, 1997.
[41] J.H. Lau, Ball grid array technology, McGraw-Hill Professional, New York, 1995.
[42] J.H. Lau, Cost analysis: Solder bumped flip chip versus wire bending, IEEE Trans. on Electron. Pack. Manuf. Tech., 1998, p. 4.
[43] Twisp, Flip chip. https://en.wikipedia.org/wiki/Flip_chip, 2008).
[44] J.H. Lau, S. Lee, Chip scale package (CSP), chapter1999.
[45] K.N. Tu, H.-Y. Hsiao, C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy, Microelectron. Reliab. 53 (2013) 2-6.
[46] Y. Lv, M. Chen, M. Cai, S. Liu, A reliable Cu–Sn stack bonding technology for 3D-TSV packaging, Semiconductor Science and Technology 29 (2014) 025003.
[47] Y. Liu, Y.-T. Chen, S. Gu, D.-W. Kim, K.N. Tu, Fracture reliability concern of (Au, Ni)Sn4 phase in 3D integrated circuit microbumps using Ni/Au surface finishing, Scripta Mater. 119 (2016) 9-12.
[48] Y. Niu, H. Wang, S. Shao, S.B. Park, In-Situ Warpage Characterization of BGA Packages with Solder Balls Attached During Reflow with 3D Digital Image Correlation (DIC), IEEE 66th ECTC (2016) 782-788.
[49] X. Dong, Y. Xie, System-level cost analysis and design exploration for three-dimensional integrated circuits (3D ICs), 2009 Asia and South Pacific Design Automation Conference, 2009, pp. 234-241.
[50] R. Allan, 3D IC technology delivers the total package, 2010.
[51] K.N. Tu, Reliability challenges in 3D IC packaging technology, Microelectron. Reliab. 51 (2011) 517-523.
[52] W.J. Dally, Future directions for on-chip interconnection networks, 2006.
[53] D. James, The Second Shoe Drops – Samsung V-NAND Flash. http://www.chipworks.com/about-chipworks/overview/blog/second-shoe-drops-%E2%80%93-samsung-v-nand-flash, 2014).
[54] D. James, Intel/Micron Detail Their 3D-NAND at IEDM. http://www.chipworks.com/about-chipworks/overview/blog/intelmicron-detail-their-3d-nand-iedm, 2015).
[55] TechInsights Gives Memory Update at IEDM18 NAND Flash. https://semiwiki.com/events/8116-techinsights-gives-memory-update-at-iedm18-nand-flash/, 2019).
[56] A. Technology, www.amkor.com/go/TSV).
[57] K.N. Tu, T. Tian, Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products, Science China Technological Sciences 56 (2013) 1740-1748.
[58] D.H. Woo, N.H. Seong, D.L. Lewis, H.S. Lee, An optimized 3D-stacked memory architecture by exploiting excessive, high-density TSV bandwidth, HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture, 2010, pp. 1-12.
[59] M. WALTON, HBM explained: Can stacked memory give AMD the edge it needs? https://arstechnica.com/information-technology/2015/05/the-tech-behind-hbm-why-amds-high-bandwidth-memory-matters/, 2015).
[60] K.A.S. Karl J. Puttlitz, CRC Press, New York, 2004.
[61] M. Abtew, G. Selvaduray, Lead-free Solders in Microelectronics, Mater. Sci. Eng., R 27 (2000) 95-141.
[62] K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Mater. Sci. Eng., R 38 (2002) 55-105.
[63] T.B. Massalski, J. Murray, L. Bennett, H. Baker, Binary alloy phase diagrams, American Society for Metals (1986) 1848.
[64] K.J. Puttlitz, G.T. Galyon, Impact of the ROHS Directive on high-performance electronic systems, in: K.N. Subramanian (Ed.), Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, Springer US, Boston, MA, 2007, p. 331.
[65] R. Hischier, P. Wäger, J. Gauglhofer, Does WEEE recycling make sense from an environmental perspective?: The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE), Environmental Impact Assessment Review 25 (2005) 525-539.
[66] M. McCormack, S. Jin, G.W. Kammlott, H.S. Chen, New Pb‐free solder alloy with superior mechanical properties, Appl. Phys. Lett. 63 (1993) 15-17.
[67] K. Suganuma, Advances in lead-free electronics soldering, Current Opinion in Solid State and Materials Science 5 (2001) 55-64.
[68] K.S. Kim, S.H. Huh, K. Suganuma, Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys, Mater. Sci. Eng., A 333 (2002) 106-114.
[69] J. Vardaman, Surface Mount Technology: Recent Japanese Developments, IEEE, New York, 1992.
[70] R.A. R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Boston, 1994.
[71] C.S. Liu, C.E. Ho, C.S. Peng, C.R. Kao, Effects of Joining Sequence on the Interfacial Reactions and Substrate Dissolution Behaviors in Ni/Solder/Cu Joints, J. Electron. Mater. 40 (2011) 1912-1920.
[72] C.-Y. Yu, W.-Y. Chen, J.-G. Duh, Improving the impact toughness of Sn–Ag–Cu/Cu–Zn Pb-free solder joints under high speed shear testing, J. Alloys Compd. 586 (2014) 633-638.
[73] K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, K. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability, J. Appl. Phys. 97 (2005) 024508.
[74] J.H. Yeh, Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder, National Tsing Hua University, Hsinchu, 2000.
[75] J.L. Fang, Bondability & solderability of neutral electroless gold, PLATING & SURFACE FINISHING 88 (2001) 44.
[76] P. Snugovsky, P. Arrowsmith, M. Romansky, Electroless Ni/Immersion Au interconnects: Investigation of black pad in wire bonds and solder joints, J. Electron. Mater. 30 (2001) 1262-1270.
[77] S.-S. Ha, J. Park, S.-B. Jung, Effect of Pd Addition in ENIG Surface Finish on Drop Reliability of Sn-Ag-Cu Solder Joint, Mater. Trans. 52 (2011) 1553-1559.
[78] J.-W. Yoon, B.-I. Noh, S.-B. Jung, Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint, J. Electron. Mater. 40 (2011) 1950-1955.
[79] C.-F. Tseng, J.-G. Duh, The influence of Pd on growth behavior of a quaternary (Cu,Ni,Pd)6Sn5 compound in Sn–3.0Ag–0.5Cu/Au/Pd/Ni–P solder joint during a liquid state reaction, J. Mater. Sci. 48 (2013) 857-865.
[80] T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng., R 49 (2005) 1-60.
[81] Y. Zhu, F. Sun, Effect of Solder Joint Thickness on Intermetallic Compound Growth Rate of Cu/Sn/Cu Solder Joints During Thermal Aging, J. Electron. Packag. 138 (2016) 041005-041005-5.
[82] X. Ma, F. Wang, Y. Qian, F. Yoshida, Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface, Mater. Lett. 57 (2003) 3361-3365.
[83] M. Yang, M. Li, C. Wang, Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering, Intermetallics 25 (2012) 86-94.
[84] S.-K. Seo, S.K. Kang, M.G. Cho, D.-Y. Shih, H.M. Lee, The Crystal Orientation of β-Sn Grains in Sn-Ag and Sn-Cu Solders Affected by Their Interfacial Reactions with Cu and Ni(P) Under Bump Metallurgy, J. Electron. Mater. 38 (2009) 2461.
[85] L.P. Lehman, Y. Xing, T.R. Bieler, E.J. Cotts, Cyclic twin nucleation in tin-based solder alloys, Acta Mater. 58 (2010) 3546-3556.
[86] B. Dyson, T. Anthony, D. Turnbull, Interstitial diffusion of copper in tin, J. Appl. Phys. 38 (1967) 3408-3408.
[87] D.C. Yeh, H.B. Huntington, Extreme Fast-Diffusion System: Nickel in Single-Crystal Tin, Phys. Rev. Lett. 53 (1984) 1469-1472.
[88] B.F. Dyson, Diffusion of Gold and Silver in Tin Single Crystals, J. Appl. Phys. 37 (1966) 2375-2377.
[89] Z.H. Zhang, H.J. Cao, M.Y. Li, Y. Wang, Z.Q. Liu, Cathodic peeling damage of Cu6Sn5 phase in Cu/SnAg3.0Cu0.5/Cu bridge interconnections under current stressing, J. Appl. Phys. 116 (2014) 054909.
[90] M. Lu, D.-Y. Shih, P. Lauro, C. Goldsmith, D.W. Henderson, Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders, Appl. Phys. Lett. 92 (2008) 211909.
[91] W.F. Smith, J. Hashemi, Foundations of materials science and engineering, Mcgraw-Hill Publishing2006.
[92] Z. Kornain, A. Jalar, N. Amin, R. Rasid, C. Foong, Comparative study of different underfill material on flip chip ceramic ball grid array based on accelerated thermal cycling, American Journal of Engineering and Applied Sciences 3 (2010).
[93] H. Chen, J. Li, M. Li, Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermomechanical stress, J. Alloys Compd. 540 (2012) 32-35.
[94] B. Zhou, Q. Zhou, T.R. Bieler, T.-k. Lee, Slip, Crystal Orientation, and Damage Evolution During Thermal Cycling in High-Strain Wafer-Level Chip-Scale Packages, J. Electron. Mater. 44 (2015) 895-908.
[95] H. Jing, C. Hongtao, L. Mingyu, Role of grain orientation in the failure of Sn-based solder joints under thermomechanical fatigue, Acta Metall. Sin. Engl. 25 (2012) 214-224.
[96] T.R. Bieler, J. Hairong, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, B. Nandagopal, Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints, IEEE CMPT 31 (2008) 370-381.
[97] T.-K. Lee, T.R. Bieler, C.-U. Kim, H. Ma, Fundamentals of lead-free solder interconnect technology, Springer.
[98] B. Zhou, T.R. Bieler, T.-k. Lee, K.-C. Liu, Crack Development in a Low-Stress PBGA Package due to Continuous Recrystallization Leading to Formation of Orientations with [001] Parallel to the Interface, J. Electron. Mater. 39 (2010) 2669-2679.
[99] E.C. Yeh, W. Choi, K. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints, Appl. Phys. Lett. 80 (2002) 580-582.
[100] C.K. Chung, J.J. Yu, T.L. Yang, C.R. Kao, Grain refinement of solder materials by minor element addition, 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013, pp. 124-127.
[101] I.E. Anderson, Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications, Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, Springer US, Boston, MA, 2007, pp. 55-76.
[102] A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Enhanced ductility and mechanical strength of Ni-doped Sn–3.0Ag–0.5Cu lead-free solders, Mater. Des. 55 (2014) 309-318.
[103] S.C. Yang, C.C. Chang, M.H. Tsai, C.R. Kao, Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni, J. Alloys Compd. 499 (2010) 149-153.
[104] W.M. Chen, S.C. Yang, M.H. Tsai, C.R. Kao, Uncovering the driving force for massive spalling in the Sn–Cu/Ni system, Scripta Mater. 63 (2010) 47-49.
[105] K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys, Scripta Mater. 59 (2008) 191-194.
[106] K. Nogita, Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys, Intermetallics 18 (2010) 145-149.
[107] K. Nogita, D. Mu, S.D. McDonald, J. Read, Y.Q. Wu, Effect of Ni on phase stability and thermal expansion of Cu6−xNixSn5 (X = 0, 0.5, 1, 1.5 and 2), Intermetallics 26 (2012) 78-85.
[108] S.-W. Fu, C.-Y. Yu, T.-K. Lee, K.-C. Liu, J.-G. Duh, Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints, Mater. Lett. 80 (2012) 103-105.
[109] C.-Y. Ho, J.-G. Duh, C.-W. Lin, C.-J. Lin, Y.-H. Wu, H.-C. Hong, T.-H. Wang, Microstructural variation and high-speed impact responses of Sn–3.0Ag–0.5Cu/ENEPIG solder joints with ultra-thin Ni–P deposit, J. Mater. Sci. 48 (2012) 2724-2732.
[110] Y. Kim, S. Lee, J.-w. Shin, K.-W. Paik, Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly, J. Electron. Mater. 45 (2016) 3208-3219.
[111] J.-M. Kim, S.-W. Woo, Y.-S. Chang, Y.-J. Kim, J.-B. Choi, K.-Y. Ji, Impact reliability estimation of lead free solder joint with IMC layer, Thin Solid Films 517 (2009) 4255-4259.
[112] C.-Y. Ho, J.-G. Duh, Optimal Ni(P) thickness design in ultrathin-ENEPIG metallization for soldering application concerning electrical impedance and mechanical bonding strength, Mater. Sci. Eng., A 611 (2014) 162-169.
[113] C.-Y. Ho, J.-G. Duh, Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction, Mater. Chem. Phys. 148 (2014) 21-27.
[114] T.-T. Chou, R.-W. Song, W.-Y. Chen, J.-G. Duh, Enhancement of the mechanical strength of Sn-3.0Ag-0.5Cu/Ni joints via doping minor Ni into solder alloy, Mater. Lett. 235 (2019) 180-183.
[115] W. Yang, T. Yamamoto, K. Aso, F. Somidin, K. Nogita, S. Matsumura, Atom locations in a Ni doped η-(Cu,Ni)6Sn5 intermetallic compound, Scripta Mater. 158 (2019) 1-5.
[116] J. Huang, M. Zhou, X. Zhao, X. Zhang, Microstructures and shear properties of mixed assembly BGA structure SnAgCu/SnBi(Ag)/Cu joints in board-level packaging, 2017 18th International Conference on Electronic Packaging Technology (ICEPT), 2017, pp. 1649-1654.
[117] D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.-K. Choi, D.-Y. Shih, C. Goldsmith, K.J. Puttlitz, Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys, J. Mater. Res. 17 (2002) 2775-2778.
[118] J. Huang, M. Zhou, X. Zhang, Interfacial reactions and microstructural evolution of BGA structure Cu/Sn3.0Ag0.5Cu/Sn58Bi/Cu mixed assembly joints during isothermal aging, 2016 17th International Conference on Electronic Packaging Technology (ICEPT), 2016, pp. 968-973.
[119] U.r. Kattner, W.J. Boettinger, On the Sn-Bi-Ag ternary phase diagram, J. Electron. Mater. 23 (1994) 603-610.
[120] O. Teppo, J. Niemelä, P. Taskinen, An assessment of the thermodynamic properties and phase diagram of the system Bi-Cu, Thermochimica Acta 173 (1990) 137-150.
[121] P.L. Liu, J.K. Shang, Influence of microstructure on fatigue crack growth behavior of Sn-Ag solder interfaces, J. Electron. Mater. 29 (2000) 622-627.
[122] S.K. Kang, C. Won Kyoung, S. Da-Yuan, D.W. Henderson, T. Gossefin, A. Sarkliel, C. Goldsmith, K.J. Punlitz, Formation of AgSn plates in Sn-Ag-Cu alloys and optimization of their alloy composition, 53rd Electronic Components and Technology Conference, 2003. Proceedings., 2003, pp. 64-70.
[123] C.J. Lee, W.-Y. Chen, T.-T. Chou, T.-K. Lee, Y.-C. Wu, T.-C. Chang, J.-G. Duh, The investigation of interfacial and crystallographic observation in the Ni(V)/SAC/OSP Cu solder joints with high and low silver content during thermal cycling test, J. Mater. Sci. - Mater. Electron. 26 (2015) 10055-10061.
[124] T.-T. Chou, C.J. Fleshman, H. Chen, J.-G. Duh, Improving thermal shock response of interfacial IMCs in Sn–Ag–Cu joints by using ultrathin-Ni/Pd/Au metallization in 3D-IC packages, J. Mater. Sci. - Mater. Electron. 30 (2019) 2342-2350.
[125] S.J. Wang, C.Y. Liu, Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structures, J. Electron. Mater. 35 (2006) 1955-1960.
[126] S.J. Wang, C.Y. Liu, Study of interaction between Cu-Sn and Ni-Sn interfacial reactions by Ni-Sn3.5Ag-Cu sandwich structure, J. Electron. Mater. 32 (2003) 1303-1309.
[127] K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys, J. Electron. Mater. 29 (2000) 1122-1136.
[128] J.W. Xian, Z.L. Ma, S.A. Belyakov, M. Ollivier, C.M. Gourlay, Nucleation of tin on the Cu6Sn5 layer in electronic interconnections, Acta Mater. 123 (2017) 404-415.
[129] B. Arfaei, M. Benedict, E.J. Cotts, Nucleation rates of Sn in undercooled Sn-Ag-Cu flip-chip solder joints, J. Appl. Phys. 114 (2013) 173506.
[130] R.M.R. Jere H. Brophy, and John Wulff, in: J. Wulff (Ed.), Structure and Propertis of Mterials, Wiley, New York, 1964, p. 104.
[131] D. Turnbull, B. Vonnegut, Nucleation Catalysis, Industrial & Engineering Chemistry 44 (1952) 1292-1298.
[132] J.-W. Yoon, S.-W. Kim, S.-B. Jung, Effect of reflow time on interfacial reaction and shear strength of Sn–0.7Cu solder/Cu and electroless Ni–P BGA joints, J. Alloys Compd. 385 (2004) 192-198.
[133] T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng., R 49 (2005) 1-60.
[134] P.Y. Chia, A. Haseeb, S.H. Mannan, Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects, Materials 9 (2016) 430.
[135] T.-T. Chou, W.-Y. Chen, C.J. Fleshman, J.-G. Duh, Refinement of the β-Sn Grains in Ni-Doped Sn-3.0Ag-0.5Cu Solder Joints with Cu-Based and Ni-Based Substrates, J. Electron. Mater. 47 (2018) 2911-2919.
[136] K. Zeng, M. Pierce, H. Miyazaki, B. Holdford, Optimization of Pb-Free Solder Joint Reliability from a Metallurgical Perspective, J. Electron. Mater. 41 (2011) 253-261.
[137] J.Y. Kim, Y.C. Sohn, J. Yu, Effect of Cu content on the mechanical reliability of Ni/Sn–3.5Ag system, J. Mater. Res. 22 (2011) 770-776.
[138] K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders, J. Appl. Phys. 93 (2003) 1335-1353.
[139] H. Chen, J. Han, J. Li, M. Li, Inhomogeneous deformation and microstructure evolution of Sn–Ag-based solder interconnects during thermal cycling and shear testing, Microelectron. Reliab. 52 (2012) 1112-1120.
[140] J. Hokka, T.T. Mattila, H. Xu, M. Paulasto-Kröckel, Thermal Cycling Reliability of Sn-Ag-Cu Solder Interconnections—Part 2: Failure Mechanisms, J. Electron. Mater. 42 (2013) 963-972.
[141] J. Li, T.T. Mattila, J.K. Kivilahti, Multiscale Simulation of Microstructural Changes in Solder Interconnections During Thermal Cycling, J. Electron. Mater. 39 (2009) 77-84.
[142] T.-K. Lee, B. Zhou, T.R. Bieler, Impact of Isothermal Aging and Sn Grain Orientation on the Long-Term Reliability of Wafer-Level Chip-Scale Package Sn–Ag–Cu Solder Interconnects, IEEE Transactions on Components, Packaging and Manufacturing Technology 2 (2012) 496-501.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *