帳號:guest(18.118.146.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施亞納
作者(外文):Samireddi, Satyanarayana
論文名稱(中文):單晶二茂鐵-鈷咕咯化合物的合成及其氧還原催化反應之研究
論文名稱(外文):Synthesis of a Single Crystal Ferrocene-Co-Corrole and its Electrocatalytic Application in Oxygen Reduction Reaction
指導教授(中文):陳貴賢
倪其焜
指導教授(外文):Chen, Kuei-Hsien
Ni, Chi-Kung
口試委員(中文):王丞浩
林麗瓊
汪根欉
口試委員(外文):Wang, Chen-Hao
Lin, Li-Chyong
Wong, Ken-Tsung
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023871
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:103
中文關鍵詞:氧還原反應燃料電池電催化劑N4-大環咕咯低對稱雙金屬
外文關鍵詞:Oxygen reduction reactionfuel cellselectrocatalystN4-macrocyclescorroleslower symmetrybimetalliccobaltiron
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
本論文展示了一種新型二元非貴金屬(Co和Fe)的合成於金屬咕咯大環絡合物(FCC)中,通過單晶X射線衍射分析及其熱解形式其較低的對稱性質用於燃料電池應用內之氧還原反應。

本研究成功地利用多步合成了此FCC結構,並將二茂鐵基團鍵結鈷咕咯環中,並且與咕咯環的較少的相互作用。此外本研究亦克服FCC的麻煩的純化和產率改進的方法。並通過1H,13C NMR和FT-IR光譜證實了複合FCC結構。通過使用UV-Vis光譜描述電子躍遷的特徵峰,此外,通過FCC的單晶X射線衍射分析解釋了FCC結構的平面性較低的對稱性。

通過FCC的高溫熱解後於氧還原反應之電催化劑。在不同熱解溫度下,根據環盤旋轉電極測量,在500 ºC下獲得的電催化劑顯示主要遵循四個電子的氧氣還原途徑。與熱解的鈷咕咯相比,本研究中證明的雙金屬金屬環大錯合物電催化劑顯示出20 mV較高的起始電位。此外,以1:1比例的FCC與炭黑製備的電催化劑在開始和半電位改善方面表現出更好的氧還原活性。

為了更好地了解加強氧還原的催化活性,利用不同的分析技術分析Py-FCC/C-50電催化劑。粉末X光繞射證實了催化劑中鐵三碳(Fe3C)的形成,並且通過拉曼分析,還觀察到石墨碳的清楚鑑定。X光光電子能譜分析顯示鐵碳鍵與鈷氮鍵的形成,並利用顯微技術,如SEM和TEM,顯示在石墨碳載體上具有2-3 nm尺寸的納米金屬顆粒。更重要的是,FT-IR光譜顯示在500 ºC下FCC熱解後保存了1038 cm-1的Co-N大環振動帶,證實了氧還原活性位點作為CoN4與碳化鐵一起存在。最後,提出了電催化劑遵循4-電子氧還原途徑的機理。Py-FCC/C-50所顯示的電子轉移數約為3.98,H2O2產率小於2.3%,與商業Pt/C幾乎相似,遠優於熱解的鈷咕咯。發現Py-FCC/C-50催化劑的穩定性在2000次電化學循環後的半電位僅減少10 mV。
This thesis demonstrates the synthesis of a novel binary non-precious metals (Co & Fe) incorporated in a single metal-N4 corrole macrocycle complex (FCC), elucidating its lower symmetric character by single crystal X-ray diffraction analysis and its pyrolyzed form as an electrocatalyst for enhanced oxygen reduction reaction (ORR) for fuel cell application.

The challenging multistep synthesis of FCC is successfully described despite the fact of directly attached electron rich ferrocene group onto the 10-meso-carbon of corrole and its less interaction with corrole ring. The methodologies to overcome troublesome purification and yield improvements of FCC are also briefly illustrated. The complex FCC structure was confirmed by well resolved 1H, 13C NMR and FT-IR spectra. The characteristic bands of electronic transitions appeared for corrole such as soret and Q-bands of FCC were described by using UV-Vis spectroscopy. In addition, the lower symmetry and distortion in planarity of FCC structure were explained by single crystal X-ray diffraction analysis.

The FCC derived electrocatalysts for ORR application were obtained by high temperature pyrolysis of FCC. The fabrication process of electrocatalyst preparation and its deposition on glassy carbon working electrode for electrochemical study are described in the later sections of the thesis. The optimized electrocatalyst with improved ORR activity by designing different experimental methods are demonstrated. According to FCC derived catalysts developed at different temperatures, the electrocatalyst obtained at 500 ºC showed to follow mostly a four electron O2 reduction pathway according to RRDE measurements. The bimetallic metal-N4 electrocatalyst demonstrated in this study showed 20 mV higher onset potentials as compared to pyrolyzed Co-corroles. Further, the electrocatalyst prepared with 1:1 weight ratio of FCC to carbon black showed the better ORR activity in terms of improved onset and half-wave potential.

To know the better insight of understanding the catalytic active sites for enhanced ORR, different analytical techniques were utilized to analyze Py-FCC/C-50 electrocatalyst. The powder XRD demonstrated the formation of iron carbide phase in the catalyst, and including with Raman analysis, the clear identification of graphitic carbon was also observed. The XPS analysis displayed the slight evidence of C-Fe bonding signature by C 1s and Fe 2p, which partly supports the powder XRD data. The existence of CoNx bonding structure was confirmed with both N 1s and Co 2p deconvoluted XPS spectra. SEM and TEM microscopic data revealed the uniform distribution of nanoparticle of 2-3 nm sizes on the graphitic carbon support. More importantly, the FT-IR spectra revealed the preservation of Co-N macrocycle vibrational band of 1038 cm-1 after FCC pyrolysis at 500 ºC, confirming the presence of ORR active site as CoN4 together with iron carbide. These observed closely distributed active sites together could be the reason to show the enhanced four electron ORR pathway reaction. Eventually, the mechanism by which the electrocatalyst follows the 4-electron oxygen reduction pathway was proposed. The electron transfer number exhibited by Py-FCC/C-50 is around 3.98 with less than 2.3% H2O2 yield, which are nearly similar to the commercial Pt/C and much better than pyrolyzed Co-corroles. Electrochemical ORR stability of Py-FCC/C-50 catalyst was found to be only 10 mV loss in half-wave potentials after 2000 LSV cycles.
Acknowledgements…………………………………………………………………....................... i
Abstract……………………………………………………………………...........................………… iii
List of Abbreviations…………………………………………………………....................…….. xii

Chapter 1
Introduction......................................................................................................................... 1
1.1. Renewable energy sources ................................................................................... 1
1.2. Polymer electrolyte membrane fuel cells (PEMFC) ..................................... 2
1.3. Cathode electrocatalyst of PEMFC .................................................................... 3
1.4. Macrocyclic N4 molecules for oxygen reduction ........................................ 5
1.4.1. ORR by nature in biological systems ..............................................................5
1.4.2. Macrocycle metal-N4 for ORR ..........................................................................7
1.5. Strategies for FCC target objectives ................................................................. 8
1.5.1. Lower symmetry macrocycle metal-N4 for ORR .......................................8
1.5.2. Cobalt and iron macrocycle metal-N4 complexes for ORR ..................9
1.5.3. Mixed-bimetal single molecular macrocyclic-N4 complex of lower symmetry .......................................................................................................................... 10
1.6. Corrole complexes ................................................................................................ 11
1.7. Motivation of FCC synthesis for ORR ............................................................. 12

Chapter 2
Synthesis and yield improvements of FCC ........................................................... 14
2.1. Synthesis of FCC ..................................................................................................... 14
2.1.1. Methodology to prepare 10-ferrocenyl-5,15-diphenyl
corrole (1) .......................................................................................................................... 14
2.1.2. Methodology for FCC (2) synthesis ............................................................. 15
2.1.3. General techniques and materials ............................................................... 17
2.1.4. Synthesis of 5-phenyldipyrromethane ...................................................... 18
2.1.5. Synthesis procedure of 10-ferrocenyl-5,15-diphenyl corrole (1) .... 18
2.1.6. Synthesis procedure of FCC (2) ..................................................................... 19
2.2. Purification methods for FCC............................................................................. 20
2.3. Challenges of FCC purification by column chromatography ............... 22
2.4. Optimization process to improve purity and yields of FCC .................. 23
2.5. Single crystal formation of FCC ........................................................................ 26
2.6. Summary ................................................................................................................... 27

Chapter 3
Characterization of FCC ............................................................................................... 28
3.1. Materials and instrumentation ......................................................................... 28
3.2. NMR and FT-IR spectroscopy ........................................................................... 29
3.3. UV-Visible absorption spectrum of FCC ....................................................... 31
3.4. Single crystal X-ray diffraction analysis ......................................................... 32
3.4.1. Bond angles .......................................................................................................... 35
3.4.2. Bond distances .................................................................................................... 36
3.4.3. Torsional angles .................................................................................................. 37
3.5. Summary ................................................................................................................... 39

Chapter 4
Preparation of FCC electrocatalyst and electrochemical ORR study
4.1. Materials and instrumentation ......................................................................... 40
4.2. Electrochemical measurements ....................................................................... 41
4.3. Thermogravimetric analysis of FCC ................................................................ 42
4.4. Preparation process of electrocatalyst .......................................................... 43
4.4.1. Electrocatalyst development by thermal CVD process........................ 43
4.4.2. Electrocatalyst ink deposition method on GCE ...................................... 44
4.5. Cyclic Voltammetry ............................................................................................... 45
4.6. Design of experimental setup for ORR measurements .......................... 46
4.6.1. Different pyrolysis temperatures study for ORR .................................... 47
4.6.2. Evaluation of Py-FCC/C ORR activity .......................................................... 49
4.6.3. Acid leaching ....................................................................................................... 51
4.6.4. High loading of FCC precursor ..................................................................... 53
4.7. Summary ................................................................................................................... 55

Chapter 5
Discussion and understanding of FCC electrocatalyst .................................... 56
5.1. Materials and instrumentation ......................................................................... 56
5.2. Results and discussion ......................................................................................... 57
5.2.1. Electrochemical surface area measurements .......................................... 57
5.2.2. ICP-MS and elemental analysis .................................................................... 59
5.2.3. Powder X-ray diffraction and Raman spectroscopy analysis ............ 60
5.2.4. X-ray photoelectron spectroscopy analysis ............................................. 62
5.2.5. SEM and TEM characterization ..................................................................... 64
5.2.6. FT-IR and MALDI-TOF mass spectroscopy analysis .............................. 65
5.3. Proposed mechanism .......................................................................................... 68
5.4. Comparison of ORR activity ............................................................................... 69
5.4.1. RRDE measurements ........................................................................................ 69
5.4.2. Koutecky–Levich (K-L) plot by RDE measurements .............................. 71
5.5. Stability study .......................................................................................................... 72
5.6. Schematic overview of FCC for ORR ............................................................... 73
5.7. Summary ................................................................................................................... 74

Chapter 6
Conclusion and future perspectives ....................................................................... 75
6.1. Conclusions .............................................................................................................. 75
6.2. Future perspectives ............................................................................................... 77

References ........................................................................................................................ 79

Supporting information .............................................................................................. 89

Appendix: Co-triazole MOF derived electrocatalyst for ORR .................... 100

List of publications ...................................................................................................... 103
1. http://www.cop21paris.org/.
2. U.S. energy-related CO2 emissions fell 1.7% in 2016. U.S. Energy Information Administration 2017, Monthly Energy Review (April 10).
3. Annual Energy Review 2016. In U.S. Energy Information Administration, Washington, DC, 2016.
4. Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343 (6177), 1339-1343.
5. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 2007, 6 (3), 241-247.
6. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D., Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 2013, 12 (1), 81-87.
7. Stephens, I. E. L.; Bondarenko, A. S.; Gronbjerg, U.; Rossmeisl, J.; Chorkendorff, I., Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science 2012, 5 (5), 6744-6762.
8. Nie, Y.; Li, L.; Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews 2015, 44 (8), 2168-2201.
9. https://energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components.
10. http://www.twsolarenergy.com/en/TSE_index.html.
11. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P., High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011, 332 (6028), 443-447.
12. Bashyam, R.; Zelenay, P., A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443 (7107), 63-66.
13. van Veen, J. A. R.; van Baar, J. F.; Kroese, K. J., Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1981, 77 (11), 2827-2843.
14. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis 1986, 38 (1), 5-25.
15. Jasinski, R., A New Fuel Cell Cathode Catalyst. Nature 1964, 201 (4925), 1212-1213.
16. Weber, A. Z.; Newman, J., Modeling Transport in Polymer-Electrolyte Fuel Cells. Chemical Reviews 2004, 104 (10), 4679-4726.
17. Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486 (7401), 43-51.
18. Yoshikawa, S.; Shimada, A., Reaction Mechanism of Cytochrome c Oxidase. Chemical Reviews 2015, 115 (4), 1936-1989.
19. Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, L., Copper Active Sites in Biology. Chemical Reviews 2014, 114 (7), 3659-3853.
20. Kaila, V. R. I.; Verkhovsky, M. I.; Wikström, M., Proton-Coupled Electron Transfer in Cytochrome Oxidase. Chemical Reviews 2010, 110 (12), 7062-7081.
21. Hematian, S.; Garcia-Bosch, I.; Karlin, K. D., Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome c Oxidase Interactions with Dioxygen and Nitrogen Oxides. Accounts of Chemical Research 2015, 48 (8), 2462-2474.
22. Chufán, E. E.; Puiu, S. C.; Karlin, K. D., Heme–Copper/Dioxygen Adduct Formation, Properties, and Reactivity. Accounts of Chemical Research 2007, 40 (7), 563-572.
23. Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H., Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995, 376 (6542), 660-669.
24. Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S., Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 1995, 269 (5227), 1069-1074.
25. Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S., The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å. Science 1996, 272 (5265), 1136-1144.
26. Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T., Redox-Coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase. Science 1998, 280 (5370), 1723-1729.
27. Harrenga, A.; Michel, H., The Cytochrome c Oxidase from Paracoccus denitrificans Does Not Change the Metal Center Ligation upon Reduction. Journal of Biological Chemistry 1999, 274 (47), 33296-33299.
28. Proshlyakov, D. A.; Pressler, M. A.; Babcock, G. T., Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proceedings of the National Academy of Sciences 1998, 95 (14), 8020-8025.
29. Toh, R. J.; Sofer, Z.; Pumera, M., Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table. ChemPhysChem 2015, 16 (16), 3527-3531.
30. Feng, J.; Liang, Y.; Wang, H.; Li, Y.; Zhang, B.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research 2012, 5 (10), 718-725.
31. Liang, Y.; Wang, H.; Diao, P.; Chang, W.; Hong, G.; Li, Y.; Gong, M.; Xie, L.; Zhou, J.; Wang, J.; Regier, T. Z.; Wei, F.; Dai, H., Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society 2012, 134 (38), 15849-15857.
32. Kim, J.-H.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.-I., Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochimica Acta 2007, 52 (7), 2492-2497.
33. Zhou, W.; Ge, L.; Chen, Z.-G.; Liang, F.; Xu, H.-Y.; Motuzas, J.; Julbe, A.; Zhu, Z., Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chemistry of Materials 2011, 23 (18), 4193-4198.
34. Liu, X.-W.; Mao, J.-J.; Liu, P.-D.; Wei, X.-W., Fabrication of metal-graphene hybrid materials by electroless deposition. Carbon 2011, 49 (2), 477-483.
35. Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C., Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Physical Chemistry Chemical Physics 2011, 13 (9), 4083-4094.
36. Toh, R. J.; Poh, H. L.; Sofer, Z.; Pumera, M., Transition Metal (Mn, Fe, Co, Ni)-Doped Graphene Hybrids for Electrocatalysis. Chemistry – An Asian Journal 2013, 8 (6), 1295-1300.
37. Youn, D. H.; Bae, G.; Han, S.; Kim, J. Y.; Jang, J.-W.; Park, H.; Choi, S. H.; Lee, J. S., A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT-graphene hybrid support. Journal of Materials Chemistry A 2013, 1 (27), 8007-8015.
38. Tian, X.; Luo, J.; Nan, H.; Zou, H.; Chen, R.; Shu, T.; Li, X.; Li, Y.; Song, H.; Liao, S.; Adzic, R. R., Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society 2016, 138 (5), 1575-1583.
39. Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts: Structural and Electrochemical Studies. Inorganic Chemistry 2015, 54 (5), 2128-2136.
40. Liu, B.; Yao, H.; Daniels, R. A.; Song, W.; Zheng, H.; Jin, L.; Suib, S. L.; He, J., A facile synthesis of Fe3C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale 2016, 8 (10), 5441-5445.
41. Wu, T.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, H.; Wang, G., A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction. Physical Chemistry Chemical Physics 2015, 17 (41), 27527-27533.
42. Qian, Y.; Cavanaugh, J.; Khan, I. A.; Wang, X.; Peng, Y.; Hu, Z.; Wang, Y.; Zhao, D., Fe/Fe3C/N-Doped Carbon Materials from Metal–Organic Framework Composites as Highly Efficient Oxygen Reduction Reaction Electrocatalysts. ChemPlusChem 2016, 81 (8), 718-723.
43. Zhang, J.; Chen, J.; Jiang, Y.; Zhou, F.; Wang, G.; Wang, R., Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Applied Surface Science 2016, 389, 157-164.
44. Liu, Y.; Kelly, T. G.; Chen, J. G.; Mustain, W. E., Metal Carbides as Alternative Electrocatalyst Supports. ACS Catalysis 2013, 3 (6), 1184-1194.
45. Cui, Q.; Chao, S.; Wang, P.; Bai, Z.; Yan, H.; Wang, K.; Yang, L., Fe-N/C catalysts synthesized by heat-treatment of iron triazine carboxylic acid derivative complex for oxygen reduction reaction. RSC Advances 2014, 4 (24), 12168-12174.
46. Yang, Z. K.; Lin, L.; Xu, A.-W., 2D Nanoporous Fe−N/C Nanosheets as Highly Efficient Non-Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn-Air Battery. Small 2016, 12 (41), 5710-5719.
47. Gu, L.; Jiang, L.; Li, X.; Jin, J.; Wang, J.; Sun, G., A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chinese Journal of Catalysis 2016, 37 (4), 539-548.
48. Yan, X.-H.; Xu, B.-Q., Mesoporous carbon material co-doped with nitrogen and iron (Fe-N-C): high-performance cathode catalyst for oxygen reduction reaction in alkaline electrolyte. Journal of Materials Chemistry A 2014, 2 (23), 8617-8622.
49. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4 (3), 1321-1326.
50. Xia, W.; Masa, J.; Bron, M.; Schuhmann, W.; Muhler, M., Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochemistry Communications 2011, 13 (6), 593-596.
51. Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B., Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews 2015, 115 (11), 4823-4892.
52. Koslowski, U. I.; Abs-Wurmbach, I.; Fiechter, S.; Bogdanoff, P., Nature of the Catalytic Centers of Porphyrin-Based Electrocatalysts for the ORR: A Correlation of Kinetic Current Density with the Site Density of Fe−N4 Centers. The Journal of Physical Chemistry C 2008, 112 (39), 15356-15366.
53. Lu, G.; Zhu, Y.; Xu, K.; Jin, Y.; Ren, Z. J.; Liu, Z.; Zhang, W., Metallated porphyrin based porous organic polymers as efficient electrocatalysts. Nanoscale 2015, 7 (43), 18271-18277.
54. Chen, R.; Li, H.; Chu, D.; Wang, G., Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. The Journal of Physical Chemistry C 2009, 113 (48), 20689-20697.
55. Cui, L.; Lv, G.; He, X., Enhanced oxygen reduction performance by novel pyridine substituent groups of iron (II) phthalocyanine with graphene composite. Journal of Power Sources 2015, 282, 9-18.
56. Beck, F., The redox mechanism of the chelate-catalysed oxygen cathode. Journal of Applied Electrochemistry 1977, 7 (3), 239-245.
57. Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P.; Mukerjee, S., Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano 2015, 9 (12), 12496-12505.
58. Liu, Y.; Yue, X.; Li, K.; Qiao, J.; Wilkinson, D. P.; Zhang, J., PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coordination Chemistry Reviews 2016, 315, 153-177.
59. Jahnke, H.; Schönborn, M.; Zimmermann, G., Organic dyestuffs as catalysts for fuel cells. In Physical and Chemical Applications of Dyestuffs, Schäfer, F. P.; Gerischer, H.; Willig, F.; Meier, H.; Jahnke, H.; Schönborn, M.; Zimmermann, G., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1976; pp 133-181.
60. Chang, S.-T.; Wang, C.-H.; Du, H.-Y.; Hsu, H.-C.; Kang, C.-M.; Chen, C.-C.; Wu, J. C. S.; Yen, S.-C.; Huang, W.-F.; Chen, L.-C.; Lin, M. C.; Chen, K.-H., Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy & Environmental Science 2012, 5 (1), 5305-5314.
61. Huang, H.-C.; Shown, I.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Kuo, M.-C.; Wong, K.-T.; Wang, S.-F.; Wang, C.-H.; Chen, L.-C.; Chen, K.-H., Pyrolyzed Cobalt Corrole as a Potential Non-Precious Catalyst for Fuel Cells. Advanced Functional Materials 2012, 22 (16), 3500-3508.
62. Huang, H.-C.; Wang, C.-H.; Shown, I.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H., High-performance pyrolyzed iron corrole as a potential non-precious metal catalyst for PEMFCs. Journal of Materials Chemistry A 2013, 1 (46), 14692-14699.
63. Wu, Z.-S.; Chen, L.; Liu, J.; Parvez, K.; Liang, H.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X.; Müllen, K., High-Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrin-Based Conjugated Mesoporous Polymers. Advanced Materials 2014, 26 (9), 1450-1455.
64. Fukuzumi, S., Artificial Photosynthetic Systems Composed of Porphyrins and Phthalocyanines. In Handbook of Porphyrin Science, World Scientific Publishing Company: 2012; pp 183-243.
65. Song, Z.; Adeyemo, A. O.; Baker, J.; Traylor, S. M.; Lightfoot, M. L., STRUCTURE OF PORPHYRIN TPPS(4) AND ITS INTERACTION WITH METAL IONS AS ELUCIDATED BY (1)H NMR AND UV-VISIBLE SPECTRA. Georgia journal of science : official publication of the Georgia Academy of Science 2011, 69 (2-3), 89-101.
66. Vangberg, T.; Lie, R.; Ghosh, A., Symmetry-Breaking Phenomena in Metalloporphyrin π-Cation Radicals. Journal of the American Chemical Society 2002, 124 (27), 8122-8130.
67. Lipstman, S.; Muniappan, S.; George, S.; Goldberg, I., Framework coordination polymers of tetra(4-carboxyphenyl)porphyrin and lanthanide ions in crystalline solids. Dalton Transactions 2007, (30), 3273-3281.
68. Thomas, K. E.; Conradie, J.; Hansen, L. K.; Ghosh, A., Corroles Cannot Ruffle. Inorganic Chemistry 2011, 50 (8), 3247-3251.
69. Orlowski, R.; Vakuliuk, O.; Gullo, M. P.; Danylyuk, O.; Ventura, B.; Koszarna, B.; Tarnowska, A.; Jaworska, N.; Barbieri, A.; Gryko, D. T., Self-assembling corroles. Chemical Communications 2015, 51 (39), 8284-8287.
70. Ward, A. L.; Buckley, H. L.; Lukens, W. W.; Arnold, J., Synthesis and Characterization of Thorium(IV) and Uranium(IV) Corrole Complexes. Journal of the American Chemical Society 2013, 135 (37), 13965-13971.
71. Albrett, A. M.; Conradie, J.; Ghosh, A.; Brothers, P. J., DFT survey of monoboron and diboron corroles: regio- and stereochemical preferences for a constrained, low-symmetry macrocycle. Dalton Transactions 2008, (33), 4464-4473.
72. Ghosh, A., Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chemical Reviews 2017, 117 (4), 3798-3881.
73. Capar, J.; Conradie, J.; Beavers, C. M.; Ghosh, A., Molecular Structures of Free-Base Corroles: Nonplanarity, Chirality, and Enantiomerization. The Journal of Physical Chemistry A 2015, 119 (14), 3452-3457.
74. Elbaz, L.; Wu, G.; Zelenay, P., Heat-Treated Non-precious-Metal-Based Catalysts for Oxygen Reduction. In Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach, Shao, M., Ed. Springer London: London, 2013; pp 213-246.
75. Sun, S.; Jiang, N.; Xia, D., Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines. The Journal of Physical Chemistry C 2011, 115 (19), 9511-9517.
76. Chen, X.; Hu, R.; Bai, F., DFT Study of the Oxygen Reduction Reaction Activity on Fe−N4-Patched Carbon Nanotubes: The Influence of the Diameter and Length. Materials 2017, 10 (5), 549.
77. Sa, Y. J.; Seo, D.-J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S.; Jeong, H. Y.; Kim, C. S.; Kim, M. G.; Kim, T.-Y.; Joo, S. H., A General Approach to Preferential Formation of Active Fe–Nx Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society 2016, 138 (45), 15046-15056.
78. Bruller, S.; Liang, H.-W.; Kramm, U. I.; Krumpfer, J. W.; Feng, X.; Mullen, K., Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A 2015, 3 (47), 23799-23808.
79. Lin, Q.; Bu, X.; Kong, A.; Mao, C.; Bu, F.; Feng, P., Heterometal-Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials 2015, 27 (22), 3431-3436.
80. Fan, W.; Li, Z.; You, C.; Zong, X.; Tian, X.; Miao, S.; Shu, T.; Li, C.; Liao, S., Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy 2017, 37, 187-194.
81. Cheon, J. Y.; Kim, T.; Choi, Y.; Jeong, H. Y.; Kim, M. G.; Sa, Y. J.; Kim, J.; Lee, Z.; Yang, T.-H.; Kwon, K.; Terasaki, O.; Park, G.-G.; Adzic, R. R.; Joo, S. H., Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. 2013, 3, 2715.
82. Zhang, Z.; Dou, M.; Liu, H.; Dai, L.; Wang, F., A Facile Route to Bimetal and Nitrogen-Codoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small 2016, 12 (31), 4193-4199.
83. Lai, Q.; Zheng, L.; Liang, Y.; He, J.; Zhao, J.; Chen, J., Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-Nx Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis 2017, 7 (3), 1655-1663.
84. Jiang, Y.; Lu, Y.; Wang, X.; Bao, Y.; Chen, W.; Niu, L., A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction. Nanoscale 2014, 6 (24), 15066-15072.
85. Ye, S.; Tuttle, T.; Bill, E.; Simkhovich, L.; Gross, Z.; Thiel, W.; Neese, F., The Electronic Structure of Iron Corroles: A Combined Experimental and Quantum Chemical Study. Chemistry – A European Journal 2008, 14 (34), 10839-10851.
86. Dogutan, D. K.; Stoian, S. A.; McGuire, R.; Schwalbe, M.; Teets, T. S.; Nocera, D. G., Hangman Corroles: Efficient Synthesis and Oxygen Reaction Chemistry. Journal of the American Chemical Society 2011, 133 (1), 131-140.
87. Abu-Omar, M. M., High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis. Dalton Transactions 2011, 40 (14), 3435-3444.
88. Thomas, K. E.; Alemayehu, A. B.; Conradie, J.; Beavers, C. M.; Ghosh, A., The Structural Chemistry of Metallocorroles: Combined X-ray Crystallography and Quantum Chemistry Studies Afford Unique Insights. Accounts of Chemical Research 2012, 45 (8), 1203-1214.
89. Johnson, A. W. K., I. T., The Pentadehydrocorrin (Corrole) Ring System. Proc. Chem. Soc. 1964, 89−90.
90. Gross, Z.; Galili, N.; Saltsman, I., The First Direct Synthesis of Corroles from Pyrrole. Angewandte Chemie International Edition 1999, 38 (10), 1427-1429.
91. The Porphyrin Handbook. Volumes 1−10 Edited by Karl M. Kadish (Univeristy of Houston), Kevin M. Smith (University of California, Davis), and Roger Guilard (Universite de Bourgogne). Academic Press:  San Diego, CA. 2000. $2975.00 (set). ISBN 0-12-393200-7 (set). Journal of the American Chemical Society 2000, 122 (16), 3984-3984.
92. Kadish, K. M.; Smith, K. M.; Guilard, R., The Porphyrin Handbook. Academic Press: 2000.
93. Paolesse, R.; Licoccia, S.; Bandoli, G.; Dolmella, A.; Boschi, T., First Direct Synthesis of a Corrole Ring From a Monopyrrolic Precursor. Crystal and Molecular Structure of (Triphenylphosphine)(5,10,15-triphenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III)-Dichloromethane. Inorganic Chemistry 1994, 33 (6), 1171-1176.
94. Neya, S.; Ohyama, K.; Funasaki, N., An improved synthesis of corrole. Tetrahedron Letters 1997, 38 (23), 4113-4116.
95. Paolesse, R.; Licoccia, S.; Fanciullo, M.; Morgante, E.; Boschi, T., Synthesis and characterization of cobalt(III) complexes of meso-phenyl-substituted corroles. Inorganica Chimica Acta 1993, 203 (1), 107-114.
96. Paolesse, R.; Tassoni, E.; Licoccia, S.; Paci, M.; Boschi, T., One-pot synthesis of corrolates by cobalt catalyzed cyclization of formylpyrroles. Inorganica Chimica Acta 1996, 241 (2), 55-60.
97. Gryko, D. T.; Koszarna, B., Refined methods for the synthesis of meso-substituted A3- and trans-A2B-corroles. Organic & Biomolecular Chemistry 2003, 1 (2), 350-357.
98. Paolesse, R.; Mini, S.; Sagone, F.; Boschi, T.; Jaquinod, L.; J. Nurco, D.; M. Smith, K., 5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction. Chemical Communications 1999, (14), 1307-1308.
99. Sara, N.; Donato, M.; Roberto, P., Novel Aspects of Corrole Chemistry. Mini-Reviews in Organic Chemistry 2005, 2 (4), 355-374.
100. Koszarna, B.; Gryko, D. T., Efficient Synthesis of meso-Substituted Corroles in a H2O−MeOH Mixture. The Journal of Organic Chemistry 2006, 71 (10), 3707-3717.
101. Ooi, S.; Yoneda, T.; Tanaka, T.; Osuka, A., meso-Free Corroles: Syntheses, Structures, Properties, and Chemical Reactivities. Chemistry – A European Journal 2015, 21 (21), 7772-7779.
102. Barata, J. F. B.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Tomé, A. C.; Cavaleiro, J. A. S., Strategies for Corrole Functionalization. Chemical Reviews 2017, 117 (4), 3192-3253.
103. Bucher, C.; Devillers, C. H.; Moutet, J.-C.; Royal, G.; Saint-Aman, E., Ferrocene-appended porphyrins: Syntheses and properties. Coordination Chemistry Reviews 2009, 253 (1–2), 21-36.
104. Nemykin, V. N.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Maximov, A. Y.; Polshin, E. V.; Koposov, A. Y., Mixed-valence states formation in conformationally flexible metal-free 5,10,15,20-tetraferrocenylporphyrin and 5,10-bisferrocenyl-15,20-bisphenylporphyrin. Dalton Transactions 2007, (31), 3378-3389.
105. Devillers, C. H.; Milet, A.; Moutet, J.-C.; Pecaut, J.; Royal, G.; Saint-Aman, E.; Bucher, C., Long-range electronic connection in picket-fence like ferrocene-porphyrin derivatives. Dalton Transactions 2013, 42 (4), 1196-1209.
106. Wang, C.-H.; Wang, C.-T.; Huang, H.-C.; Chang, S.-T.; Liao, F.-Y., High stability pyrolyzed vitamin B12 as a non-precious metal catalyst of oxygen reduction reaction in microbial fuel cells. RSC Advances 2013, 3 (35), 15375-15381.
107. Gryko, D. T.; Piechowska, J.; Jaworski, J. S.; Galezowski, M.; Tasior, M.; Cembor, M.; Butenschon, H., Synthesis and properties of directly linked corrole-ferrocene systems. New Journal of Chemistry 2007, 31 (9), 1613-1619.
108. Pomarico, G.; Galloni, P.; Mandoj, F.; Nardis, S.; Stefanelli, M.; Vecchi, A.; Lentini, S.; Cicero, D. O.; Cui, Y.; Zeng, L.; Kadish, K. M.; Paolesse, R., 5,10,15-Triferrocenylcorrole Complexes. Inorganic Chemistry 2015, 54 (21), 10256-10268.
109. Pomarico, G.; Vecchi, A.; Mandoj, F.; Bortolini, O.; Cicero, D. O.; Galloni, P.; Paolesse, R., The corrole and ferrocene marriage: 5,10,15-triferrocenylcorrolato Cu. Chemical Communications 2014, 50 (31), 4076-4078.
110. Liu, R.; von Malotki, C.; Arnold, L.; Koshino, N.; Higashimura, H.; Baumgarten, M.; Müllen, K., Triangular Trinuclear Metal-N4 Complexes with High Electrocatalytic Activity for Oxygen Reduction. Journal of the American Chemical Society 2011, 133 (27), 10372-10375.
111. Wu, G.; Nelson, M.; Ma, S.; Meng, H.; Cui, G.; Shen, P. K., Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon 2011, 49 (12), 3972-3982.
112. Shy, H.; Mackin, P.; Orvieto, A. S.; Gharbharan, D.; Peterson, G. R.; Bampos, N.; Hamilton, T. D., The two-step mechanochemical synthesis of porphyrins. Faraday Discussions 2014, 170 (0), 59-69.
113. Barnett, G. H.; Hudson, M. F.; Smith, K. M., Concerning meso-tetraphenylporphyrin purification. Journal of the Chemical Society, Perkin Transactions 1 1975, (14), 1401-1403.
114. M. Drain, C.; Gong, X., Synthesis of meso substituted porphyrins in air without solvents or catalysts. Chemical Communications 1997, (21), 2117-2118.
115. Petit, A.; Loupy, A.; Maiuardb, P.; Momenteaub, M., Microwave Irradiation in Dry Media: A New and Easy Method for Synthesis of Tetrapyrrolic Compounds. Synthetic Communications 1992, 22 (8), 1137-1142.
116. Bakar, M. A.; Sergeeva, N. N.; Juillard, T.; Senge, M. O., Synthesis of Ferrocenyl Porphyrins via Suzuki Coupling and Their Photophysical Properties. Organometallics 2011, 30 (11), 3225-3228.
117. Matino, F.; Schull, G.; Jana, U.; Kohler, F.; Berndt, R.; Herges, R., Single azopyridine-substituted porphyrin molecules for configurational and electronic switching. Chemical Communications 2010, 46 (36), 6780-6782.
118. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry 1997, 62 (21), 7512-7515.
119. Viçosa, A.; Letourneau, J.-J.; Espitalier, F.; Inês Ré, M., An innovative antisolvent precipitation process as a promising technique to prepare ultrafine rifampicin particles. Journal of Crystal Growth 2012, 342 (1), 80-87.
120. Spek, A., Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography 2003, 36 (1), 7-13.
121. Mu, X. H.; Kadish, K. M., In situ FTIR and UV-visible spectroelectrochemical studies of iron nitrosyl porphyrins in nonaqueous media. Inorganic Chemistry 1988, 27 (26), 4720-4725.
122. Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z. J.; Liu, Z.; Zhang, W., Synthesis of a conjugated porous Co(ii) porphyrinylene-ethynylene framework through alkyne metathesis and its catalytic activity study. Journal of Materials Chemistry A 2015, 3 (9), 4954-4959.
123. Fidalgo-Marijuan, A.; Amayuelas, E.; Barandika, G.; Bazán, B.; Urtiaga, M.; Arriortua, M., Coordination and Crystallization Molecules: Their Interactions Affecting the Dimensionality of Metalloporphyrinic SCFs. Molecules 2015, 20 (4), 6683.
124. Adam, F.; Ooi, W.-T., Selective oxidation of benzyl alcohol to benzaldehyde over Co-metalloporphyrin supported on silica nanoparticles. Applied Catalysis A: General 2012, 445–446, 252-260.
125. Barata, J. F. B.; Daniel-da-Silva, A. L.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Trindade, T., Corrole-silica hybrid particles: synthesis and effects on singlet oxygen generation. RSC Advances 2013, 3 (1), 274-280.
126. Kandhadi, J.; Yeduru, V.; Bangal, P. R.; Giribabu, L., Corrole-ferrocene and corrole-anthraquinone dyads: synthesis, spectroscopy and photochemistry. Physical Chemistry Chemical Physics 2015, 17 (40), 26607-26620.
127. Chen, C.-T.; Yeh, H.-C.; Zhang, X.; Yu, J., Olefin-Mediated Interaction Observed for Nickel Tetraphenylporphyrins with an Acceptor Substituted on the β-Carbon. Organic Letters 1999, 1 (11), 1767-1770.
128. Buchler, J. W., 10 - Synthesis and Properties of Metalloporphyrins A2 - DOLPHIN, DAVID. In The Porphyrins, Academic Press: 1978; pp 389-483.
129. Huang, X.; Nakanishi, K.; Berova, N., Porphyrins and metalloporphyrins: Versatile circular dichroic reporter groups for structural studies. Chirality 2000, 12 (4), 237-255.
130. Yun, L.; Vazquez-Lima, H.; Fang, H.; Yao, Z.; Geisberger, G.; Dietl, C.; Ghosh, A.; Brothers, P. J.; Fu, X., Synthesis and Reactivity Studies of a Tin(II) Corrole Complex. Inorganic Chemistry 2014, 53 (13), 7047-7054.
131. Mahammed, A.; Botoshansky, M.; Gross, Z., Chlorinated corroles. Dalton Transactions 2012, 41 (36), 10938-10940.
132. van Veen, J. A. R.; Colijn, H. A.; van Baar, J. F., On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochimica Acta 1988, 33 (6), 801-804.
133. Levy, N.; Mahammed, A.; Kosa, M.; Major, D. T.; Gross, Z.; Elbaz, L., Metallocorroles as Nonprecious-Metal Catalysts for Oxygen Reduction. Angewandte Chemie International Edition 2015, 54 (47), 14080-14084.
134. Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H.; Marques, A. L. B.; Marques, E. P.; Wang, H.; Zhang, J., A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochimica Acta 2008, 53 (15), 4937-4951.
135. Zhang, L.; Zhang, J.; Wilkinson, D. P.; Wang, H., Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. Journal of Power Sources 2006, 156 (2), 171-182.
136. Lalande, G.; Côté, R.; Tamizhmani, G.; Guay, D.; Dodelet, J. P.; Dignard-Bailey, L.; Weng, L. T.; Bertrand, P., Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta 1995, 40 (16), 2635-2646.
137. Wang, C.-H.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Wu, J. C.-S.; Chen, L.-C.; Chen, K.-H., Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond and Related Materials 2011, 20 (3), 322-329.
138. Elumeeva, K.; Ren, J.; Antonietti, M.; Fellinger, T.-P., High Surface Iron/Cobalt-Containing Nitrogen-Doped Carbon Aerogels as Non-Precious Advanced Electrocatalysts for Oxygen Reduction. ChemElectroChem 2015, 2 (4), 584-591.
139. Deng, J.; Ren, P.; Deng, D.; Bao, X., Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition 2015, 54 (7), 2100-2104.
140. Kong, A.; Zhang, Y.; Chen, Z.; Chen, A.; Li, C.; Wang, H.; Shan, Y., One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction. Carbon 2017, 116, 606-614.
141. Freel, J.; Wheeler, B. R.; Galwey, A. K., Kinetic study of the oxidation of the carbides of iron. Transactions of the Faraday Society 1970, 66 (0), 1015-1024.
142. Manzoli, M.; Boccuzzi, F., Characterisation of Co-based electrocatalytic materials for O2 reduction in fuel cells. Journal of Power Sources 2005, 145 (2), 161-168.
143. Pylypenko, S.; Mukherjee, S.; Olson, T. S.; Atanassov, P., Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochimica Acta 2008, 53 (27), 7875-7883.
144. Wang, C.-H.; Hsu, H.-C.; Chang, S.-T.; Du, H.-Y.; Chen, C.-P.; Wu, J. C.-S.; Shih, H.-C.; Chen, L.-C.; Chen, K.-H., Platinum nanoparticles embedded in pyrolyzed nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction activity. Journal of Materials Chemistry 2010, 20 (35), 7551-7557.
145. Hussain, H. B.; Wilson, K. A.; Wetmore, S. D., Serine and Cysteine π-Interactions in Nature: A Comparison of the Frequency, Structure, and Stability of Contacts Involving Oxygen and Sulfur. Australian Journal of Chemistry 2015, 68 (3), 385-395.
146. Yang, D.-S.; Song, M. Y.; Singh, K. P.; Yu, J.-S., The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chemical Communications 2015, 51 (12), 2450-2453.
147. Shi, J.; Zhou, X.; Xu, P.; Qiao, J.; Chen, Z.; Liu, Y., Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta 2014, 145, 259-269.
148. Li, X.; Popov, B. N.; Kawahara, T.; Yanagi, H., Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. Journal of Power Sources 2011, 196 (4), 1717-1722.
149. Zhang, J.; He, D.; Su, H.; Chen, X.; Pan, M.; Mu, S., Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. Journal of Materials Chemistry A 2014, 2 (5), 1242-1246.
150. Wang, Z.-L.; Hao, X.-F.; Jiang, Z.; Sun, X.-P.; Xu, D.; Wang, J.; Zhong, H.-X.; Meng, F.-L.; Zhang, X.-B., C and N Hybrid Coordination Derived Co–C–N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (48), 15070-15073.
151. Yu, J.; Zhong, Y.; Zhou, W.; Shao, Z., Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources 2017, 338, 26-33.
152. Zhang, J.; Zhao, L.; Liu, A.; Li, X.; Wu, H.; Lu, C., Three-dimensional MoS2/rGO hydrogel with extremely high double-layer capacitance as active catalyst for hydrogen evolution reaction. Electrochimica Acta 2015, 182, 652-658.
153. Trasatti, S.; Petrii, O. A., Real surface area measurements in electrochemistry. In Pure and Applied Chemistry, 1991; Vol. 63, p 711.
154. Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y., Electrochemical Tuning of MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano 2014, 8 (5), 4940-4947.
155. Liang, Y.; Liu, P.; Xiao, J.; Li, H.; Wang, C.; Yang, G., A microfibre assembly of an iron-carbon composite with giant magnetisation. 2013, 3, 3051.
156. Andrej, F.; Ulf, J.; Jun, L.; Lars, H.; Martin, M., Structure and bonding in amorphous iron carbide thin films. Journal of Physics: Condensed Matter 2015, 27 (4), 045002.
157. Goretzki, H.; Rosenstiel, P. v.; Mandziej, S., Small area MXPS- and TEM-measurements on temper-embrittled 12% Cr steel. Fresenius' Zeitschrift für analytische Chemie 1989, 333 (4), 451-452.
158. Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science 2012, 5 (7), 7936-7942.
159. Liu, G.; Li, X.; Ganesan, P.; Popov, B. N., Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Applied Catalysis B: Environmental 2009, 93 (1–2), 156-165.
160. Morozan, A.; Jegou, P.; Jousselme, B.; Palacin, S., Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction. Physical Chemistry Chemical Physics 2011, 13 (48), 21600-21607.
161. Huang, J.-W.; Liu, Z.-L.; Gao, X.-R.; Yang, D.; Peng, X.-Y.; Ji, L.-N., Hydroxylation of cyclohexane catalyzed by iron(III)—metal-free porphyrin dimer with molecular oxygen: The effect of the steric hindrance and the intramolecular interaction between the two prophyrin rings. Journal of Molecular Catalysis A: Chemical 1996, 111 (3), 261-266.
162. Castle, J. E., Practical surface analysis by Auger and X-ray photoelectron spectroscopy. D. Briggs and M. P. Seah (Editors). John Wiley and Sons Ltd, Chichester, 1983, 533 pp., £44.50. Surface and Interface Analysis 1984, 6 (6), 302-302.
163. Li, S.; Zhang, L.; Kim, J.; Pan, M.; Shi, Z.; Zhang, J., Synthesis of carbon-supported binary FeCo–N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochimica Acta 2010, 55 (24), 7346-7353.
164. Biloul, A.; Coowar, F.; Contamin, O.; Scarbeck, G.; Savy, M.; van den Ham, D.; Riga, J.; Verbist, J. J., Oxygen reduction in an acid medium: electrocatalysis by CoNPc(1,2) impregnated on a carbon black support; effect of loading and heat treatment. Journal of Electroanalytical Chemistry 1993, 350 (1), 189-204.
165. Tiwari, J. N.; Nath, K.; Kumar, S.; Tiwari, R. N.; Kemp, K. C.; Le, N. H.; Youn, D. H.; Lee, J. S.; Kim, K. S., Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. 2013, 4, 2221.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *