帳號:guest(18.226.251.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁偉綸
作者(外文):Weng, Wei-Lun
論文名稱(中文):奈米雙晶銅奈米線表面原子結構與擴散特性研究
論文名稱(外文):Atomic structure and diffusion properties of copper nanowire surface modified by nanoscale twin boundaries
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):林招松
吳文偉
張守一
呂明諺
口試委員(外文):Lin, Chao-Sung
Wu, Wen Wei
Chang, Shou-Yi
Lu, Ming-Yen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031506
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:148
中文關鍵詞:電遷移臨場式穿透式電子顯微鏡銅奈米線奈米雙晶銅銀核殼結構
外文關鍵詞:ElectromigrationIn situ TEMCopper nanowireNanotwinCu-Ag core shell structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:133
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
一維奈米材料由於其在奈米尺度下擁有優異之物理及化學特性逐漸受到大家重視。具備奈米雙晶結構的銅金屬除擁有高機械強度、良好導電率和抗腐蝕特性外,同時也具備高抗電遷移特性,因此奈米雙晶銅被認為是下一世代的積體電路元件中內連接導線的候選材料之一。本論文涵蓋三部分以奈米雙晶銅奈米線為基礎所延伸的研究:第一部分為奈米雙晶銅線的成長機制,第二部分為雙晶結構修飾表面的原子擴散行為,最後一部分則為雙晶結構輔助磊晶式成長銅銀核殼層結構。本研究主要的發現如下,藉由調控陽極氧化鋁的厚度和孔徑,可製備出不同成長方向的奈米銅線。其中具有(111)成長方向的銅奈米線具有高密度奈米雙晶結構(雙晶間距小於5奈米),而具有(110)成長方向的銅奈米線則具有準單晶結構。另外,雙晶晶界與表面的三接點(Triple junction)處可有效阻擋原子表面擴散,透過臨場式穿透式電子顯微鏡的觀察,發現雙晶晶界與電子流方向呈垂直方向的結構比非垂直夾角的結構更能有效地抑制電遷移。在此,我們使用擴散係數(Diffusivity)和電遷移有效電荷(Effective charge for EM)的特性乘積值去評估上述兩種雙晶結構抑制電遷移的能力。本實驗也根據分子靜力學模擬,計算原子在雙晶/表面三接點的凹處(concave)和凸處(convex)的能態,結果顯示出在凹處的能態比起凸處更加穩定,此結果與實驗所觀察的原子遷移在凹處與凸處接點之延遲時間結果相符。最後一部分,我們透過伽凡尼置換反應製備銅銀核殼結構,儘管銅和銀之間存在著高達12.6%的晶格失配(Lattice mismatch),依然可製備出具有磊晶層的銀殼層,本研究提出雙晶輔助成長與差排緩解機制,解釋銀殼層為何能具備平坦形貌與雙晶結構,此結果顯示出透過奈米雙晶結構能製備磊晶式成長的雙金屬核殼層結構,將可應用在許多光電元件。
One-dimensional materials have attracted considerable attention due to their outstanding physical and chemical properties. Cu metallization with high-density nanoscale twin boundaries (nt-Cu) exhibit high mechanical strength, good conductivity and corrosion resistance and delayed electromigration-induced (EM-induced) mass transport. Thus, nt-Cu nanowires (nt-CuNWs) is considered as a promising material for the next-generation interconnect technology. This thesis covers three aspects of nt-CuNWs, including (1) growth mechanism of nt-CuNWs; (2) atomic diffusion on twin-modified surface; (3) twin-mediated epitaxial growth of Cu/Ag core-shell structure. The major findings are summarized below. The crystallographic orientation of CuNWs can be manipulated by adjusting the thickness and pore size of anodic aluminum oxide (AAO) membranes. The (111)-oriented CuNWs exhibit very dense twin boundaries (average twin spacing ~ 5 nm), while the (110)-oriented CuNWs reveal quasi-single crystalline structure. The triple junctions where twin boundaries meet the CuNW surface serve as obstacles to atomic surface diffusion. The nt-CuNWs with twin boundaries in perpendicular to the CuNW surface is more effective in suppressing EM-induced atomic diffusion than those with twin boundaries inclined to the surface according to in-situ transmission electron microscope (TEM) observations. A characteristic product, DZ*, where D is diffusivity and Z* effective charge of EM, is determined for both types of nt-CuNWs. Moreover, the energy states of triple junctions with concave and convex configurations are calculated based on molecular statics simulations. We found that the former is more energetically stable than the latter, which is consistent with the delayed times measured at these two specific sites. Finally, we demonstrate the epitaxial growth of Ag on CuNWs through galvanic replacement reaction by forming a Cu/Ag core-shell structure despite a large lattice mismatch exists between Cu and Ag (~ 12.6 %). A twin-mediated growth mechanism is proposed to explain the formation of conformal morphology and relieving of misfit dislocations at Ag/Cu interface. The results suggest that a nanotwinning structure enables the heterogeneously epitaxial growth of bimetallic core-shell structure, which are critical for many optoelectronic materials.
Contents
Abstract I
摘要 III
誌謝 IV
Contents VI
List of Figures IX
List of Tables XXI
Chapter 1 Introduction 1
1.1. Introduction 1
1.2. Thesis guide 5
Chapter 2 Literature review 7
2.1. AAO membrane 7
2.1.1. AAO porous structure 7
2.1.2. Formation mechanism of AAO membrane 9
2.1.3. Two-step anodization 11
2.2 Template-assisted electrochemical deposition 12
2.2.1 Electrodeposition of nanotwinned metallic nanowires 13
2.2.2 Microstructure of coherent twin boundary (CTB) 18
2.3. Core-shell nanostructure 19
2.3.1. Galvanic replacement reaction 19
2.3.2. Kirkendall effect during galvanic replacement reaction 21
2.3.3. Copper/metal core-shell nanowires 24
2.4. Properties of nt-Cu 27
2.4.1. Mechanical property of nt-Cu 27
2.4.2. Thermal stability of nt-Cu 30
2.4.3. Abnormal growth in nt-Cu 33
2.4.4. Chemical stability of nt-Cu 36
2.4.5. Electrical property of nt-Cu 40
2.5. Surface diffusion of Cu 45
2.5.1. Surface diffusivity of Cu 45
2.5.2. EM physics 50
2.5.3. Effect of the twin-modified surface on Cu electromigration 52
2.6. Simulation of atomic surface diffusion 54
2.6.1. Embedded-atom method (EAM) functions for fcc metals 54
2.6.2. Surface relaxation 56
2.6.3. Ehrlich-Schwoebel (ES) barrier 58
2.6.4. Cu self-diffusion on surfaces 59
Chapter 3 Experimental section 67
3.1. Chemicals and apparatuses 67
3.2. Sample preparation 69
3.2.1. Fabrication of AAO template 69
3.2.2. Electrodeposition of CuNWs 70
3.2.3. Synthesis of Ag-coated CuNWs 70
3.2.4. TEM sample preparation 70
3.3. Characterization of microstructure 71
3.3.1. X-ray diffractometry (XRD) analysis 71
3.3.2. In situ TEM observation 72
3.3.3. Characterization of CuNWs and Ag-coated CuNWs 72
3.4. Electrical testing setup 72
3.5. Software 73
3.5.1. Construction of periodic crystal structure 73
3.5.2. MS simulation of the energy barrier of surface diffusion 73
Chapter 4 Fabrication and characterization of CuNWs with dense nanoscale CTBs. 75
4.1. AAO-templated electrodepositing of CuNWs 75
4.1.1. Effect of AAO process conditions on CuNW growth direction 77
4.1.2. Effect of the AAO thickness on growth orientation 80
4.2. Microstructure of CuNWs and mechanisms for nucleation and growth 84
4.3. Electrical property of nt-CuNWs 99
4.4. Summary 103
Chapter 5 In situ TEM investigation of atomic diffusion on twin modified surface 104
5.1. Current-induced surface diffusion on nt-CuNWs 105
5.2. Effect of CTB/surface triple junctions on Cu surface diffusion 113
5.3. Summary 118
Chapter 6 Twin-mediated epitaxial Ag growth on nt-CuNWs 119
6.1. Microstructure of Cu/Ag core-shell structures 120
6.2. Twin-mediate epitaxial growth mechanism 127
6.3. Electrical property of Cu/Ag core-shell nanowires 130
6.4. Summary 132
Chapter 7 Conclusions and outlook 133
7.1. Conclusions 133
7.2. Outlook 134
References 139

References
1. C. Wang, Y. J. Hu, C. M. Lieber, S. H. Sun, Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130, 8902-+ (2008).
2. A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, B. J. Wiley, The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv. Mater. 22, 3558-+ (2010).
3. D. Jang, X. Li, H. Gao, J. R. Greer, Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7, 594-601 (2012).
4. Y. R. Fang, H. Wei, F. Hao, P. Nordlander, H. X. Xu, Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Lett. 9, 2049-2053 (2009).
5. X. Li, H. Wang, Q. Xu, S. Guo, J. Du, X. Liu, J. Weng, J. Xu, Ultrathin AuAg Nanofilms from Ice‐Templated Assembly of AuAg Nanowires. Adv. Mater. Interfaces, 1800256 (2018).
6. W. Zhu, Y. J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132-16135 (2014).
7. J. A. Ober, "Mineral commodity summaries 2018," (US Geological Survey, 2018).
8. J. R. Lloyd, J. Clemens, R. Snede, Copper metallization reliability. Microelectron. Reliab. 39, 1595-1602 (1999).
9. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304, 422-426 (2004).
10. J.-Y. Juang, C.-L. Lu, Y.-J. Li, K. Tu, C. Chen, Correlation between the Microstructures of Bonding Interfaces and the Shear Strength of Cu-to-Cu Joints Using (111)-Oriented and Nanotwinned Cu. Materials 11, 2368 (2018).
11. C. M. Liu, H. W. Lin, Y. S. Huang, Y. C. Chu, C. Chen, D. R. Lyu, K. N. Chen, K. N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Sci. Rep. 5, 9734 (2015).
12. C. L. Huang, W. L. Weng, C. N. Liao, K. N. Tu, Suppression of interdiffusion-induced voiding in oxidation of copper nanowires with twin-modified surface. Nat. Commun. 9, 340 (2018).
13. B. Z. Cui, K. Han, Y. Xin, D. R. Waryoba, A. L. Mbaruku, Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Mater. 55, 4429-4438 (2007).
14. K. Kremmer, O. Yezerska, G. Schreiber, M. Masimov, V. Klemm, M. Schneider, D. Rafaja, Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films. Thin Solid Films 515, 6698-6706 (2007).
15. D. Xu, V. Sriram, V. Ozolins, J. M. Yang, K. N. Tu, G. R. Stafford, C. Beauchamp, In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. J. Appl. Phys. 105, 023521 (2009).
16. D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozolins, K. N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Appl. Phys. Lett. 91, 254105 (2007).
17. M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, M. H. Chan, Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Lett. 3, 919-923 (2003).
18. J. Wang, M. Tian, T. E. Mallouk, M. H. Chan, Microtwinning in template-synthesized single-crystal metal nanowires. J. Phys. Chem. B 108, 841-845 (2004).
19. T. C. Chan, Y. M. Lin, H. W. Tsai, Z. M. Wang, C. N. Liao, Y. L. Chueh, Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale 6, 7332-7338 (2014).
20. J. Duan, J. Liu, D. Mo, H. Yao, K. Maaz, Y. Chen, Y. Sun, M. Hou, X. Qu, L. Zhang, Y. Chen, Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates. Nanotechnology 21, 365605 (2010).
21. X. W. Wang, G. T. Fei, X. J. Xu, Z. Jin, L. D. Zhang, Size-dependent orientation growth of large-area ordered Ni nanowire arrays. J. Phys. Chem. B 109, 24326-24330 (2005).
22. Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720-723 (2013).
23. J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, J. W. Lyding, Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547-4554 (2011).
24. H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, E. Saiz, Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614-3623 (2012).
25. L. Gao, J. R. Guest, N. P. Guisinger, Epitaxial graphene on Cu(111). Nano Lett. 10, 3512-3516 (2010).
26. A. Kotri, E. El Koraychy, M. Mazroui, Y. Boughaleb, Static investigation of adsorption and hetero‐diffusion of copper, silver, and gold adatoms on the (111) surface. Surf. Interface Anal. 49, 705-711 (2017).
27. Y. Huang, A. D. Handoko, P. Hirunsit, B. S. Yeo, Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catalysis 7, 1749-1756 (2017).
28. K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, K. N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069 (2008).
29. E. T. Ogawa, K. D. Lee, V. A. Blaschke, P. S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans. Reliab. 51, 403-419 (2002).
30. K. N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451-5473 (2003).
31. C. Guo, H. Huo, X. Han, C. Xu, H. Li, Ni/CdS bifunctional Ti@ TiO2 core–shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal. Chem. 86, 876-883 (2013).
32. J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568 (2011).
33. C. Koenigsmann, A. C. Santulli, K. Gong, M. B. Vukmirovic, W.-p. Zhou, E. Sutter, S. S. Wong, R. R. Adzic, Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 133, 9783-9795 (2011).
34. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. B. Zhao, H. J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6, 5531-5538 (2012).
35. R. People, J. Bean, Calculation of critical layer thickness versus lattice mismatch for Ge x Si1− x/Si strained‐layer heterostructures. Appl. Phys. Lett. 47, 322-324 (1985).
36. F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130, 6949-6951 (2008).
37. X. Luo, G. A. Gelves, U. Sundararaj, J. L. Luo, Silver‐coated copper nanowires with improved anti‐oxidation property as conductive fillers in low‐density polyethylene. The Canadian Journal of Chemical Engineering 91, 630-637 (2013).
38. Y. Wei, S. Chen, Y. Lin, Z. Yang, L. Liu, Cu–Ag core–shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C 3, 9594-9602 (2015).
39. I. E. Stewart, S. Ye, Z. Chen, P. F. Flowers, B. J. Wiley, Synthesis of Cu–Ag, Cu–Au, and Cu–Pt core–shell nanowires and their use in transparent conducting films. Chem. Mater. 27, 7788-7794 (2015).
40. X. Xia, Y. Wang, A. Ruditskiy, Y. Xia, 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313-6333 (2013).
41. T. H. Kim, X. G. Zhang, D. M. Nicholson, B. M. Evans, N. S. Kulkarni, B. Radhakrishnan, E. A. Kenik, A. P. Li, Large Discrete Resistance Jump at Grain Boundary in Copper Nanowire. Nano Lett. 10, 3096-3100 (2010).
42. A. P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023-6026 (1998).
43. W. Lee, S.-J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487-7556 (2014).
44. R. C. Alkire, Y. Gogotsi, P. Simon, Nanostructured materials in electrochemistry. (John Wiley & Sons, 2008).
45. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466-1468 (1995).
46. S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, T. Schimmel, Nanoscale twinned copper nanowire formation by direct electrodeposition. Small 5, 2265-2270 (2009).
47. D. Bufford, H. Wang, X. Zhang, High strength, epitaxial nanotwinned Ag films. Acta Mater. 59, 93-101 (2011).
48. J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, S. X. Mao, Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 1742 (2013).
49. F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130, 6949-6951 (2008).
50. E. Gonzalez, J. Arbiol, V. F. Puntes, Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature. Science 334, 1377-1380 (2011).
51. J. Zeng, Q. Zhang, J. Chen, Y. Xia, A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30-35 (2009).
52. Y. Yang, J. Liu, Z.-W. Fu, D. Qin, Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 136, 8153-8156 (2014).
53. X. Lu, H.-Y. Tuan, J. Chen, Z.-Y. Li, B. A. Korgel, Y. Xia, Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 129, 1733-1742 (2007).
54. Y. Sun, B. T. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481-485 (2002).
55. C. M. Cobley, Y. Xia, Engineering the Properties of Metal Nanostructures via Galvanic Replacement Reactions. Mater. Sci. Eng., R 70, 44-62 (2010).
56. A. Smigelskas, E. Kirkendall, Zinc diffusion in alpha brass. Trans. Aime 171, 130-142 (1947).
57. Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 304, 711-714 (2004).
58. S. W. Chee, S. F. Tan, Z. Baraissov, M. Bosman, U. Mirsaidov, Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 8, 1224 (2017).
59. R. G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25, 52-57 (2000).
60. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26, 6670-6687 (2014).
61. H. Wang, C. Wu, Y. Huang, F. Sun, N. Lin, A. M. Soomro, Z. Zhong, X. Yang, X. Chen, J. Kang, One-Pot Synthesis of Superfine Core–Shell Cu@ metal Nanowires for Highly Tenacious Transparent LED Dimmer. ACS Appl. Mater. Interfaces 8, 28709-28717 (2016).
62. X. Wang, R. Wang, H. Zhai, X. Shen, T. Wang, L. Shi, R. Yu, J. Sun, Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Appl. Mater. Interfaces 8, 28831-28837 (2016).
63. L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength in nanotwinned copper. Science 323, 607-610 (2009).
64. O. Anderoglu, A. Misra, H. Wang, X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).
65. H. Y. Hsiao, C. M. Liu, H. W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, K. N. Tu, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 336, 1007-1010 (2012).
66. C.-L. Lu, H.-W. Lin, C.-M. Liu, Y.-S. Huang, T.-L. Lu, T.-C. Liu, H.-Y. Hsiao, C. Chen, J.-C. Kuo, K.-N. Tu, Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Mater. 6, e135 (2014).
67. Y. Zhao, I. Cheng, M. Kassner, A. Hodge, The effect of nanotwins on the corrosion behavior of copper. Acta Mater. 67, 181-188 (2014).
68. C. L. Hu, S. Xi, H. Li, T. G. Liu, B. X. Zhou, W. J. Chen, N. Wang, Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros. Sci. 53, 1880-1886 (2011).
69. S. S.-h. Kim, National Library of Canada= Bibliothèque nationale du Canada, (2000).
70. C.-L. Huang, C.-N. Liao, Chemical reactivity of twin-modified copper nanowire surfaces. Appl. Phys. Lett. 107, 021601 (2015).
71. I. Nakamichi, in Mater. Sci. Forum. (Trans Tech Publ, 1996), vol. 207, pp. 47-58.
72. Y. Q. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, H. Guo, Resistivity of thin Cu films with surface roughness. Phys. Rev. B 79, 155406 (2009).
73. Y. Kitaoka, T. Tono, S. Yoshimoto, T. Hirahara, S. Hasegawa, T. Ohba, Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements. Appl. Phys. Lett. 95, 052110 (2009).
74. W. Wu, S. H. Brongersma, M. Van Hove, K. Maex, Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl. Phys. Lett. 84, 2838-2840 (2004).
75. D. Gall, Electron mean free path in elemental metals. J. Appl. Phys. 119, 085101 (2016).
76. D. B. Butrymowicz, J. R. Manning, M. E. Read, Diffusion in copper and copper alloys. Part I. volume and surface self‐diffusion in copper. J. Phys. Chem. Ref. Data 2, 643-656 (1973).
77. H. Bonzel, N. Gjostein, USE OF A LASER DIFFRACTION PATTERN TO STUDY SURFACE SELF‐DIFFUSION OF METALS. Appl. Phys. Lett. 10, 258-260 (1967).
78. N. A. Gjostein, Measurement of the Surface Self-Diffusion Coefficient of Copper by the Thermal Grooving Technique. Trans. Metall. Soc. AIME 221, 1039-1046 (1961).
79. N. A. Gjostein, "Short Circuit Diffusion," (In proceedings of ASM seninar on diffusion, American Society for Metals, Metals Park, Ohio, 1973).
80. H. P. Bonzel, "Surface Diffusion of Metals," (in Structure and Properties of Metals Surfaces, edited by S. Shimodaria (Maruzin,Japan), 1972).
81. F. Bradshaw, R. Brandon, C. Wheeler, The surface self-diffusion of copper as affected by environment. Acta Metall. 12, 1057-1063 (1964).
82. H. Collins, P. Shewmon, "THE EFFECT OF ADSORBED SULFUR ON THE SURFACE SELF-DIFFUSION OF COPPER," (CARNEGIE INST OF TECH PITTSBURGH PA, 1966).
83. J. Y. S. Choi, P. G., "EFFECT OF ORIENTATION OF THE SURFACE SELF-DIFFUSION OF COPPER," (Carnegie Inst. of Tech., Pittsburgh. Metals Research Lab., 1961).
84. P. G. C. Shewmon, J. Y., Anisotropic of the Surface Diffusion Coefficient for Copper. Trans. Metall. Soc. AIME 227, 515-524 (1963).
85. J. Y. Choi, P. G. Shewmon, Surface Diffusion of Gold and Copper on Copper. Trans. Metall. Soc. AIME 230, 123-132 (1964).
86. A. J. L. Melmed, H. P.; Escalante, E., "(unpublished)," (13th Field Emission Symposium, Cornell Univ., 1966 ).
87. H. G. B. Bowden, R.W., Measurements of self-diffusion coefficients in copper from the annealing of voids. Philos. Mag. 19, 1001-1014 (1969).
88. I. A. Blech, H. Sello, in Physics of Failure in Electronics, 1966. Fifth Annual Symposium on the. (IEEE, 1966), pp. 496-505.
89. E. Liniger, L. Gignac, C. K. Hu, S. Kaldor, In situ study of void growth kinetics in electroplated Cu lines. J. Appl. Phys. 92, 1803-1810 (2002).
90. C. K. Hu, J. M. E. Harper, Copper interconnections and reliability. Mater. Chem. Phys. 52, 5-16 (1998).
91. H. B. Huntington, A. R. Grone, Current-Induced Marker Motion in Gold Wires. J. Phys. Chem. Solids 20, 76-87 (1961).
92. J. P. Dekker, A. Lodder, Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals. J. Appl. Phys. 84, 1958-1962 (1998).
93. R. S. Sorbello, Theory of the direct force in electromigration. Phys. Rev. B: Condens. Matter 31, 798-804 (1985).
94. M. S. Daw, M. I. Baskes, Embedded-Atom Method - Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Phys. Rev. B 29, 6443-6453 (1984).
95. S. M. Foiles, M. I. Baskes, M. S. Daw, Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Phys. Rev. B 33, 7983-7991 (1986).
96. M. Karimi, T. Tomkowski, G. Vidali, O. Biham, Diffusion of Cu on Cu surfaces. Phys. Rev. B: Condens. Matter 52, 5364-5374 (1995).
97. Z. Tian, T. S. Rahman, Energetics of stepped Cu surfaces. Phys. Rev. B: Condens. Matter 47, 9751-9759 (1993).
98. T. Ning, Q. L. Yu, Y. Y. Ye, Multilayer Relaxation at the Surface of Fcc Metals - Cu, Ag, Au, Ni, Pd, Pt, Al. Surf Sci. 206, L857-L863 (1988).
99. K. Oura, V. Lifshits, A. Saranin, A. Zotov, M. Katayama, Surface science: an introduction. (Springer Science & Business Media, 2013).
100. R. L. Schwoebel, E. J. Shipsey, Step Motion on Crystal Surfaces. J. Appl. Phys. 37, 3682-+ (1966).
101. R. L. Schwoebel, Step motion on crystal surfaces. II. J. Appl. Phys. 40, 614-618 (1969).
102. J. B. Adams, S. M. Foiles, W. G. Wolfer, Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4, 102-112 (1989).
103. C. L. Liu, J. M. Cohen, J. B. Adams, A. F. Voter, Eam Study of Surface Self-Diffusion of Single Adatoms of Fcc Metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surf Sci. 253, 334-344 (1991).
104. S. Xiang, H. Huang, Ab initio determination of Ehrlich–Schwoebel barriers on Cu {111}. Appl. Phys. Lett. 92, 101923 (2008).
105. S. Durukanoğlu, O. S. Trushin, T. S. Rahman, Effect of step-step separation on surface diffusion processes. Phys. Rev. B 73, 125426 (2006).
106. J. Wang, H. Huang, T. S. Cale, Diffusion barriers on Cu surfaces and near steps. Modell. Simul. Mater. Sci. Eng. 12, 1209 (2004).
107. P. Wynblatt, N. A. Gjostein, A Calculation of Relaxation Migration and Formation Energies for Surface Defects in Copper. Surf Sci. 12, 109-& (1968).
108. https://lammps.sandia.gov/.
109. https://sites.google.com/site/eampotentials/Cu.
110. Y.-T. Huang, C.-W. Huang, J.-Y. Chen, Y.-H. Ting, S.-L. Cheng, C.-N. Liao, W.-W. Wu, Mass transport phenomena in copper nanowires at high current density. Nano Res. 9, 1071-1078 (2016).
111. 賴文浩, Effect of template morphology on the crystallographic orientation and microstructure of electrodeposited copper nanowires. 碩士論文 (國立清華大學材料科學工程學系 2016).
112. F. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. lnorg. Nucl. Chem. 9, 113-123 (1959).
113. F. Y. Li, L. Zhang, R. M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470-2480 (1998).
114. J. S. Lee, W. L. Weng, C. N. Liao, Characterization and modeling of twinning superlattice structure in copper nanowires. Mater. Lett. 194, 23-25 (2017).
115. V. M. Kozlov, L. P. Bicelli, Texture formation of electrodeposited fcc metals. Mater. Chem. Phys. 77, 289-293 (2003).
116. B. Hong, C.-h. Jiang, X.-j. Wang, Influence of complexing agents on texture formation of electrodeposited copper. Surf. Coat. Technol. 201, 7449-7452 (2007).
117. W. Haiss, R. J. Nichols, J.-K. Sass, In situ monitoring of intrinsic stress changes during copper electrodeposition on Au (111). Surf Sci. 388, 141-149 (1997).
118. O. Kongstein, U. Bertocci, G. Stafford, In situ stress measurements during copper electrodeposition on (111)-textured Au. J. Electrochem. Soc. 152, C116-C123 (2005).
119. M. Meyers, O. Vöhringer, V. Lubarda, The onset of twinning in metals: a constitutive description. Acta Mater. 49, 4025-4039 (2001).
120. A. F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382 (1970).
121. K. Fuchs, in Mathematical Proceedings of the Cambridge Philosophical Society. (Cambridge University Press, 1938), vol. 34, pp. 100-108.
122. E. H. Sondheimer, The Mean Free Path of Electrons in Metals. Adv. Phys. 1, 1-42 (1952).
123. J. S. Chawla, F. Gstrein, K. P. O'Brien, J. S. Clarke, D. Gall, Electron scattering at surfaces and grain boundaries in Cu thin films and wires. Phys. Rev. B 84, 235423 (2011).
124. S. M. Rossnagel, T. S. Kuan, Alteration of Cu conductivity in the size effect regime. J. Vac. Sci. Technol. B 22, 240-247 (2004).
125. G. S. Steinhoegel, G.; Steinlesberger, G.; Traving, M.; Engelhardt, M., paper presented at the International Conference on Simulation of Semiconductor Processes and Devices, 2003.
126. X. H. Chen, L. Lu, K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys. 102, 083708 (2007).
127. Q. J. Huang, C. M. Lilley, M. Bode, R. Divan, Surface and size effects on the electrical properties of Cu nanowires. J. Appl. Phys. 104, 023709 (2008).
128. S. B. Cronin, Y. M. Lin, O. Rabin, M. R. Black, J. Y. Ying, M. S. Dresselhaus, P. L. Gai, J. P. Minet, J. P. Issi, Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology 13, 653-658 (2002).
129. P. Shewmon, Diffusion in solids. (Springer, 2016).
130. C. Tao, W. G. Cullen, E. D. Williams, Visualizing the electron scattering force in nanostructures. Science 328, 736-740 (2010).
131. R. S. Sorbello, Microscopic driving forces for electromigration. MRS Online Proc. Libr. 427, (1996).
132. 許晉瑜, Sythesis and characterization of Cu-Ag core-shell nanowires for transparent conductive film applications 碩士論文. 碩士論文 (國立清華大學材料科學工程學系 2016).
133. A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski, Electrochemical methods: fundamentals and applications. (wiley New York, 1980), vol. 2.
134. R. K. Linde, Kinetics of transformation of metastable silver-copper solid solutions, Ph.D. Thesis. (California Institute of Technology, 1964).
135. J. Sommer, T. Muschik, C. Herzig, W. Gust, Silver tracer diffusion in oriented AgCu interphase boundaries and correlation to the boundary structure. Acta Mater. 44, 327-334 (1996).
136. K. Jagannadham, J. Narayan, Critical thickness during two-dimensional and three-dimensional epitaxial growth in semiconductor heterostructures. Mater. Sci. Eng., B 8, 107-124 (1991).
137. T. Zheleva, K. Jagannadham, Narayan, Epitaxial growth in large‐lattice‐mismatch systems. J. Appl. Phys. 75, 860-871 (1994).
138. F. Ernst, P. Pirouz, The Formation Mechanism of Planar Defects in Compound Semiconductors Grown Epitaxially on (100) Silicon Substrates. J. Mater. Res. 4, 834-842 (1989).
139. P. M. J. Maree, J. C. Barbour, J. F. Vanderveen, K. L. Kavanagh, C. W. T. Bullelieuwma, M. P. A. Viegers, Generation of Misfit Dislocations in Semiconductors. J. Appl. Phys. 62, 4413-4420 (1987).
140. D. Cherns, C. J. Kiely, Misfit Dislocations in Heteroepitaxy. Mater. Sci. Eng. A-Struct. Mater. 113, 43-50 (1989).
141. A. Daykin, C. Kiely, Direct observation of 1/2< 110> dislocations occurring at steps in thin film type-B CoSi2//Si (111) interfaces. Philos. Mag. A 68, 1345-1358 (1993).
142. Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, L. J. Kecskes, S. N. Mathaudhu, Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater. 59, 812-821 (2011).
143. W. Steinhogl, G. Schindler, G. Steinlesberger, M. Engelhardt, Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002).
144. D. Choi, X. Liu, P. K. Schelling, K. R. Coffey, K. Barmak, Failure of semiclassical models to describe resistivity of nanometric, polycrystalline tungsten films. J. Appl. Phys. 115, 104308 (2014).
145. R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, S. Peddeti, Resistivity dominated by surface scattering in sub-50 nm Cu wires. Appl. Phys. Lett. 96, 042116 (2010).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *