帳號:guest(3.131.13.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莫翰
作者(外文):MOHAMMED, TARIQUE-ANWAR
論文名稱(中文):結合化學與酵素方法合成雙爪與三爪N-Glycans及其模仿化合物
論文名稱(外文):Chemoenzymatic Synthesis of Bi- and Tri-antennary N-Glycans and Their Mimics
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
口試委員(中文):王聖凱
蒙國光
梁健夫
游景晴
口試委員(外文):Wang, Sheng-Kai
Mong, Kwok-Kong
Liang, Chien-Fu
Yu, Ching-Ching
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023875
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:302
中文關鍵詞:酵素合成唾液酸化模仿化合物
外文關鍵詞:N-glycansEnzymatic SynthesisMimicSiglec-7Sialylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:193
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
N-Glycan與蛋白質間相互作用在生理、免疫系統和癌症中扮演重要的角色。為了探索複合型N-Glycan在各種生物過程中的作用及應用於診斷或治療的醣體生物學,需要這些寡糖的高純度樣品。然而,通過化學或化學酵素途徑合成複合型N-Glycan是費工且需要多個步驟來獲得所需的醣體。根據文獻報導,許多生物活性寡醣具有無數的結構多樣性,但受體通常僅僅辨認寡糖末端,而其餘部分只充當支架,將結合部位朝向合適的構型中。因此,在本研究中,我們合成簡化型複合型N-Glycan(pseudo-N-Glycan),作為天然複合型N-Glycan的替代物。為了證明概念,使用微陣列晶片來比較天然和假聚醣之間的結合模式。此外,通過結合力測定,我們證明了首篇關於Siglec-7對複合型N-Glycan的結合力偏好的報導。
第二章討論了復合型bi-antennary N-Glycan合成相關的挑戰,並著重於復合型bi-antennary N-Glycan及其類似物的化學酵素合成。在本章中,我們報導了簡化型複合型pseudo N-Glycan的合成,作為天然複合型N-Glycan的替代物。通過銅催化的疊氮化物-炔烴[1,3]-雙極環加成(CuAAC)反應合成具有各種可能的天然/非天然修飾的雙觸角醣體,其含有具有/不具有岩藻糖的單/雙唾液酸化。還合成了相應的天然N-Glycan進行比較。通過對結構核心-五醣化合物25進行修飾來化學合成天然N-Glycan。非還原末端通過半乳糖基化延伸,然後通過摻入糖核苷酸再生系統進行唾液酸化或聚-LacNAc。評估這些聚醣的Siglec-7結合,並在第4章討論它們的結合分析。
在第三章中,我們專注於通過CuAAC合成複合型三觸角N-Glycan相似物(pseudo-N-Glycan)作為天然複合型三觸角N-Glycan的替代物。合成了含有單或雙唾液酸化的各種可能的天然/非天然修飾的三觸角醣體。我們還合成了它們天然N-聚醣對應物比較相似的程度。天然聚醣也通過摻入糖核苷酸再生系統進行化學合成,以有效地延長聚醣非還原末端的聚醣鏈,並進行半乳糖基化,然後進行唾液酸化或聚-LacNAc。
在我的第四章中,我們試圖證明我們的概念,即假N-聚醣可以真實地模擬相應的天然存在的N-Glycan特徵。基於聚醣微陣列的結合測定顯示Silgec-7結合取決於連接以及與倒數第二個半乳糖連接的唾液酸的數量。約束偏好順序為α(2,3) ≤ α(2,6) < α(2,3)α2,8)≅α(2,6)α(2,8) ≅ α(2,3)α(2,6) 觀察到- 鍵。首次發現雙觸角分支是針對Siglec-7Fc的高親和力結合的最佳間隔。該研究證明了Siglec-7對複合型N-醣體的結合偏好。
N-Glycan-protein interactions play important roles in numerous physiological and immunological events including cancer. To explore the role of complex type N-glycans in various biological process and their application in the field of glycobiology for diagnostic or therapeutic purposes, pure homogenous samples of these oligosaccharides are required. However, synthesis of complex type N-glycans by chemical or chemoenzymatic routes are laborious and requires multiple steps to achieve desired glycans. Based on rationale that many bioactive oligosaccharides display countless structural complexity and only small terminal portion of these structures are usually recognized by their receptors while the residual portion seems to act as a scaffold, which orients the binding elements in the suitable conformation and provides linkage/anchor to the aglycan. Thus in this study, we report the synthesis of simplified structure of complex type N-glycans (pseudo-N-glycans) as a substitute for naturally occurring complex type N-glycans. To prove our concept, microarray binding assay is used to compare the binding pattern between the natural and pseudo-glycans. Furthermore, through the binding assay, we demonstrate the first report on Siglec-7 binding preference towards complex type N-glycans.
Chapter two addresses the challenges associated with synthesis of complex type bi-antennary N-glycans, and focused on the chemoenzymatic synthesis of complex type bi-antennary N-glycans and their mimics. In this chapter we report the synthesis of simplified structure of complex type pseudo-N-glycans as a substitute for naturally occurring complex type N-glycans. Bi-antennary glycans with various possible natural/unnatural modifications, containing mono- or disialylation with/without fucose were synthesized by copper-catalyzed azide-alkyne [1,3]-dipolar cycloaddition (CuAAC) reaction. The corresponding naturally occurring N-glycans counterparts were also synthesized to compare the extent of mimicry. Natural N-glycans were synthesized chemoenzymatically by performing modifications on a core-pentasacchairde 25, which was assembled by chemical means. The nonreducing end of glycan was extended with galactosylation followed by sialylation or poly-LacNAc by incorporation of sugar nucleotide regeneration system. These glycans were evaluated for Siglec-7 binding and their binding analyses were discussed in Chapter 4.
In the third chapter, we focused on the synthesis of complex type tri-antennary N-glycan mimic (pseudo-N-glycan) by CuAAC as an alternate of natural complex type tri-antennary N-glycans. Tri-antennary glycans with various possible natural/unnatural modifications containing mono or di-sialylation were synthesized. We also synthesized their naturally occurring N-glycan counterparts to compare the extent of mimicry. Natural glycans were also synthesized chemoenzymatically by incorporation of sugar nucleotide regeneration system to efficiently extend the glycan chain at the nonreducing end of the glycan with galactosylation followed by sialylation or poly-LacNAc.
In the fourth chapter, we seek to prove our concept that pseudo-N-glycans can truly mimic the peripheral representation of corresponding naturally occurring N-glycans. The glycan microarray based binding assay showed Silgec-7 binding depends upon the linkage as well as number of sialic acid attached to penultimate galactose. The binding preference order as α(2,3) ≤ α(2,6)< α(2,3)α(2,8) ≅ α(2,6)α(2,8) ≅ α(2,3)α(2,6)-linkage was observed. The bi-antennary branching was found to be optimal spacing for high affinity binding against Siglec-7 Fc. This study demonstrate the first report of Siglec-7 binding preference towards complex type N-glycans.
摘要 i
Abstract iii
Acknowledgements v
Table of contents vii
List of figures x
List of schemes xii
List of tables xiii
Abbreviations xiv
Chapter 1. Introduction. 1
1.1. General introduction to glycans. 1
1.2. Major classes of glycoconjugates. 2
1.3. N-glycans. 3
1.4. Sialic Acid. 6
1.5. Siglecs. 8
1.6. General introduction to oligosaccharide synthesis. 13
1.6.1. Chemical synthesis of oligosaccharides. 13
1.6.1.1. Protecting groups. 14
1.6.1.2. Glycosylation methods. 15
1.6.2 Enzymatic synthesis. 19
1.7. Copper (I) catalyzed azide-alkyne cycloaddition (CuAAC). 21
1.7.1. Mechanism of CuAAC. 23
1.8. A general introduction to glycan microarray. 24
1.9. Objectives of thesis. 26
Chapter 2. Chemoenzymatic synthesis of biantennary N-glycans and their mimic. 28
2.1. Bi-antennary N-glycans. 28
2.2. Synthesis of N-glycans 29
2.2.1. Convergent chemical synthesis. 29
2.2.2. Semisynthesis strategy. 30
2.2.3. Chemoenzymatic synthesis strategy. 32
2.2.3.1 Enzymatic synthesis strategies. 32
2.3. Oligosaccharide mimic. 34
2.4. Research goals. 35
2.5. Result and discussion. 36
2.5.1 Synthesis of pseudo-N-glycans. 38
2.5.2 Synthesis of natural bi-antennary N-glycans. 43
2.5.2.1 Synthesis of intermediate building blocks 45
2.5.2.2 Synthesis of trisaccharide. 48
2.5.2.3 Synthesis of pentasaccharide. 51
2.5.2.4 Chemoenzymatic extension of N-glycans. 52
2.5.2.4.1 Sugar nucleotide regeneration for LacNAc synthesis. 54
2.5.2.4.2 Sugar nucleotide regeneration for Sialylation. 56
2.5.2.4.3 Sugar nucleotide regeneration for fucosylation. 60
2.6. Conclusion. 61
2.7. Experimental Section. 62
2.7.1. Materials and methods. 62
2.7.2 General enzyme overexpression. 63
2.7.2 General synthesis procedures. 64
2.7.2.1. General CuAAC reaction protocol. 64
Method A: CuAAC under microwave condition. 64
Method B: CuAAC by using Cu(I) stabilizing reagent. 64
2.7.2.2. General NHBoc deprotection protocol. 65
2.7.2.3. OPME protocol for β(1,4)-Galactosylation catalyzed by NmGalT. 65
2.7.2.4. General UDP-Gal regeneration protocol for LacNAc synthesis. 66
2.7.2.5. General UDP-GlcNAc regeneration protocol for LacNAc synthesis. 66
2.7.2.6. General CMP-Neu5Ac regeneration protocol. 67
2.7.2.7. General GTP-Fuc regeneration protocol. 67
2.7.2.8. General OPME protocol for α(2,8)-Sialylation catalyzed by Cst-II. 68
2.7.3. Synthesis procedures and characterization. 69
Chapter 3. Chemoenzymatic synthesis of complex type tri antennary N-glycan derivatives. 110
3.1. Introduction to N-glycans and their branching. 110
3.2. Synthesis of tri-antennary N-glycans. 112
3.3. Research goals 117
3.4. Result and discussion. 117
3.4.1 Synthesis of tri-antennary pseudo-N-glycans. 119
3.4.2 Synthesis of natural complex type tri-antennary N-glycans. 122
3.4.2.1. Enzymatic LacNAc extension of triantennary N-glycans. 126
3.4.2.2. Enzymatic sialylation of triantennary N-glycans. 128
3.5. Conclusion. 129
3.6. Experimental section. 130
3.6.1. General protocol for CuAAC by using Cu(I) stabilizing reagent. 130
3.6.2. General NHBoc deprotection protocol. 130
3.6.3. General UDP-Gal regeneration protocol for LacNAc synthesis. 131
3.6.4. General UDP-GlcNAc regeneration protocol for LacNAc synthesis. 131
3.6.5. General CMP-Neu5Ac regeneration protocol. 132
3.6.6. Synthesis procedures and characterization. 133
Chapter 4. Binding assay for Siglec-7. 157
4.1. Introduction. 157
4.2. Challenges associated in ligand identification. 158
4.3. Previous strategies towards synthesis of ligands for Siglec-7. 159
4.3.1. C-2 and C-9 modification strategy. 161
4.3.2. Multivalent representation of α(2,8)-linked di-sialic acid. 162
4.4. Research goals. 163
4.5. Results and discussion. 163
4.5.1. Fabrication of microarray. 164
4.5.2. Binding analysis for bi-antennary glycans. 166
4.5.3. Binding analysis for tri-antennary glycans. 168
4.6. Conclusion. 169
Chapter 5. Future prospective. 170
References. 171
Appendix 190
1. Varki, A., Biological roles of glycans. Glycobiology 2017, 27, 3-49.
2. Feizi, T., Carbohydrate‐mediated recognition systems in innate immunity. Immunol. Rev. 2000, 173, 79-88.
3. Ohtsubo, K.; Marth, J. D.; Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867.
4. Werz, D. B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C.-W.; Seeberger, P. H., Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS chem. Biol. 2007, 2, 685-691.
5. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H., Study Guide. In Essent. Glycobiol. 3rd edition, Cold Spring Harbor Laboratory Press: 2017.
6. Gabius, H.-J., The magic of the sugar code. Trends biochem. Sci, 2015, 40, 341.
7. Mereiter, S.; Balmaña, M.; Campos, D.; Gomes, J.; Reis, C. A., Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer cell 2019, 36, 6-16.
8. Stanley, P.; Taniguchi, N.; Aebi, M., N-glycans. In Essent. Glycobiol. 3rd edition, Cold Spring Harbor Laboratory Press: 2017.
9. Lindahl, U.; Couchman, J.; Kimata, K.; Esko, J., Proteoglycans and sulfated glycosaminoglycans. Europe PMC, 2015.
10. Lannoo, N.; Van Damme, E. J., Review/N-glycans: The making of a varied toolbox. Plant Sci. 2015, 239, 67-83.
11. Rini, J. M.; Esko, J. D., Glycosyltransferases and glycan-processing enzymes. In Essent. Glycobiol. 3rd edition, Cold Spring Harbor Laboratory Press: 2017.
12. Crocker, P. R.; Varki, A., Siglecs, sialic acids and innate immunity. Trends immunol. 2001, 22, 337-342.
13. Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 2014, 14, 653.
14. Zhou, J. Y.; Oswald, D. M.; Oliva, K. D.; Kreisman, L. S.; Cobb, B. A., The glycoscience of immunity. Trends immunol. 2018, 39, 523-535.
15. Crocker, P. R.; Clark, E.; Filbin, M.; Gordon, S.; Jones, Y.; Kehrl, J.; Kelm, S.; Le Douarin, N.; Powell, L.; Roder, J., Siglecs: a family of sialic-acid binding lectins. Glycobiology 1998, 8, v-vi
16. Crocker, P. R.; Paulson, J. C.; Varki, A., Siglecs and their roles in the immune system. Nat. Rev. Immunol 2007, 7, 255.
17. Von Gunten, S.; Bochner, B. S., Basic and clinical immunology of Siglecs. Ann. N. Y. Acad. Sci. 2008, 1143, 61.
18. Bochner, B. S.; Zimmermann, N., Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J. Allergy Clin. Immunol. 2015, 135, 598-608.
19. Brinkman-Van der Linden, E. C.; Varki, A., New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. J. Biol. Chem. 2000, 275, 8625-8632.
20. Powell, L. D.; Varki, A., The oligosaccharide binding specificities of CD22 beta, a sialic acid-specific lectin of B cells. J. Biol. Chem. 1994, 269, 10628-10636.
21. Razi, N.; Varki, A., Cryptic sialic acid binding lectins on human blood leukocytes can be unmasked by sialidase treatment or cellular activation. Glycobiology 1999, 9, 1225-1234.
22. Freeman, S. D.; Kelm, S.; Barber, E. K.; Crocker, P. R., Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 1995, 85, 2005-2012.
23. Collins, B. E.; Kiso, M.; Hasegawa, A.; Tropak, M. B.; Roder, J. C.; Crocker, P. R.; Schnaar, R. L., Binding specificities of the sialoadhesin family of I-type lectins Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J. Biol. Chem. 1997, 272 , 16889-16895.
24. Cornish, A. L.; Freeman, S.; Forbes, G.; Ni, J.; Zhang, M.; Cepeda, M.; Gentz, R.; Augustus, M.; Carter, K. C.; Crocker, P. R., Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 1998, 92, 2123-2132.
25. Patel, N.; Brinkman-Van der Linden, E. C.; Altmann, S. W.; Gish, K.; Balasubramanian, S.; Timans, J. C.; Peterson, D.; Bell, M. P.; Bazan, J. F.; Varki, A., OB-BP1/Siglec-6 a leptin-and sialic acid-binding protein of the immunoglobulin superfamily. J. Biol. Chem. 1999, 274, 22729-22738.
26. Angata, T.; Varki, A., Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily. Glycobiology 2000, 10, 431-438.
27. Floyd, H.; Ni, J.; Cornish, A. L.; Zeng, Z.; Liu, D.; Carter, K. C.; Steel, J.; Crocker, P. R., Siglec-8 A novel eosinophil-specific member of the immunoglobulin superfamily. J. Biol. Chem. 2000, 275, 861-866.
28. Zhang, J. Q.; Nicoll, G.; Jones, C.; Crocker, P. R., Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J. Biol. Chem. 2000, 275, 22121-22126.
29. Munday, J.; Sheena, K.; Jian, N.; Cornish, A. L.; Zhang, J. Q.; Nicoll, G.; Floyd, H.; Mattei, M.-G.; Moore, P.; Ding, L., Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem. J. 2001, 355, 489-497.
30. Wang, X.; Chow, R.; Deng, L.; Anderson, D.; Weidner, N.; Godwin, A. K.; Bewtra, C.; Zlotnik, A.; Bui, J.; Varki, A.; Varki, N., Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology. Glycobiology 2011, 21, 1038-1048.
31. Angata, T.; Hayakawa, T.; Yamanaka, M.; Varki, A.; Nakamura, M., Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 2006, 20, 1964-1973.
32. Angata, T.; Tabuchi, Y.; Nakamura, K.; Nakamura, M., Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 2007, 17, 838-846.
33. Cao, H.; Lakner, U.; de Bono, B.; Traherne, J. A.; Trowsdale, J.; Barrow, A. D., SIGLEC16 encodes a DAP12‐associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non‐functional alleles in humans. Euro. J. immunol. 2008, 38, 2303-2315.
34. Collins, B. E.; Blixt, O.; Han, S.; Duong, B.; Li, H.; Nathan, J. K.; Bovin, N.; Paulson, J. C., High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 2006, 177, 2994-3003.
35. Crocker, P. R., Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell–cell interactions and signalling. Curr. opin. struct. biol. 2002, 12, 609-615.
36. Collins, B. E.; Blixt, O.; DeSieno, A. R.; Bovin, N.; Marth, J. D.; Paulson, J. C., Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl. Acad. Sci. 2004, 101, 6104-6109.
37. Rillahan, C. D.; Macauley, M. S.; Schwartz, E.; He, Y.; McBride, R.; Arlian, B. M.; Rangarajan, J.; Fokin, V. V.; Paulson, J. C., Disubstituted sialic acid ligands targeting Siglecs CD33 and CD22 associated with myeloid leukaemias and B cell lymphomas. Chem. sci. 2014, 5, 2398-2406.
38. Angata, T.; Nycholat, C. M.; Macauley, M. S., Therapeutic targeting of Siglecs using antibody-and glycan-based approaches. Trends pharmacol. Sci. 2015, 36, 645-660.
39. Hudak, J. E.; Canham, S. M.; Bertozzi, C. R., Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. chem. Biol. 2014, 10, 69.
40. Allegretti, A. S.; Ortiz, G.; Kalim, S.; Wibecan, J.; Zhang, D.; Shan, H. Y.; Xu, D.; Chung, R. T.; Karumanchi, S. A.; Thadhani, R. I., Siglec-7 as a novel biomarker to predict mortality in decompensated cirrhosis and acute kidney injury. Dig. Dis. Sci. 2016, 61, 3609-3620.
41. Dharmadhikari, G.; Stolz, K.; Hauke, M.; Morgan, N. G.; Varki, A.; De Koning, E.; Kelm, S.; Maedler, K., Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes. Sci. rep. 2017, 7, 45319.
42. Attrill, H.; Takazawa, H.; Witt, S.; Kelm, S.; Isecke, R.; Brossmer, R.; Ando, T.; Ishida, H.; Kiso, M.; Crocker, P. R., The structure of siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design. Biochem. J. 2006, 397, 271-278.
43. Avril, T.; Wagner, E. R.; Willison, H. J.; Crocker, P. R., Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect. Immun. 2006, 74, 4133-4141.
44. Krasnova, L.; Wong, C.-H., Oligosaccharide Synthesis and Translational Innovation. J. Am. Chem. Soc. 2019, 141, 3735-3754.
45. Kondo, Y., Partial tosylation of methyl α-and β-l-arabinopyranoside. Carbohydr. Res. 1987, 162, 159-165.
46. Juaristi, E.; Cuevas, G., Recent studies of the anomeric effect. Tetrahedron 1992, 48, 5019-5087.
47. Juaristi, E.; Cuevas, G., The anomeric effect. CRC press: 1994.
48. Mydock, L. K.; Demchenko, A. V., Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Org. biomol. chem. 2010, 8, 497-510.
49. Goodman, L., Neighboring-group participation in sugars. In Adv. Carbohydr. Chem., Elsevier: 1967, 22, 109-175.
50. Bennett, C. S., Selective Glycosylations: Synthetic Methods and Catalysts. John Wiley & Sons: 2017.
51. Lu, S. R.; Lai, Y. H.; Chen, J. H.; Liu, C. Y.; Mong, K. K. T., Dimethylformamide: an unusual glycosylation modulator. Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
52. Christensen, H. M.; Oscarson, S.; Jensen, H. H., Common side reactions of the glycosyl donor in chemical glycosylation. Carbohydr. Res. 2015, 408, 51-95.
53. Gorin, P.; Perlin, A., Configuration og glycosidic linkage in oligosacchairdes: VIII. Synthesis of α-d-mannopyranosyl and α-d-rhamnopyranosyl-disaccharides by the Konigs-knorr reaction. Can. J. Chem. 1959, 37, 1930-1933.
54. Schmidt, R. R.; Michel, J., Direct o-glycosyl trichloroacetimidate formation, nucleophilicity of the anomeric oxygen atom. Tetrahedron lett. 1984, 25, 821-824.
55. Wong, C. H.; Haynie, S. L.; Whitesides, G. M., Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5'-diphosphate glucose and uridine 5'-diphosphate galactose. J. Org. Chem. 1982, 47, 5416-5418.
56. Koeller, K. M.; Wong, C.-H., Enzymes for chemical synthesis. Nature 2001, 409 , 232.
57. Holden, H. M.; Rayment, I.; Thoden, J. B., Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885-43888.
58. Nidetzky, B.; Gutmann, A.; Zhong, C., Leloir glycosyltransferases as biocatalysts for chemical production. ACS catal. 2018, 8, 6283-6300.
59. Liang, L.; Astruc, D., The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC)“click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933-2945.
60. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
61. Zhu, L.; Brassard, C. J.; Zhang, X.; Guha, P. M.; Clark, R. J., On the Mechanism of Copper (I)‐Catalyzed Azide–Alkyne Cycloaddition. Chem. Rec. 2016, 16, 1501-1517.
62. Vuignier, K.; Schappler, J.; Veuthey, J.-L.; Carrupt, P.-A.; Martel, S., Drug–protein binding: a critical review of analytical tools. Anal. Bioanal. Chem. 2010, 398, 53-66.
63. Hyun, J. Y.; Pai, J.; Shin, I., The glycan microarray story from construction to applications. Acc. Chem. Res. 2017, 50, 1069-1078.
64. Rillahan, C. D.; Paulson, J. C., Glycan microarrays for decoding the glycome. Annu. Rev. biochem. 2011, 80, 797-823.
65. Arthur, C. M.; Cummings, R. D.; Stowell, S. R., Using glycan microarrays to understand immunity. Curr. Opin. Chem. Biol. 2014, 18, 55-61.
66. Pai, J.; Hyun, J. Y.; Jeong, J.; Loh, S.; Cho, E.-H.; Kang, Y.-S.; Shin, I., Carbohydrate microarrays for screening functional glycans. Chem. Sci. 2016, 7, 2084-2093.
67. Naoyuki, T.; lt; sup; gt; lt; sup; gt; amp; amp; Hiroaki, K.; lt; sup; gt; lt; sup; gt, Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep. 2011, 44, 772-781.
68. Kizuka, Y.; Taniguchi, N., Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016, 6, 25.
69. Lowe, J. B., Glycosylation, Immunity, and Autoimmunity. Cell 2001, 104, 809-812.
70. Lau, K. S.; Partridge, E. A.; Grigorian, A.; Silvescu, C. I.; Reinhold, V. N.; Demetriou, M.; Dennis, J. W., Complex N-Glycan Number and Degree of Branching Cooperate to Regulate Cell Proliferation and Differentiation. Cell 2007, 129, 123-134.
71. Peng, W.; Paulson, J. C., CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells. J. Am. Chem. Soc. 2017, 139, 12450-12458.
72. Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Tseng, S. Y.; Shivatare, V. S.; Lin, Y.-S.; Cheng, Y.-Y.; Ren, C.-T.; Lee, C.-C. D.; Pawar, S.; Tsai, C.-S.; Shih, H.-W.; Zeng, Y.-F.; Liang, C.-H.; Kwong, P. D.; Burton, D. R.; Wu, C.-Y.; Wong, C.-H., Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. Nat. Chem. 2016, 8, 338.
73. Suzuki, O.; Abe, M.; Hashimoto, Y., Sialylation by beta-galactoside alpha-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int. J. Oncol. 2015, 46, 973-80.
74. Ogawa, T.; Sugimoto, M.; Kitajima, T.; Sadozai, K. K.; Nukada, T., Total synthesis of a undecasaccharide: a typical carbohydrate sequence for the complex type of glycan chains of a glycoprotein. Tetrahedron lett. 1986, 27, 5739-5742.
75. Boons, G.-J., Strategies in oligosaccharide synthesis. Tetrahedron 1996, 52, 1095-1121.
76. Arsequell, G.; Valencia, G., Recent advances in the synthesis of complex N-glycopeptides. Tetrahedron Asym. 1999, 10, 3045-3094.
77. Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Ren, C.-T.; Chuang, H.-Y.; Hsu, L.; Lin, C.-W.; Li, S.-T.; Wu, C.-Y.; Wong, C.-H., Efficient convergent synthesis of bi-, tri-, and tetra-antennary complex type N-glycans and their HIV-1 antigenicity. J. Am. Chem. Soc. 2013, 135, 15382-15391.
78. Walczak, M. A.; Hayashida, J.; Danishefsky, S. J., Building biologics by chemical synthesis: practical preparation of di-and triantennary N-linked glycoconjugates. J. Am. Chem. Soc.2013, 135, 4700-4703.
79. Nagasaki, M.; Manabe, Y.; Minamoto, N.; Tanaka, K.; Silipo, A.; Molinaro, A.; Fukase, K., Chemical synthesis of a complex-type n-glycan containing a core fucose. J. org. chem. 2016, 81, 10600-10616.
80. Seko, A.; Koketsu, M.; Nishizono, M.; Enoki, Y.; Ibrahim, H. R.; Juneja, L. R.; Kim, M.; Yamamoto, T., Occurrence of a sialylglycopeptide and free sialylglycans in hen's egg yolk. Biochim. Biophys. Acta, Gen. Subj. 1997, 1335, 23-32.
81. Liu, L.; Prudden, A. R.; Bosman, G. P.; Boons, G.-J., Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydr. Res. 2017, 452, 122-128.
82. Liu, L.; Prudden, A. R.; Capicciotti, C. J.; Bosman, G. P.; Yang, J.-Y.; Chapla, D. G.; Moremen, K. W.; Boons, G.-J., Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat. Chem. 2019, 11, 161-169.
83. Peng, W.; de Vries, R. P.; Grant, O. C.; Thompson, A. J.; McBride, R.; Tsogtbaatar, B.; Lee, P. S.; Razi, N.; Wilson, I. A.; Woods, R. J.; Paulson, J. C., Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. Cell Host Microbe 2017, 21, 23-34.
84. Fernández de Toro, B.; Peng, W.; Thompson, A. J.; Domínguez, G.; Cañada, F. J.; Pérez-Castells, J.; Paulson, J. C.; Jiménez-Barbero, J.; Canales, Á., Avenues to Characterize the Interactions of Extended N-Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angew. Chem. Int. Ed. 2018, 57, 15051-15055.
85. Wu, Z.; Liu, Y.; Ma, C.; Li, L.; Bai, J.; Byrd-Leotis, L.; Lasanajak, Y.; Guo, Y.; Wen, L.; Zhu, H.; Song, J.; Li, Y.; Steinhauer, D. A.; Smith, D. F.; Zhao, B.; Chen, X.; Guan, W.; Wang, P. G., Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org. Biomol. Chem 2016, 14, 11106-11116.
86. Unverzagt, C., Chemoenzymatic synthesis of a sialylated diantennary N-glycan linked to asparagine. Carbohydr res. 1997, 305, 423-431.
87. Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. org. chem. 2016, 81, 10809-10824.
88. Schnaar, R. L., Glycobiology simplified: diverse roles of glycan recognition in inflammation. J. Leukocyte Biol. 2016, 99, 825-838.
89. Moremen, K. W.; Tiemeyer, M.; Nairn, A. V., Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13, 448-462.
90. Sears, P.; Wong, C.-H., Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. Angew.nChem. Int. Ed. 1999, 38, 2300-2324.
91. Wong, C.-H., Mimics of Complex Carbohydrates Recognized by Receptors. Acc. Chem. Res. 1999, 32, 376-385.
92. Cecioni, S.; Imberty, A.; Vidal, S., Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015, 115, 525-561.
93. Hotha, S.; Kashyap, S., “Click Chemistry” Inspired Synthesis of pseudo-Oligosaccharides and Amino Acid Glycoconjugates. J. Org. Chem. 2006, 71, 364-367.
94. Bernardi, A.; Cheshev, P., Interfering with the Sugar Code: Design and Synthesis of Oligosaccharide Mimics. Chem. – Eur. J. 2008, 14, 7434-7441.
95. Lee, Y. C.; Townsend, R.; Hardy, M. R.; Lönngren, J.; Arnarp, J.; Haraldsson, M.; Lönn, H., Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features. J. Biol. Chem. 1983, 258, 199-202.
96. Medve, L.; Achilli, S.; Serna, S.; Zuccotto, F.; Varga, N.; Thépaut, M.; Civera, M.; Vivès, C.; Fieschi, F.; Reichardt, N.; Bernardi, A., On-Chip Screening of a Glycomimetic Library with C-Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectin-2 over DC-SIGN/R and Langerin. Chem. – Eur. J. 2018, 24, 14448-14460.
97. Liang, C.-H.; Wang, S.-K.; Lin, C.-W.; Wang, C.-C.; Wong, C.-H.; Wu, C.-Y., Effects of Neighboring Glycans on Antibody–Carbohydrate Interaction. Angew. Chem. Int. Ed. 2011, 50, 1608-1612.
98. Cendret, V.; François-Heude, M.; Méndez-Ardoy, A.; Moreau, V.; García Fernández, J. M.; Djedaïni-Pilard, F., Design and synthesis of a “click” high-mannose oligosaccharide mimic emulating Man8 binding affinity towards Con A. Chem. Comm. 2012, 48, 3733-3735.
99. François-Heude, M.; Méndez-Ardoy, A.; Cendret, V.; Lafite, P.; Daniellou, R.; Ortiz Mellet, C.; García Fernández, J. M.; Moreau, V.; Djedaïni-Pilard, F., Synthesis of High-Mannose Oligosaccharide Analogues through Click Chemistry: True Functional Mimics of Their Natural Counterparts Against Lectins? Chem. – Eur. J. 2015, 21, 1978-1991.
100. Zhang, Y.; Chen, C.; Jin, L.; Tan, H.; Wang, F.; Cao, H., Synthesis of unsymmetrical 3,6-branched Man5 oligosaccharide: a comparison between one-pot sequential glycosylation and stepwise synthesis. Carbohydr Res 2015, 401, 109-14.
101. Tian, W. Q.; Wang, Y. A., Mechanisms of Staudinger Reactions within Density Functional Theory. J. Org. Chem. 2004, 69, 4299-4308.
102. Wu, H.-R.; Anwar, M. T.; Fan, C.-Y.; Low, P. Y.; Angata, T.; Lin, C.-C., Expedient assembly of Oligo-LacNAcs by a sugar nucleotide regeneration system: Finding the role of tandem LacNAc and sialic acid position towards siglec binding. Eur. J. Med. Chem. 2019.
103. Gouin, S. G.; Bultel, L.; Falentin, C.; Kovensky, J., A Simple Procedure for Connecting Two Carbohydrate Moieties by Click Chemistry Techniques. Eur. J. Org. Chem. 2007, 2007, 1160-1167.
104. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 6, 2853-2855.
105. Gouin, S. G.; Vanquelef, E.; García Fernández, J. M.; Ortiz Mellet, C.; Dupradeau, F.-Y.; Kovensky, J., Multi-Mannosides Based on a Carbohydrate Scaffold:  Synthesis, Force Field Development, Molecular Dynamics Studies, and Binding Affinities for Lectin Con A. J. Org. Chem. 2007, 72, 9032-9045.
106. Das, R.; Mukhopadhyay, B., Chemical O-Glycosylations: An Overview. Chem. Open 2016, 5, 401-433.
107. Tam, P.-H.; Lowary, T. L., Synthesis of deoxy and methoxy analogs of octyl α-d-mannopyranosyl-(1→ 6)-α-d-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydr. Res. 2007, 342, 1741-1772.
108. Liu, C.-C.; Zhai, C.; Zheng, X.-J.; Ye, X.-S., Altering the Specificity of the Antibody Response to HIV gp120 with a Glycoconjugate Antigen. ACS Chem. Biol. 2016, 11, 1702-1709.
109. Patil, P. S.; Cheng, T.-J. R.; Zulueta, M. M. L.; Yang, S.-T.; Lico, L. S.; Hung, S.-C., Total synthesis of tetraacylated phosphatidylinositol hexamannoside and evaluation of its immunomodulatory activity. Nat. comm. 2015, 6, 7239.
110. Anžiček, N.; Williams, S.; Housden, M. P.; Paterson, I., Toward aplyronine payloads for antibody–drug conjugates: total synthesis of aplyronines A and D. Org. biomol chem. 2018, 16, 1343-1350.
111. Lin, Y.-Y.; Chan, S.-H.; Juang, Y.-P.; Hsiao, H.-M.; Guh, J.-H.; Liang, P.-H., Design, synthesis and cytotoxic activity of N-Modified oleanolic saponins bearing A glucosamine. Eur. J. med. Chem. 2018, 143, 1942-1958.
112. Crich, D.; Chandrasekera, N. S., Mechanism of 4, 6‐O‐Benzylidene‐Directed β‐Mannosylation as Determined by α‐Deuterium Kinetic Isotope Effects. Angew. Chem. Int.l Ed. 2004, 43, 5386-5389.
113. Zsoldos, V.; Messmer, A.; Pintér, I.; Neszmélyi, A., Formation of 2, 5-anhydro derivatives in the zemplén de-acetylation of acetylated sugar formazans. Carbohydr. Res. 1978, 62, 105-116.
114. Duus, J. Ø.; Gotfredsen, C. H.; Bock, K., Carbohydrate Structural Determination by NMR Spectroscopy:  Modern Methods and Limitations. Chem. Rev. 2000, 100, 4589-4614.
115. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
116. Chen, X.; Zhang, J.; Kowal, P.; Liu, Z.; Andreana, P. R.; Lu, Y.; Wang, P. G., Transferring a Biosynthetic Cycle into a Productive Escherichia c oli Strain: Large-Scale Synthesis of Galactosides. J. Am. Chem. Soc. 2001, 123, 8866-8867.
117. Schnurr, J. A.; Storey, K. K.; Jung, H.-J. G.; Somers, D. A.; Gronwald, J. W., UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. Planta 2006, 224, 520-532.
118. Wong, C. H.; Wang, R.; Ichikawa, Y., Regeneration of sugar nucleotide for enzymic oligosaccharide synthesis: use of Gal-1-phosphate uridyltransferase in the regeneration of UDP-galactose, UDP-2-deoxygalactose, and UDP-galactosamine. J. Org. Chem. 1992, 57, 4343-4344.
119. Chen, X.; Fang, J.; Zhang, J.; Liu, Z.; Shao, J.; Kowal, P.; Andreana, P.; Wang, P. G., Sugar Nucleotide Regeneration Beads (Superbeads):  A Versatile Tool for the Practical Synthesis of Oligosaccharides. J. Am. Chem. Soc. 2001, 123, 2081-2082.
120. Zhao, H.; van der Donk, W. A., Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 2003, 14, 583-9.
121. Lahti, R.; Pitkäranta, T.; Valve, E.; Ilta, I.; Kukko-Kalske, E.; Heinonen, J., Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12. J. Bacteriol. 1988, 170, 5901-5907.
122. Chien, W. T.; Liang, C. F.; Yu, C. C.; Lin, C. H.; Li, S. P.; Primadona, I.; Chen, Y. J.; Mong, K. K.; Lin, C. C., Sequential one-pot enzymatic synthesis of oligo-N-acetyllactosamine and its multi-sialylated extensions. Chem Commun 2014, 50, 5786-9.
123. Brown, K.; Pompeo, F.; Dixon, S.; Mengin-Lecreulx, D.; Cambillau, C.; Bourne, Y., Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 1999, 18, 4096-107.
124. Logan, S. M.; Altman, E.; Mykytczuk, O.; Brisson, J. R.; Chandan, V.; Schur, M. J.; St Michael, F.; Masson, A.; Leclerc, S.; Hiratsuka, K.; Smirnova, N.; Li, J.; Wu, Y.; Wakarchuk, W. W., Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology 2005, 15, 721-33.
125. Yu, C. C.; Lin, P. C.; Lin, C. C., Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid. Chem Commun. 2008, 11, 1308-10.
126. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A Multifunctional Pasteurella multocida Sialyltransferase:  A Powerful Tool for the Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
127. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew. Chem. Int. Ed. 2006, 45, 3938-44.
128. Lee, H. J.; Lairson, L. L.; Rich, J. R.; Lameignere, E.; Wakarchuk, W. W.; Withers, S. G.; Strynadka, N. C., Structural and kinetic analysis of substrate binding to the sialyltransferase Cst-II from Campylobacter jejuni. J. Biol. Chem. 2011, 286, 35922-32.
129. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P., Chemoenzymatic synthesis of GDP-l-fucose and the Lewis X glycan derivatives. Proc. Nat. Acad. Sci. 2009, 106, 16096-16101.
130. Ge, Z.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Cloning and heterologous expression of an alpha1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J. Biol. Chem. 1997, 272, 21357-63.
131. Taniguchi, N.; Kizuka, Y., N-Glycan Branching and Its Biological Significance. Glycoscience Biol. Med. 2015, 963-969.
132. Ryczko, M. C.; Pawling, J.; Chen, R.; Abdel Rahman, A. M.; Yau, K.; Copeland, J. K.; Zhang, C.; Surendra, A.; Guttman, D. S.; Figeys, D.; Dennis, J. W., Metabolic Reprogramming by Hexosamine Biosynthetic and Golgi N-Glycan Branching Pathways. Sci. Rep. 2016, 6, 23043.
133. Ashwell, G.; Morell, A. G., The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. Relat. Areas mol. Biol. 1974, 41, 99-128.
134. Taniguchi, N.; Miyoshi, E.; Jianguo, G.; Honke, K.; Matsumoto, A., Decoding sugar functions by identifying target glycoproteins. Curr. Opin. Str. Biol. 2006, 16, 561-566.
135. Walczak, M. A.; Danishefsky, S. J., Solving the convergence problem in the synthesis of triantennary N-glycan relevant to prostate-specific membrane antigen (PSMA). J. Am. Chem. Soc. 2012, 134, 16430-16433.
136. Lanoue, A.; Batista, F. D.; Stewart, M.; Neuberger, M. S., Interaction of CD22 with α2, 6‐linked sialoglycoconjugates: innate recognition of self to dampen B cell autoreactivity? Eur. J. immunol. 2002, 32, 348-355.
137. Fraschilla, I.; Pillai, S., Viewing Siglecs through the lens of tumor immunology. Immunol. Rev. 2017, 276, 178-191.
138. John, B.; Herrin, B. R.; Raman, C.; Wang, Y.-n.; Bobbitt, K. R.; Brody, B. A.; Justement, L. B., The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J. Immunol. 2003, 170, 3534-3543.
139. Varchetta, S.; Brunetta, E.; Roberto, A.; Mikulak, J.; Hudspeth, K. L.; Mondelli, M. U.; Mavilio, D., Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PloS one 2012, 7, e45821.
140. Raman, R.; Raguram, S.; Venkataraman, G.; Paulson, J. C.; Sasisekharan, R., Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods 2005, 2, 817-824.
141. Collins, B. E.; Paulson, J. C., Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr. Opin. Chem. Biol. 2004, 8, 617-625.
142. Attrill, H.; Imamura, A.; Sharma, R. S.; Kiso, M.; Crocker, P. R.; Van Aalten, D. M., Siglec-7 undergoes a major conformational change when complexed with the α (2, 8)-disialylganglioside GT1b. J. Biol. Chem. 2006, 281, 32774-32783.
143. Rillahan, C. D.; Schwartz, E.; Rademacher, C.; McBride, R.; Rangarajan, J.; Fokin, V. V.; Paulson, J. C., On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS chem. Biol. 2013, 8, 1417-1422.
144. Spence, S.; Greene, M. K.; Fay, F.; Hams, E.; Saunders, S. P.; Hamid, U.; Fitzgerald, M.; Beck, J.; Bains, B. K.; Smyth, P., Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Sci. transl. med. 2015, 7, 140.
145. Ohira, S.; Yasuda, Y.; Tomita, I.; Kitajima, K.; Takahashi, T.; Sato, C.; Tanaka, H., Synthesis of end-functionalized glycopolymers containing α (2, 8) disialic acids via π-allyl nickel catalyzed coordinating polymerization and their interaction with Siglec-7. Chem. Comm. 2017, 53, 553-556.
146. Prescher, H.; Frank, M.; Gütgemann, S.; Kuhfeldt, E.; Schweizer, A.; Nitschke, L.; Watzl, C.; Brossmer, R., Design, synthesis, and biological evaluation of small, high-affinity Siglec-7 ligands: toward novel inhibitors of cancer immune evasion. J. med. Chem. 2017, 60, 941-956.
147. Prescher, H.; Gütgemann, S.; Frank, M.; Kuhfeldt, E.; Watzl, C.; Brossmer, R., Synthesis and biological evaluation of 9-N-oxamyl sialosides as Siglec-7 ligands. Bioorg. med chem. 2015, 23, 5915-5921.
148. Alphey, M. S.; Attrill, H.; Crocker, P. R.; van Aalten, D. M., High Resolution Crystal Structures of Siglec-7 insights into ligand specificity in the Siglec family. J. Biol. Chem. 2003, 278, 3372-3377.
149. Rillahan, C. D.; Schwartz, E.; McBride, R.; Fokin, V. V.; Paulson, J. C., Click and Pick: Identification of Sialoside Analogues for Siglec-Based Cell Targeting. Angew. Chem. Int. Ed. 2012, 51, 11014-11018.
150. Kawasaki, N.; Rillahan, C. D.; Cheng, T.-Y.; Van Rhijn, I.; Macauley, M. S.; Moody, D. B.; Paulson, J. C., Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J. Immunol. 2014, 193, 1560-1566.
151. Yamaguchi, S.; Yoshimura, A.; Yasuda, Y.; Mori, A.; Tanaka, H.; Takahashi, T.; Kitajima, K.; Sato, C., Chemical Synthesis and Evaluation of a Disialic Acid‐Containing Dextran Polymer as an Inhibitor for the Interaction between Siglec 7 and Its Ligand. ChemBioChem 2017, 18, 1194-1203.
152. Smith, D. F.; Song, X.; Cummings, R. D., Use of glycan microarrays to explore specificity of glycan-binding proteins. In Methods enzymol., Elsevier: 2010, 480, 417-444.
153. De La Torre, C.; Casanova, I.; Acosta, G.; Coll, C.; Moreno, M. J.; Albericio, F.; Aznar, E.; Mangues, R.; Royo, M.; Sancenón, F., Gated Mesoporous Silica Nanoparticles Using a Double‐Role Circular Peptide for the Controlled and Target‐Preferential Release of Doxorubicin in CXCR4‐Expresing Lymphoma Cells. Adv. Func. Mat. 2015, 25, 687-695.
154. Estephan, Z. G.; Schlenoff, P. S.; Schlenoff, J. B., Zwitteration as an alternative to PEGylation. Langmuir 2011, 27, 6794-6800.
155. Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol‐protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
156. Johannes, L.; Jacob, R.; Leffler, H., Galectins at a glance. J. Cell Sci. 2018, 131, jcs208884.
157. Bumba, L.; Laaf, D.; Spiwok, V.; Elling, L.; Křen, V.; Bojarová, P., Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int. J. Mol. Sci. 2018, 19, 372.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *