帳號:guest(18.225.195.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):薩奇
作者(外文):Wagh, Sachin Bhausaheb
論文名稱(中文):利用金金屬催化使炔烴轉化來用於合成高度官能化的有機骨架
論文名稱(外文):Gold Catalyzed Transformations of alkynes for the Synthesis of Highly Functionalized Organic Frameworks
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):鄭建鴻
蔡易州
侯敦仁
莊士卿
口試委員(外文):Cheng, Chien-Hong
Tsai, Yi-Chou
Hou, Duen-Ren
Chuang, Shih-Ching
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023878
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:507
中文關鍵詞:金-碳烯環化反應1,2-醯氧基遷移炔類環丙烷化氧化環合反應
外文關鍵詞:gold-carbeneannulations1,2-acyloxy migrationcyclopropenationoxidative cyclizations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
Abstract (Chinese)
本論文描述利用金和銠或銀催化劑發展新的有機催化反應。利用這些金屬可以促使反應以易於取得的起始物經由溫和、具選擇性且有效率地進行轉換並獲得含有氮、氧及硫的有機產物。本論文共分為四章以利於理解。
第一章是利用炔丙酯與乙烯基疊氮化物由金催化合成E及Z形式的丁-1,3-二烯-2-基酯,這個反應可以適用在很廣範圍的炔丙基酯,這說明了此反應具有應用性。我們推測此反應的機構一開始炔丙酯會進行1,2-羧酸轉移,進而形成金-碳烯,然後金-碳烯會選擇性的攻打乙烯基疊氮化物的碳。以上的反應機構預測在動力學控制下會形成Z形式的丁-1,3-二烯-2-基酯。在這樣的反應條件下,有一些Z形式的脂類會被金-配位或布忍斯特酸-異構化催化成E形式的異構物。
第二章是使用2-丙烯基-1-乙炔基苯及芳基重氮酯由金催化進行環化反應形成2-取代的3-烯基-1H-茚,其中伴隨著骨架重排。我們利用帶正電的金催化劑合成2-取代的3-烯基-1H-茚且適用超過合理範圍的受質。從我們的實驗條件控制中,可以發現最後生成的3-烯基-1H-茚與他的環異構反應無關。所以我們假設三圓環金-碳烯中間物上的重氮酯的攻打是最關鍵步驟。
第三章是使用2-丙烯基-1-乙基苯及芳基重氮酯由雙金屬,銠及金催化進行環加成得到四氫-1H-環丙烷並[b] - 萘,並且有很高的選擇性。藉由銠及金屬的結合,1,6-烯炔及疊氮反應物可以進行一步的環化反應,其中過程一開始經由炔類環丙烷化,接著其生成的中間物在進行反應後,會形成四氫-1H-環丙烷並[b] - 萘衍生物。銠及金金屬的協同作用提升了此一鍋反應的反應速率及產率。而且我們也讓此反應選擇性地傾向形成E形式產物。
第四章是使用炔基芳基醚及喹啉N-氧化物由金催化進行一系列的氧化環合/烯化反應。我們假設反應機構牽涉到炔烴的氧化和炔基芳基醚物種的環化然後對碳(α)8-烷基喹啉N-氧化物進行親核加成。此反應適用於合理範圍的炔基芳基醚物質及8-烷基喹啉N-氧化物,但是不適用於單體的吡啶N-氧化物。此例子說明了在沒有金催化劑的條件下,炔丙基芳基醚及8-烷基喹啉N-氧化物會進行一連串的親核加成/環化/烯化反應。
Abstract
This dissertation describes development of new synthetic organic transformations by using gold, rhodium or silver metal salts. The use of these metals enables mild, selective and efficient oxidative transformations of readily available substrates to wide range of synthetically useful nitrogen, oxygen and sulfur containing complex organic molecules. For better understanding the thesis is divided into four chapters.

The first chapter deals with the gold-catalyzed reactions of propargylic esters with vinylazides for the synthesis of Z- or E-configured buta-1,3-dien-2-yl esters; the utility of these reactions is manifested by their applicability toward propargyl esters over a reasonable range. We postulate a mechanism involving an initial 1,2-carboxylate shift of propargylic esters to form gold-carbenes that are subjected to the attack of vinylazides at the C-regioselectivity. This mechanism predicts Z-configured buta-1,3-dien-2-yl esters to be generated under kinetic control. Under the reaction conditions, some Z-configured esters were catalyzed with either gold-coordination or Brønsted acid-isomerization to form E-isomers.

The second chapter is comprised of gold-catalyzed annulation of 2-propenyl-1-ethynyl benzenes with aryl diazo esters to form 2-substituted 3-alkenyl-1H-indenes with a skeletal rearrangement. The use of a cationic gold catalyst produced 2-substituted 3-alkenyl-1H-indenes with substrates over a reasonable scope. Our control experiments indicate that the resulting 3-alkenyl-1H-indenes are irrelevant for their cycloisomerization reactions. Instead, we postulate an attack of diazo ester at the cyclopropyl gold carbene intermediates as the key step.

The third chapter describes an bimetallic rhodium and gold-catalyzed cascade cyclizations of 2-propenyl-1-ethynylbenzenes with aryl diazo esters to afford tetrahydro-1H-cyclopropa[b]- naphthalenes with excellent stereoselectivity. The combined Rh(II)/Au(I) catalyst implement one-step cyclization of 1,6-enynes with diazo reactants via cyclopropanation of alkyne initially followed by subsequent reactions of resulting intermediates to form tetrahydro-1H-cyclopropa[b] naphthalenes derivatives. The synergistic effects of Au/Rh catalysts enhancing the rate and yields of this one-pot reaction. Preferable E selectivity were achieved.

The fourth chapter presents gold-catalyzed cascade oxidative cyclization/olefination reaction of alkynyl aryl ethers with quinoline N-oxides. A postulated mechanism involves subsequent alkyne oxidation and cyclization of alkynyl aryl ether species followed by nucleophilic addition to electrophilic C(α) of 8-alkylquinoline N-oxide moiety. The reactions are operable with a reasonable range of alkynyl aryl ether species and 8-alkylquinoline N-oxides but inapplicable to monomeric pyridine N-oxides. This instance provides an first example for a nucleophilic addition/cyclization/olefination cascade for propargyl aryl ethers with 8-alkylquinoline N-oxides inpresence of gold-catalyst.

TABLE OF CONTENTS

Table of Content I
List of Schemes IV
List of Tables VIII
List of Figures IX
List of Publications XI
Abbreviations XII

Chapter I: Gold-catalyzed Reactions of Propargylic Esters with Vinylazides for the Synthesis of Z- or E-configured Buta-1,3-dien-2-yl esters
1.1 Introduction 2
1.3 Results and Discussion 21
1.8 Conclusion 31
1.9 Experimental Procedure 31
1.10 Spectral Data 34
1.11 Reference 49
1.12 X-ray Crystallographic Data 54
1.13 1H, 13C NMR and key NOE Spectra 63

Chapter II: Gold-catalyzed Annulation of 2-Propenyl-1-ethynyl benzenes with Aryl diazo Esters to form 2-substituted 3-alkenyl-1H-indenes with a Skeletal rearrangement
2.1 Introduction 158
2.6 Results and Discussion 174
2.7 Conclusion 184
2.8 Experimental Procedure 184
2.9 Spectral Data 188
2.10 Reference 207
2.11 X-ray Crystallographic Data 212
2.12 1H, 13C NMR and key NOE Spectra 228

Chapter III: Bimetallic Rhodium and Gold-catalyzed Cascade Cyclizations of 2-Propenyl-1-ethynyl benzenes with Aryl diazo Esters to afford Tetrahydro-1H-cyclopropa[b]naphthalenes with Excellent Stereoselectivity
3.1 Introduction 323
3.5 Results and Discussion 334
3.6 Conclusion 343
3.7 Experimental Procedure 343
3.8 Spectral Data 345
3.9 Reference 354
3.10 1H, 13C NMR and key NOE Spectra 358

Chapter IV: Gold-catalyzed Cascade Oxidative Cyclization/Olefination Reaction of Alkynyl Aryl Ethers with Quinoline N-Oxides
4.1 Introduction 403
4.4 Results and Discussion 415
4.5 Conclusion 424
4.6 Experimental Procedure 425
4.7 Spectral Data 427
4.8 Reference 436
4.9 X-ray Crystallographic Data 439
4.10 1H and 13C NMR Spectra 452

Chapter-I
References:
[1] (a) Brummond, K. M.; Lu, J. J. Am. Chem. Soc. 1999, 121, 5087. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (c) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (d) Fruhauf, H. W. Chem. Rev. 1997, 97, 523.
[2] For selected examples, see: (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Kablaouni, N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818. (c) Chatani, N.; Morimoto, T,; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1996, 120, 5335. (d) Shibata, T.; Toshida, N.; Takagi, K. Org. Lett. 2002, 4, 1619.
[3] For recent examples see: (a) Ando, K. J. Org. Chem. 2010, 75, 8516. (b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. (c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A. 2010, 114, 12893. (d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720. (e) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482.
[4] (a) Organic Chemistry Morrison. Boyd, R. N. pp. 473-478. (b) Fischer, E. O.; Maasböl, A. Angew. Chem. Int. Ed. 1964, 3, 580. (c) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. (d) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. (e) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
[5] For a Review on gold N-heterocyclic carbenes, see: (a) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. For selected examples on Fischer-type carbene complexes of gold, see: (b) Raubenheimer, H. G.; Esterhuysen, M. W.; Timoshkin, A.; Chen, Y.; Frenking, G. Organometallics 2002, 21, 3173. (c) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. (d) Faῆanás-Mastral, M.; Aznar, F. Organometallics 2009, 28, 666.
[6] (a) Curtius, T.; Ber. Dtsch. Chem. Ges. 1890, 23, 3023. (b) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
[7] For reviews, see: (a) Lang, S.; Murphy, J. A. Chem. Soc. Rev. 2006, 35, 146. (b) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188. (c) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297. (d) L’abbe, G. Chem. Rev. 1969, 69, 345. (e) Boyer, J. H.; Canter, F. C. Chem. Rev. 1954, 54, 1. (f) Smith, P. A. S. Org. React. 1946, 3, 337.
[8] (a) Medal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. (b) Schilling, C.; Jung, N.; Bräse, S. In Organic Azides: Syntheses and Applications; Bräse, S.; Banert, K. Eds.; John Wiley & Sons: Chichester, 2010, 269.
[9] R. Huisgen, Angew. Chem. Int. Ed. 1963, 2, 565.
[10] For reviews, see: (a) Katsuki, T. Chem. Lett. 2005, 34, 1304. (b) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
[11] (a) Timén, A. S.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2003, 44, 5339. (b) Söderberg, B. C. G. Curr. Org. Chem. 2000, 4, 727. (c) Knittel, D. Synthesis 1985, 186.
[12] (a) Chiba , S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett. 2008, 10, 313. (b) Ng, E. P. J.; Wang, Y.; Hui, B. W.-Q.; Lapointe, G.; Chiba, S. Tetrahedron 2011, 67, 7728.
[13] Wang, Y.-F.; Toh, K. K.; Chiba, S. Org. Lett. 2008, 10, 5019.
[14] Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem. Int. Ed. 2011, 50, 5927.
[15] Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 5653.
[16] Zhu, L. Y.; Yu, Z. M.; Huang, X. Org. Lett. 2015, 17, 30.
[17] Suzuki A.; Tabata, M.; Ueda, M. Tetrahedron Lett. 1975, 16, 2195.
[18] Bamford, A. F.; Cook, M. D.; Roberts, B. P. Tetrahedron Lett. 1983, 23, 3779.
[19] H.-D. Xu, H. Zhou, Y.-P. Pan, X.-T. Ren, H. Wu, M. Han, R.Z. Han, M.-H. Shen, Angew. Chem. Int. Ed. 2016, 55, 2540.
[20] Pawar, S. K.; Sahani, R. L. Chem. Eur. J. 2015, 21, 10843.
[21] L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30.
[22] (a) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (b) Furstner, A.; Davis, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (c) Hashmi, A. S.K. Chem. Rev. 2007, 107, 3180. For a review on Au-catalyzed reactions of propargylic esters, see (d) Marion, N.; Nolan, S. P. Angew.Chem. Int. Ed. 2007, 46, 2750.
[23] (a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (b) Yu, M.; Li, G.; Wang, S.; Zhang, L. Adv. Synth. Catal. 2007, 349, 871. (c) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414. (d) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614. (e) Marion, N.; Diez-Gonzalez, S.; de Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem. Int. Ed. 2006, 45, 3647.
[24] For selected examples, see: (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Mamane, V.; Gress, T.; Krause, H.; Fu¨stner, A. J. Am. Chem. Soc. 2004, 126, 8654. (c) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (d) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (e) Amijs, C. H. M.; Lopez-Carrillo, V.; Echavarren, A. M. Org. Lett. 2007, 9, 4021.
[25] Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. Angew. Chem. Int. Ed. 2008, 47, 613.
[26] Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9, 4547.
[27] (a) Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468. (b) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868.
[28] For other Au-catalyzed diene formations, see: (a) Wang, S. Z.; Zhang, L. M. Org. Lett. 2006, 8, 4585. (b) Wang, Y.; Lu, B.; Zhang, L. Chem. Commun. 2010, 46, 9179. (c) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 985.
[29] Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740.
[30] Johanson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D.J. Am. Chem. Soc. 2005, 127, 18002.
[31] (a) Doyle, M. P.; Griffin, J. H.; Bagheri, V.; Dorow, R. L. Organometallics. 1984, 3, 53. (b) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 8697. (c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
[32] Zhang, X.; Fu, C.; Ma, S. Org. Lett. 2011, 13, 1920.
[33] (a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (b) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414. (c) Ji, K.-G.; Shu, X.-Z.; Chen, J.; Zhao, S.-C.; Zheng, Z.-J.; Lu, L.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2008, 10, 3919.
[34] Buzas, A. K.; Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 6, 985.
[35] (a) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (b) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (c) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (d) Hoffmann-Roder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.
[36] (a) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. (b) Lo´pez, S.; Herrero- Go´mez, E.; Pe´rez-Gala´n, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. (c) Toullec, P. Y.; Genin, E.; Leseurre, L.; Geneˆt, J.-P.; Michelet, V. Angew. Chem., Int. Ed. 2006, 45, 7427.
[37] (a) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485. (b) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066. (c) Nishina, N.; Yamamoto, Y. Angew. Chem. Int. Ed. 2006, 45, 3314.
[38] (a) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614. (b) Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957.
[39] Bray, C. V-L.; Derien, S.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2009, 48, 1439.
[40] Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
[41] (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Miki, K.; Ohe, K.; Uemura, S. Tetrahedron Lett. 2003, 44, 2019. (c) Miki, K.; Fujita, M.; Uemura, S.; Ohe, K. Org. Lett. 2006, 8, 1741. (d) Ohe, K.; Fujita, M.; Matsumoto, H.; Tai, Y.; Miki, K. J. Am. Chem. Soc. 2006, 128, 9270.
[42] (a) Mamane, V.; Gress, T.; Krause, H.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 8654. (b) Cho, E. J.; Kim, M.; Lee, D. Org. Lett. 2006, 8, 5413. (c) BhanuPrasad, B. A.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468.
[43] (a) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (b) Marion, N.; Mont, P.; Lemi re, G.; Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048. (c) Furstner, A.; Hannen, P. Chem. Commun. 2004, 2546. (d) Cho, E. J.; Kim, M.; Lee, D. Eur. J. Org. Chem. 2006, 3074.
[44] (a) Sierra, M. A.; del Amo, J. C.; Manche M. J.; mez- Gallego, M. G. J. Am. Chem. Soc. 2001, 123, 851. (b) Guen, F. R.-L; Le Poul, P.; Caro, B.; Faux, N.; Le Poul, N.; Green, S. J. Tetrahedron Lett. 2002, 43, 3967.
[45] (a) Kinoshita, A.; Mori, M. Synlett. 1994, 1020. (b) Kim, S.-H.; Bowden, N. B.; Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801.
[46] (a) Hodgson, D. M.; Angrish, D. Chem. Commun. 2005, 4902. (b) Lee, H. M.; Bianchini, C.; Jia, G.; Barbaro, P. Organometallics 1999, 18, 1961.
[47] (a) Chen, D.; Chen, X.; Lu, Z.; Cai, H.; Shen, J.; Zhu, G. Adv. Synth. Catal. 2011, 353, 1474. (b) Rainbolt, J. E.; Miller, G. P. J. Org. Chem. 2007, 72, 3020. (c) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (d) Tanaka, H.; Kosaka, A.; Yamashita, S.; Morisaki, K.; Torii, S. Tetrahedron Lett. 1989, 30, 1261.
[48] Dunn, T. B.; Ellis, J. M.; Kofink, C. C.; Manning, J. R.; Overman, L. E. Org. Lett. 2009, 11, 5658.
[49] Jin, Z.; Hidinger, R. S.; Xu, B.; Hammond, G. B. J. Org. Chem. 2012, 77, 7725.
[50] (a) Boaz, N. W. Tetrahedron Lett. 1998, 39, 5505. (b) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044.
[51] (a) Chiba, S. Synlett 2012, 23, 21. (b) Wang, Y. F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570. (c) Loy, N. S.; Singh, A.; Xu, X.; Park, C. H. Angew. Chem. Int. Ed. 2013, 52, 2212.
[52] 1H NOE Spectroscopic data of key compounds are provided in the Supporting data.
[53] See selected reviews: (a) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (b) Arcadi, A. Chem. Rev. 2008, 108, 3266. (c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (d) Li, Z.; Brouwer, C.; He, C. Chem.Rev. 2008, 108, 3239. (e) Grorin, D.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
[54] (a) Zhao, C.; Xie, X.; Duan, S.; Li, H.; Fang R.; She, X. Angew. Chem. Int. Ed. 2014, 53, 10789. (b) Liu, J.; Chen, M., Liu, Y.; Zhang, L. Chem. Eur. J. 2015, 21, 1009.
[55] The crystallographic data of compound 1-3e were deposited at Cambridge Crystallographic data Center (CCDC 1412097).
[56] Nitta, M.; Kobayashi, T. Chem. Lett. 1983, 1715.
[57] For propargyl ester Compounds: (a) Pagar, V. V.; Jadhav, A. M.; Liu, R. S. J. Am. Chem. Soc. 2011, 133, 20728. (b) Albrecht, S. J.-C.; Davies, P. W. Chem. commun. 2008, 238. (c) Bray, C. V. L.; Derien, S.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2009, 48, 1439. (d) Amjis, C. H. M.; Carrillo, V. L.; Echavarren, A. M. Org. Lett. 2007, 9, 4021.
[58] For vinyl azide compounds: (a) Pawar, S. K.; Sahani, R. L.; Liu, R. S. Chem. Eur. J. 2015, 21, 10843. (b) Zhu, X.; Wang, Y. F.; Zhang, F. L.; Chiba, S. Chem. Asian J. 2014, 9, 2458. (c) Xiang, L.; Niu, Y.; Pang, X.; Yan, R. Chem. commun. 2015, 51, 6598. (d) Fowler, F. W.; Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1967, 89, 2077.


Chapter-II
References:
[1] (a) Nunez, J. E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (c) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (e) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410.
[2] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) Nunez, J. E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (b) Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. (d) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (e) Zhang, L.; Kozmin, S. A.; J. Am. Chem. Soc. 2005, 127, 6962. (f) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677. (g) Gagosz, F. Org. Lett. 2005, 7, 4129. (h) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
[3] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem.. Int. Ed. 2008, 47, 4268. (e) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371. (f) Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
[4] For reviews, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (c) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (d) Trost, B. M. Chem. Eur. J. 1998, 4, 2405. (e) Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
[5] For reviews, see: (a) Templeton, J. L. Adv. Organomet. Chem. 1989, 29, 1. (b) Baker, P. B. Adv. Organomet. Chem. 1996, 40, 45. for an Os complex with an η4-alkyne ligand as an exception, see: (c) Carbo, J. J.; Crochet, P.; Esteruelas, M. A.; Jean, Y.; Lledos, A.; Lopez, A. M.; Onate, E. Organometallics 2002, 21, 305.
[6] Greaves, E. O.; Lock, J. L.; Maitlis, P. M. Can. J. Chem. 1968, 46, 3879.
[7] (a) Pyykko, P.; Desclaux, J.-P. Acc. Chem. Res. 1979, 12, 276. (b) Pyykko, P. Science 2000, 290, 64. (c) Pyykko, P. Angew. Chem. Int. Ed. 2002, 41, 3573. (d) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
[8] Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry, 3rd edn., Cornell University Press: Ithaca, N. Y. 1960.
[9] (a) Chisholm, M. H.; Clark. H. C. Acc. Chem. Res. 1973, 6, 202. (b) Mezailles, N.; Ricard, L.; Mathey, F.; Floch, P. L. Eur. J. Inorg. Chem. 1999, 2233. (c) Willner, H.; Schaebs, J.; Hwang, G.; Mistry, F.; Jones, R.; Trotter, J.; Aubke, F. J. Am. Chem. Soc. 1992, 114, 8972.
[10] For selected examples, see: (a) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781. (b) Trost, B. M.; Lautens, M. Tetrahedron Lett. 1985, 26, 4887. (c) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (d) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636. (e) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636. (f) Trost, B. M.; Pedregal, C. J. Am. Chem. Soc. 1992, 114, 7292. (g) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255. (h) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268.
[11] Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049.
[12] Reviews: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431.
[13] (a) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (b) Nevado, C.; Cardenas, J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (c) Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293.
[14] Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704.
[15] (a) Nunez, E. J.; Claverie, C. K.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5452. (b) Overman, L. E.; Pennington, L. D. J. Org.Chem. 2003, 68, 7143. (c) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 9939. (d) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc. 2002, 124, 4960. (e) Rychnovsky, S. D.; Marumoto, S.; Jaber, J. J. Org. Lett. 2001, 3, 3815.
[16] Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
[17] (a) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698. (b) Witham, C. A.; MauleOn, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (c) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Padwa, A. Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 3100.
[18] (a) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wolfle, M.; Frey, W.; Bats, J. W. Angew. Chem. Int. Ed. 2005, 44, 2798. (b) Hashmi, A. S. K.; Blanco, M. C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.
[19] Gawade, S. A.; Bhunia, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 7835.
[20] Yeom, H. S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764.
[21] Lopez, s.; Gomez, E. H.; Galan, P. P.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029.
[22] Leseure, L.; Toullec, P. Y.; Jenet, J. P.; Michelet, V. Org. Lett. 2007, 9, 4049.
[23] Nieto-Oberhuber, C.; Lopez, S.; Paz Munoz, M.; Jimenez-Nunez, E.; Bunuel, E.; Cardenas, D. J.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1694.
[24] Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 14924.
[25] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
[26] Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739.
[27] Sibi, M. P.; Liu, M. Org. Lett. 2001, 3, 4181.
[28] Monnier, F.; Bray, C. V-L.; Castillo, D.; Aubert, V.; Toupet, L.; Mealli, C.; Derien, S.; Dixneuf, P. H. J. Am. Chem. Soc. 2007, 129, 6037.
[29] (a) Kinoshita, A.; Mori, M. Synlett 1994, 1020. (b) Mori, M.; Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 5606.
[30] For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary Carbene Chemistry, John Wiley & Sons, 2013.
[31] For selected reviews on C–H bond insertion by metal carbenoids: (a) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Davies H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 47, 617. (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (d) Davies, H. M. L; Manning, J. R. Nature 2008, 451, 417. (e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev. 2010, 110, 704. (f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron 2010, 66, 6681. (g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem. 2011, 9, 4007. (h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
[32] Rudolph, M..; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448.
[33] Modern Gold Catalyzed Synthesis, ed Hashmi, . A. S. K.; Toste, F. D. Wiley-VCH, Weinheim, 2012.
[34] (a) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677. (b) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. – Eur. J. 2015, 21, 7332.
[35] Fructos, M. R.; Belderrain, T. R.; de Fre´mont, P.; Scott, N. M.; Nolan, S. P.; Dı´az-Requejo, M. M.; Pe´rez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284.
[36] Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704.
[37] Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 9817.
[38] Prieto, A.; Fructos, M. R.; Dı´az-Requejo, M. M.; Pe´rez P. J.; Pe´rez-Gala´n, P. P.; Delpont, N.; Echavarren, A. M. Tetrahedron 2009, 65, 1790.
[39] Reviews for catalytic cycloadditions of enynes; see (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49 (c) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. (d) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462 (e) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
[40] (a) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902. (b) Le Paith, J.; Cuervo Rodriguez, D.; de Rien, S.; Dixneuf, P. H. Synlett 2000, 1, 95.
[41] For metathesis reaction, see selected reviews: (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18 (c) Mori, M. J. Mol. Catal. A: Chem. 2004, 213, 73. (d) Villar, H.; Frings, M.; Bolm, C. Chem. Soc. Rev. 2007, 36, 55.
[42] (a) Shi, S.; Wang, T.; Yang, W.; Rudolph, M.; Hashmi, A. S. K. Chem. -Eur. J. 2013, 19, 6576. (b) Hung, H.-H.; Liao, Y.-C.; Liu, R.-S. J. Org. Chem. 2013, 78, 7970.
[43] (a) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133. (b) Gawade, S. A.; Bhunia, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 7835. (c) Madhushaw, R. J.; Lo, C.-Y.; Hwang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560.
[44] X-ray crystallographic data of compound 2-3a′ were deposited at the Cambridge Crystallographic Data Center (CCDC-1497193).
[45] (a) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897. (b) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 6090. (c) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916.
[46] (a) Hashimoto, T.; Miyamoto, H.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 11280. (b) Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532. (c) Doyle, M. P.; Trudell, M. L.; Terpstra, J. W. J. Org. Chem. 1983, 48, 5146. (d) Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3328.
[47] As noted in eq 8, IPrAuNTf2 failed to transform cyclopropane derivative 2-(1a′-c) into 2-substituted 3-alkenylindene 2-3a. This observation suggests that allyl cation intermediate 2-F, if formed, is unlikely to yield species 2-3a. Instead, species 2-F will undergo irreversible transformation into species 2-(1a′-c) if the transformation 2-D′ → 2-F is feasible.


Chapter-III
References:
[1] Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Appl. Catal. A: Gen. 2001, 221, 3.
[2] Liu, S.; Xiao, J. J. Mol. Catal. A. Chem. 2007, 270, 1.
[3] For early reports on one-pot dual-metal catalysis; (a) Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. Science 2006, 312, 714. (b) Jeong, N.; Seo, S. D.; Shin, J. Y. J. Am. Chem. Soc. 2000, 122, 10220. (c) Zimmermann, B.; Herwig, J.; Beller, M. Angew. Chem., Int. Ed. 1999, 38, 2372. (d) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2013, 3, 633. (e) Patil, N. T.; Shinde, V. S.; Gajula, B. Org. Biomol. Chem. 2012, 10, 211. (f) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492. (g) Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072.
[4] (a) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928. (b) Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72, 3100. (c) Shi, Y.; Peterson, S. M.; Haberaecker, W. W., III; Blum, S. A. J. Am. Chem. Soc. 2008, 130, 2168. (d) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387. (e) Ma, S.; Yu, Z. J. Org. Chem. 2003, 68, 6149. (f) Chinchilla, R.; Na´jera, C. Chem. Rev. 2007, 107, 874.
[5] For reviews on cyclopropenes; (a) Padwa, A. Acc. Chem. Res. 1979, 12, 310. (b) Baird, M. S. Chem. Rev. 2003, 103, 1271. (c) Walsh, R. Chem. Soc. Rev. 2005, 34, 714. (d) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem. Int. Ed. 2007, 46, 7364. (e) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[6] (a) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719. (b) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295. (c) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198. (d) Diev, V.; Kostikov, R.; Gleiter, R.; Molchanov, A. P. J. Org. Chem. 2006, 71, 4006. (e) Tarwade, V.; Liu, X.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 5382.
[7] (a) Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1. (b) Rubin, M.; Rubina, M.; Gevorgyan, V. Synthesis 2006, 1221. (c) Petiniot, N.; Anciaux, A. J.; Noels, A. F.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1978, 1239. (d) Doyle, M. P. Russ. Chem. Bull. 1994, 43, 1770. (e) Doyle, M. P. Pure Appl. Chem. 1998, 70, 1123. (f) Doyle, M. P. Enantiomer 1999, 4, 621. (g) Doyle, M. P.; Hu, W. Synlett 2001, 43, 5997. (h) Doyle, M. P.; Winchester, W. P.; Hoorn, J. A.; Lynch, V. Simonsen, S. H.; Ghosh, R. J. Am. Chem. Soc. 1993, 115, 9968. (i) Doyle, M. P.; Protopova, M.; Muller, P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc. 1994, 116, 8492.
[8] (a) Monnier, F.; Vovard-Le Bray, C.; Castillo, D.; Aubert, V.; Derien, S.; Dixneuf, P. H.; Toupet, L.; Ienco, A.; Mealli, C. J. Am. Chem. Soc. 2007, 129, 6037. (b) Protopova, M. N.; Shapiro, E. A. Russ. Chem. Rev. 1989, 58, 667. (c) Diaz-Requejo, M. M.; Mairena,M. A.; Beldarrain, T. R.; Nicasio,M. C.; Trofimenko, S.; Perez, P. J. Chem. Commun. 2001, 1804. (d) Rodriguez, P.; Caballero, A.; Diaz-Requejo, M. M.; Nicasio, M. C.; Perez, P. J. Org. Lett. 2006, 8, 557. (e) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268.
[9] (a) Benitez, D. N.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard, W. A., III; Toste, F. D. Nat. Chem. 2009, 1, 482. (b) Bauer, J. T.; Hadfield, M. S.; Lee, A.-L. Chem. Commun. 2008, 6405. (c) Hadfield, M. S.; Bauer, J. T.; Glen, P. E.; Lee, A.-L. Org. Biomol. Chem 2010, 8, 4090. (d) Seraya, E.; Slack, E.; Ariafard, A.; Yates, B. F.; Hyland, C. J. T. Org. Lett. 2010, 12, 4768. (e) Zhou, Y.; Trewyn, B. G.; Angelici, R. J.; Woo, L. K. J. Am. Chem. Soc. 2009, 131, 11734. (f) Hadfield, M. S.; Lee, A.-L. Chem. Commun. 2011, 47, 1333. (g) Li, C.; Zeng, Y.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2010, 49, 6413.
[10] Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510.
[11] Bauer, J. T.; Hadfield, M. S.; Lee, A.-L. Chem. Commun. 2008, 6405.
[12] Li, C.; Zeng, Y.; Wang, J. Tetrahedron Lett. 2009, 50, 2956.
[13] Zhu, Z.-B.; Shi, M. Chem. Eur. J. 2008, 14, 10219.
[14] For activation of alkenes by gold; (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285. (b) Brouwer, C.; He, C. Angew. Chem. Int. Ed. 2006, 45, 1744. (c) Han, X.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2006, 45, 1747. (d) Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2006, 8, 5303. (e) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798. (f) Yang, C.-G.; He, C. J. Am. Chem. Soc. 2005, 127, 6966.
[15] Miege, F.; Meyer, C.; Cossy, J. Org. Lett. 2010, 12, 4144.
[16] For bimetallic Au/M catalysis, see selected examples; (a) García-Dominguez, P.; Nevado, C. J. Am. Chem. Soc. 2016, 138, 3266. (b) Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum, S. A. J. Am. Chem. Soc. 2009, 131, 18022. (c) Peng, H.; Akhmedov; Liang, Y.-F.; Jiao, N.; Shi, X. J. Am. Chem. Soc. 2015, 137, 8912. (d) Caumes, C.; Fernandes, C.; Roy, O.; Hjelmgaard, T.; Wenger, E.; Didierjean, C.; Taillefumier, C.; Faure, S. Org. Lett. 2013, 15, 3626. (e) Miura, T.; Tanaka, T.; Matsumoto, K.; Murakami, M. Chem. Eur. J. 2014, 20, 16078.
[17] (a) Aksin-Artok, O.; Krause, N. Adv. Synth. Catal. 2011, 353, 385. (b) Meyer, K. H.; Schuster, K. Chem. Ber. 1922, 55, 819.
[18] Hansmann, M. M.; Hashmi, A. S. K.; Lutens, M. Org. Lett. 2013, 15, 3226.
[19] Zhu, Z.; Chen, K.; Xu, Q.; Shi, M. Adv. Synth. Catal. 2015, 357, 3081.
[20] See selected examples; (a) Hunter, A. C.; Chinthapally, K.; Sharma, I. Eur. J. Org. Chem. 2016, 2260. (b) Werlè, C.; Goddard, R.; Philipps, P.; Fares, C.; Fürstner, A. J. Am. Chem. Soc. 2016, 138, 3797. (c) Bonge, H. T.; Pintea, B.; Hansen, T. Org. Biomol. Chem. 2008, 6, 3670. (d) Goudreau, S. R.; Marcoux, D.; Charette, A. B. J. Org. Chem. 2009, 74, 470.
[21] (a) Miege, F.; Meyer, C.; Cossy, J. Beilstein J. Org. Chem. 2011, 7, 717. (b) For gold-catalyzed reactions of cyclopropenes, see the following; Archambeau, A.; Miege, F.; Crossy, J.; Meyer, C. In Patai’s Chemistry of Functional Groups; Rappoport, Z., Liebman, J. F., Marek, I., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, 2014; pp 631. (c) Miege, F.; Meyer, C.; Cossy, J. Chem. Eur. J. 2012, 18, 7810.
[22] (a) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897. (b) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 6090.
[23] (a) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916. (b) Prieto, A.; Fructos, M. R.; Diaz-Requejo, M. M.; Perez, P. J.; Perez-Galan, P. P.; Delpont, N.; Echavarren, A. M. Tetrahedron 2009, 65, 1790.
[24] For gold-catalyzed reactions of diazo species, see reviews; (a) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506. (b) Fructos, M. R.; Diaz-Requejo, M. M.; Pèrez, P. J. Chem. Commun. 2016, 52, 7326.
[25] (a) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur, H.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126, 10846. (b) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N. M.; Nolan, S. P.; Dıaz-Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284. (c) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew. Chem. Int. Ed. 2014, 53, 11070. (d) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728. (e) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 11809. (f) Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 4923.


Chapter-IV
References:
[1] (a) Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W.; Eds., Pergamon Press: Oxford, 1982. (b) Green, M. L. H.; Davies, S.G. Philos. Trans. R. Soc. London A. 1988, 326, 501. (c) Collman, J.P.; Hegedus, L.S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California, 1987. (d) Seebach, D. Angew. Chem. Int. Ed. 1990, 29, 1320.
[2] (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259. (c) Trost, B. M. Science 1991, 254, 1471.
[3] (a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. (b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. (c) Anastas, P. T.; Zimmerman, J. B. Environ. Sci. Technol. 2003, 37, 94. (d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807. (e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
[4] (a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. (b) Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219. (c) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53. (d) Fedoryński, M. Chem. Rev. 2003, 103, 1099. (d) Doering, W. E.; Hoffmann, A. K. J. Am. Chem. Soc. 1954, 76, 6162. (e) Doering, W. von E.; Buttery, R. G.; Laughlin, R. G.; Chaudhure, N. J. Am. Chem. Soc. 1956, 78, 3224. (f) Friedman, L.; Shechter, H. J. Am. Chem. Soc. 1960, 82, 1002.
[5] (a) Wang, Y.; Zhang, L. Synthesis 2015, 47, 289. (b) Stephens, D.E.; Larionov, O.V. 2017 Transition Metal-Catalyzed C–H Functionalization of Heterocyclic N-Oxides. In: Larionov O. (eds) Heterocyclic N-Oxides. Topics in Heterocyclic Chemistry, vol 53. Springer, Cham.
[6] Reviews on gold catalyzed reactions; (a) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8, 960. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Patil, N. T.; Yamamoto, Y. Chem, Rev. 2008, 108, 3395. (d) Abbiati, G.; Rossi, E. Beilstein J. Org. Chem. 2014, 10, 481. (e) Alford, J. S.; H. M. L. Davies, Chem. Soc. Rev. 2014, 43, 5151. (f) Hashmi, A. S. K. Gold Bulletin 2003, 36, 3. (g) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (h) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (i) Acardi, A. Chem. Rev. 2008, 108, 3266. (j) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208.
[7] Nechaev, M. S.; Rayon, V. M.; Frenking, G. J. Phys. Chem. A 2004, 108, 3134.
[8](a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71-C79. (b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939. (c) Nelson, J. H.; Wheelock, K. S.; Cusachs, L. C.; Jonassen, H. B. J. Am. Chem. Soc. 1969, 91, 7005.
[9] Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226.
[10] Zhang, L. Acc. Chem. Res. 2014, 47, 877.
[11] Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
[12] Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
[13] Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
[14] Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
[15] Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem. Int. Ed. 2012, 51, 1915.
[16] Ji, K.; Zhang, L. Adv. Synth. Catal. 2017, 359, 1; [DOI: 10.1002/adsc.201701322].
[17] For gold-catalyzed retro-Buchner reactions, see: (a) Solorio-Alvarado, C. S. R.; Wang, Y.; Echavarren, A. M. J. Am. Chem. Soc. 2011, 133, 11952. (b) Wang, Y.; McGonigal, P. R.; Herl, B.; Besora, M.; Echavarren, A. M. J. Am. Chem. Soc. 2014, 136, 801. (c) Herl, B.; Holstein, P. M.; Echavarren, A. M. ACS Catal. 2017, 7, 3668.
[18] (a) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2007, 46, 8872. (b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332. (c) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020. (d) Tan, Y.; Landeros, F. B.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 3683. (e) Acermann, L.; Fenner, S. Chem. Commun. 2011, 47, 430.
[19] (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (b) Ryu, J.; Cho, S. H.; Chang, S. Angew. Chem. Int. Ed. 2012, 51, 3677. (c) Shen, Y.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. Chem. Commun. 2014, 50, 4292. (d) Wu, J. ; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888. (e) Xiao, B.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616.
[20] Pagar, V.; Liu, R.-S. Org. Biomol. Chem. 2015, 13, 6166.
[21] (a) Kundu, K.; Russel, A. E. Org. Lett. 2005, 7, 5171. (b) Liu, Y.; Zhang, Y.; Jee, N.; Doyle, M. P. Org. Lett. 2008, 10, 1605. (c) Deng, G.; Wang, J.; Qu, Z. Wang, J. Angew. Chem. Int. Ed. 2002, 41, 2773. (d) Liu, Y.; Bakshi, K.; Zavalij, P.; Doyle, M. P. Org. Lett. 2010, 12, 4304. (e) Zhou, L.; Doyle, M. P. J. Org. Chem. 2009, 74, 9222.
[22] (a) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 11809. (b) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Org. Chem. 2013, 78, 5711. (c) Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 4923.
[23] (a) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. (b) Xu, X.; Zavalij, P. Y.; Hu, W.; Doyle, M. P. Chem. Commun. 2012, 48, 11522. (c) Lu, L.; Lu, P.; Ma, S. Eur. J. Org. Chem. 2007, 676. (d) Buhro, W. E.; Davidson, J. G.; Elliott, R. C.; Hoekstra, J. W.; Oppenhuizen, M.; Doyle, M. P. J. Org. Chem. 1980, 45, 3657.
[24] Graf, K.; Ruhl, C. L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 12727.
[25] Chen, Z.-S.; Yang, F.; Ling, H.; Li, M.; Gao, J.-M.; Ji, K. Org. Lett. 2016, 18, 5828.
[26] (a) Mitscher, L. A. Chem. Rev. 2005, 105, 559. (b) McCormick, J. L.; McKee, T. C.; Cardellina, J. H.; Boyd, M. R. J. Nat. Prod. 1996, 59, 469. (c) Madapa, S.; Tusi, Z.; Batra, S. Curr. Org. Chem. 2008, 12, 1116. (d) George, Y. L.; Ernest, J. F.; Monte, D. G.; John, H. B. J. Med. Chem. 1962, 5, 1063. (e) Fang, K. C.; Chen, Y. L.; Sheu, J. Y.; Wang, T. C.; Tzeng, C. C. J. Med. Chem. 2000, 43, 3809. (f) Vargas, M. L.; Castelli, M. V.; Kouznetsov, V. V.; Urbina, G. J.; López, S. N.; Sortino, M. Bioorg. Med. Chem. 2003, 11, 1531.
[27] (a) Bilker, O.; Lindo, V.; Panico, M.; Etiene, A. E.; Paxton, T.; Dell, A.; Rogers, M.; Sinden, R. E.; Morris, H. R. Nature 1998, 392, 289. (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (c) Hughes, G.; Bryce, M. R. J. Mater. Chem. 2005, 15, 94. (d) A. Kimyonok, X. Y. Wang, M. Weck, Polym. Rev. 2006, 46, 47. (e) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed., Wiley-VCH, Weinheim, 2003.
[28] The X-ray crystallographic structure of compound 4-3a were deposited in cambrige crystallographic data centre (CCDC-xxxx).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *