|
1. http://www.cop21paris.org/. 2. U.S. energy-related CO2 emissions fell 1.7% in 2016. U.S. Energy Information Administration 2017, Monthly Energy Review (April 10). 3. Annual Energy Review 2016. In U.S. Energy Information Administration, Washington, DC, 2016. 4. Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343 (6177), 1339-1343. 5. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 2007, 6 (3), 241-247. 6. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D., Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 2013, 12 (1), 81-87. 7. Stephens, I. E. L.; Bondarenko, A. S.; Gronbjerg, U.; Rossmeisl, J.; Chorkendorff, I., Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science 2012, 5 (5), 6744-6762. 8. Nie, Y.; Li, L.; Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews 2015, 44 (8), 2168-2201. 9. https://energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components. 10. http://www.twsolarenergy.com/en/TSE_index.html. 11. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P., High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011, 332 (6028), 443-447. 12. Bashyam, R.; Zelenay, P., A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443 (7107), 63-66. 13. van Veen, J. A. R.; van Baar, J. F.; Kroese, K. J., Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1981, 77 (11), 2827-2843. 14. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis 1986, 38 (1), 5-25. 15. Jasinski, R., A New Fuel Cell Cathode Catalyst. Nature 1964, 201 (4925), 1212-1213. 16. Weber, A. Z.; Newman, J., Modeling Transport in Polymer-Electrolyte Fuel Cells. Chemical Reviews 2004, 104 (10), 4679-4726. 17. Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486 (7401), 43-51. 18. Yoshikawa, S.; Shimada, A., Reaction Mechanism of Cytochrome c Oxidase. Chemical Reviews 2015, 115 (4), 1936-1989. 19. Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, L., Copper Active Sites in Biology. Chemical Reviews 2014, 114 (7), 3659-3853. 20. Kaila, V. R. I.; Verkhovsky, M. I.; Wikström, M., Proton-Coupled Electron Transfer in Cytochrome Oxidase. Chemical Reviews 2010, 110 (12), 7062-7081. 21. Hematian, S.; Garcia-Bosch, I.; Karlin, K. D., Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome c Oxidase Interactions with Dioxygen and Nitrogen Oxides. Accounts of Chemical Research 2015, 48 (8), 2462-2474. 22. Chufán, E. E.; Puiu, S. C.; Karlin, K. D., Heme–Copper/Dioxygen Adduct Formation, Properties, and Reactivity. Accounts of Chemical Research 2007, 40 (7), 563-572. 23. Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H., Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995, 376 (6542), 660-669. 24. Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S., Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 1995, 269 (5227), 1069-1074. 25. Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S., The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å. Science 1996, 272 (5265), 1136-1144. 26. Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T., Redox-Coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase. Science 1998, 280 (5370), 1723-1729. 27. Harrenga, A.; Michel, H., The Cytochrome c Oxidase from Paracoccus denitrificans Does Not Change the Metal Center Ligation upon Reduction. Journal of Biological Chemistry 1999, 274 (47), 33296-33299. 28. Proshlyakov, D. A.; Pressler, M. A.; Babcock, G. T., Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proceedings of the National Academy of Sciences 1998, 95 (14), 8020-8025. 29. Toh, R. J.; Sofer, Z.; Pumera, M., Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table. ChemPhysChem 2015, 16 (16), 3527-3531. 30. Feng, J.; Liang, Y.; Wang, H.; Li, Y.; Zhang, B.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research 2012, 5 (10), 718-725. 31. Liang, Y.; Wang, H.; Diao, P.; Chang, W.; Hong, G.; Li, Y.; Gong, M.; Xie, L.; Zhou, J.; Wang, J.; Regier, T. Z.; Wei, F.; Dai, H., Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society 2012, 134 (38), 15849-15857. 32. Kim, J.-H.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.-I., Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochimica Acta 2007, 52 (7), 2492-2497. 33. Zhou, W.; Ge, L.; Chen, Z.-G.; Liang, F.; Xu, H.-Y.; Motuzas, J.; Julbe, A.; Zhu, Z., Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chemistry of Materials 2011, 23 (18), 4193-4198. 34. Liu, X.-W.; Mao, J.-J.; Liu, P.-D.; Wei, X.-W., Fabrication of metal-graphene hybrid materials by electroless deposition. Carbon 2011, 49 (2), 477-483. 35. Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C., Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Physical Chemistry Chemical Physics 2011, 13 (9), 4083-4094. 36. Toh, R. J.; Poh, H. L.; Sofer, Z.; Pumera, M., Transition Metal (Mn, Fe, Co, Ni)-Doped Graphene Hybrids for Electrocatalysis. Chemistry – An Asian Journal 2013, 8 (6), 1295-1300. 37. Youn, D. H.; Bae, G.; Han, S.; Kim, J. Y.; Jang, J.-W.; Park, H.; Choi, S. H.; Lee, J. S., A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT-graphene hybrid support. Journal of Materials Chemistry A 2013, 1 (27), 8007-8015. 38. Tian, X.; Luo, J.; Nan, H.; Zou, H.; Chen, R.; Shu, T.; Li, X.; Li, Y.; Song, H.; Liao, S.; Adzic, R. R., Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society 2016, 138 (5), 1575-1583. 39. Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts: Structural and Electrochemical Studies. Inorganic Chemistry 2015, 54 (5), 2128-2136. 40. Liu, B.; Yao, H.; Daniels, R. A.; Song, W.; Zheng, H.; Jin, L.; Suib, S. L.; He, J., A facile synthesis of Fe3C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale 2016, 8 (10), 5441-5445. 41. Wu, T.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, H.; Wang, G., A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction. Physical Chemistry Chemical Physics 2015, 17 (41), 27527-27533. 42. Qian, Y.; Cavanaugh, J.; Khan, I. A.; Wang, X.; Peng, Y.; Hu, Z.; Wang, Y.; Zhao, D., Fe/Fe3C/N-Doped Carbon Materials from Metal–Organic Framework Composites as Highly Efficient Oxygen Reduction Reaction Electrocatalysts. ChemPlusChem 2016, 81 (8), 718-723. 43. Zhang, J.; Chen, J.; Jiang, Y.; Zhou, F.; Wang, G.; Wang, R., Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Applied Surface Science 2016, 389, 157-164. 44. Liu, Y.; Kelly, T. G.; Chen, J. G.; Mustain, W. E., Metal Carbides as Alternative Electrocatalyst Supports. ACS Catalysis 2013, 3 (6), 1184-1194. 45. Cui, Q.; Chao, S.; Wang, P.; Bai, Z.; Yan, H.; Wang, K.; Yang, L., Fe-N/C catalysts synthesized by heat-treatment of iron triazine carboxylic acid derivative complex for oxygen reduction reaction. RSC Advances 2014, 4 (24), 12168-12174. 46. Yang, Z. K.; Lin, L.; Xu, A.-W., 2D Nanoporous Fe−N/C Nanosheets as Highly Efficient Non-Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn-Air Battery. Small 2016, 12 (41), 5710-5719. 47. Gu, L.; Jiang, L.; Li, X.; Jin, J.; Wang, J.; Sun, G., A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chinese Journal of Catalysis 2016, 37 (4), 539-548. 48. Yan, X.-H.; Xu, B.-Q., Mesoporous carbon material co-doped with nitrogen and iron (Fe-N-C): high-performance cathode catalyst for oxygen reduction reaction in alkaline electrolyte. Journal of Materials Chemistry A 2014, 2 (23), 8617-8622. 49. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4 (3), 1321-1326. 50. Xia, W.; Masa, J.; Bron, M.; Schuhmann, W.; Muhler, M., Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochemistry Communications 2011, 13 (6), 593-596. 51. Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B., Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews 2015, 115 (11), 4823-4892. 52. Koslowski, U. I.; Abs-Wurmbach, I.; Fiechter, S.; Bogdanoff, P., Nature of the Catalytic Centers of Porphyrin-Based Electrocatalysts for the ORR: A Correlation of Kinetic Current Density with the Site Density of Fe−N4 Centers. The Journal of Physical Chemistry C 2008, 112 (39), 15356-15366. 53. Lu, G.; Zhu, Y.; Xu, K.; Jin, Y.; Ren, Z. J.; Liu, Z.; Zhang, W., Metallated porphyrin based porous organic polymers as efficient electrocatalysts. Nanoscale 2015, 7 (43), 18271-18277. 54. Chen, R.; Li, H.; Chu, D.; Wang, G., Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. The Journal of Physical Chemistry C 2009, 113 (48), 20689-20697. 55. Cui, L.; Lv, G.; He, X., Enhanced oxygen reduction performance by novel pyridine substituent groups of iron (II) phthalocyanine with graphene composite. Journal of Power Sources 2015, 282, 9-18. 56. Beck, F., The redox mechanism of the chelate-catalysed oxygen cathode. Journal of Applied Electrochemistry 1977, 7 (3), 239-245. 57. Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P.; Mukerjee, S., Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano 2015, 9 (12), 12496-12505. 58. Liu, Y.; Yue, X.; Li, K.; Qiao, J.; Wilkinson, D. P.; Zhang, J., PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coordination Chemistry Reviews 2016, 315, 153-177. 59. Jahnke, H.; Schönborn, M.; Zimmermann, G., Organic dyestuffs as catalysts for fuel cells. In Physical and Chemical Applications of Dyestuffs, Schäfer, F. P.; Gerischer, H.; Willig, F.; Meier, H.; Jahnke, H.; Schönborn, M.; Zimmermann, G., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1976; pp 133-181. 60. Chang, S.-T.; Wang, C.-H.; Du, H.-Y.; Hsu, H.-C.; Kang, C.-M.; Chen, C.-C.; Wu, J. C. S.; Yen, S.-C.; Huang, W.-F.; Chen, L.-C.; Lin, M. C.; Chen, K.-H., Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy & Environmental Science 2012, 5 (1), 5305-5314. 61. Huang, H.-C.; Shown, I.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Kuo, M.-C.; Wong, K.-T.; Wang, S.-F.; Wang, C.-H.; Chen, L.-C.; Chen, K.-H., Pyrolyzed Cobalt Corrole as a Potential Non-Precious Catalyst for Fuel Cells. Advanced Functional Materials 2012, 22 (16), 3500-3508. 62. Huang, H.-C.; Wang, C.-H.; Shown, I.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H., High-performance pyrolyzed iron corrole as a potential non-precious metal catalyst for PEMFCs. Journal of Materials Chemistry A 2013, 1 (46), 14692-14699. 63. Wu, Z.-S.; Chen, L.; Liu, J.; Parvez, K.; Liang, H.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X.; Müllen, K., High-Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrin-Based Conjugated Mesoporous Polymers. Advanced Materials 2014, 26 (9), 1450-1455. 64. Fukuzumi, S., Artificial Photosynthetic Systems Composed of Porphyrins and Phthalocyanines. In Handbook of Porphyrin Science, World Scientific Publishing Company: 2012; pp 183-243. 65. Song, Z.; Adeyemo, A. O.; Baker, J.; Traylor, S. M.; Lightfoot, M. L., STRUCTURE OF PORPHYRIN TPPS(4) AND ITS INTERACTION WITH METAL IONS AS ELUCIDATED BY (1)H NMR AND UV-VISIBLE SPECTRA. Georgia journal of science : official publication of the Georgia Academy of Science 2011, 69 (2-3), 89-101. 66. Vangberg, T.; Lie, R.; Ghosh, A., Symmetry-Breaking Phenomena in Metalloporphyrin π-Cation Radicals. Journal of the American Chemical Society 2002, 124 (27), 8122-8130. 67. Lipstman, S.; Muniappan, S.; George, S.; Goldberg, I., Framework coordination polymers of tetra(4-carboxyphenyl)porphyrin and lanthanide ions in crystalline solids. Dalton Transactions 2007, (30), 3273-3281. 68. Thomas, K. E.; Conradie, J.; Hansen, L. K.; Ghosh, A., Corroles Cannot Ruffle. Inorganic Chemistry 2011, 50 (8), 3247-3251. 69. Orlowski, R.; Vakuliuk, O.; Gullo, M. P.; Danylyuk, O.; Ventura, B.; Koszarna, B.; Tarnowska, A.; Jaworska, N.; Barbieri, A.; Gryko, D. T., Self-assembling corroles. Chemical Communications 2015, 51 (39), 8284-8287. 70. Ward, A. L.; Buckley, H. L.; Lukens, W. W.; Arnold, J., Synthesis and Characterization of Thorium(IV) and Uranium(IV) Corrole Complexes. Journal of the American Chemical Society 2013, 135 (37), 13965-13971. 71. Albrett, A. M.; Conradie, J.; Ghosh, A.; Brothers, P. J., DFT survey of monoboron and diboron corroles: regio- and stereochemical preferences for a constrained, low-symmetry macrocycle. Dalton Transactions 2008, (33), 4464-4473. 72. Ghosh, A., Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chemical Reviews 2017, 117 (4), 3798-3881. 73. Capar, J.; Conradie, J.; Beavers, C. M.; Ghosh, A., Molecular Structures of Free-Base Corroles: Nonplanarity, Chirality, and Enantiomerization. The Journal of Physical Chemistry A 2015, 119 (14), 3452-3457. 74. Elbaz, L.; Wu, G.; Zelenay, P., Heat-Treated Non-precious-Metal-Based Catalysts for Oxygen Reduction. In Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach, Shao, M., Ed. Springer London: London, 2013; pp 213-246. 75. Sun, S.; Jiang, N.; Xia, D., Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines. The Journal of Physical Chemistry C 2011, 115 (19), 9511-9517. 76. Chen, X.; Hu, R.; Bai, F., DFT Study of the Oxygen Reduction Reaction Activity on Fe−N4-Patched Carbon Nanotubes: The Influence of the Diameter and Length. Materials 2017, 10 (5), 549. 77. Sa, Y. J.; Seo, D.-J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S.; Jeong, H. Y.; Kim, C. S.; Kim, M. G.; Kim, T.-Y.; Joo, S. H., A General Approach to Preferential Formation of Active Fe–Nx Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society 2016, 138 (45), 15046-15056. 78. Bruller, S.; Liang, H.-W.; Kramm, U. I.; Krumpfer, J. W.; Feng, X.; Mullen, K., Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A 2015, 3 (47), 23799-23808. 79. Lin, Q.; Bu, X.; Kong, A.; Mao, C.; Bu, F.; Feng, P., Heterometal-Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials 2015, 27 (22), 3431-3436. 80. Fan, W.; Li, Z.; You, C.; Zong, X.; Tian, X.; Miao, S.; Shu, T.; Li, C.; Liao, S., Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy 2017, 37, 187-194. 81. Cheon, J. Y.; Kim, T.; Choi, Y.; Jeong, H. Y.; Kim, M. G.; Sa, Y. J.; Kim, J.; Lee, Z.; Yang, T.-H.; Kwon, K.; Terasaki, O.; Park, G.-G.; Adzic, R. R.; Joo, S. H., Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. 2013, 3, 2715. 82. Zhang, Z.; Dou, M.; Liu, H.; Dai, L.; Wang, F., A Facile Route to Bimetal and Nitrogen-Codoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small 2016, 12 (31), 4193-4199. 83. Lai, Q.; Zheng, L.; Liang, Y.; He, J.; Zhao, J.; Chen, J., Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-Nx Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis 2017, 7 (3), 1655-1663. 84. Jiang, Y.; Lu, Y.; Wang, X.; Bao, Y.; Chen, W.; Niu, L., A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction. Nanoscale 2014, 6 (24), 15066-15072. 85. Ye, S.; Tuttle, T.; Bill, E.; Simkhovich, L.; Gross, Z.; Thiel, W.; Neese, F., The Electronic Structure of Iron Corroles: A Combined Experimental and Quantum Chemical Study. Chemistry – A European Journal 2008, 14 (34), 10839-10851. 86. Dogutan, D. K.; Stoian, S. A.; McGuire, R.; Schwalbe, M.; Teets, T. S.; Nocera, D. G., Hangman Corroles: Efficient Synthesis and Oxygen Reaction Chemistry. Journal of the American Chemical Society 2011, 133 (1), 131-140. 87. Abu-Omar, M. M., High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis. Dalton Transactions 2011, 40 (14), 3435-3444. 88. Thomas, K. E.; Alemayehu, A. B.; Conradie, J.; Beavers, C. M.; Ghosh, A., The Structural Chemistry of Metallocorroles: Combined X-ray Crystallography and Quantum Chemistry Studies Afford Unique Insights. Accounts of Chemical Research 2012, 45 (8), 1203-1214. 89. Johnson, A. W. K., I. T., The Pentadehydrocorrin (Corrole) Ring System. Proc. Chem. Soc. 1964, 89−90. 90. Gross, Z.; Galili, N.; Saltsman, I., The First Direct Synthesis of Corroles from Pyrrole. Angewandte Chemie International Edition 1999, 38 (10), 1427-1429. 91. The Porphyrin Handbook. Volumes 1−10 Edited by Karl M. Kadish (Univeristy of Houston), Kevin M. Smith (University of California, Davis), and Roger Guilard (Universite de Bourgogne). Academic Press: San Diego, CA. 2000. $2975.00 (set). ISBN 0-12-393200-7 (set). Journal of the American Chemical Society 2000, 122 (16), 3984-3984. 92. Kadish, K. M.; Smith, K. M.; Guilard, R., The Porphyrin Handbook. Academic Press: 2000. 93. Paolesse, R.; Licoccia, S.; Bandoli, G.; Dolmella, A.; Boschi, T., First Direct Synthesis of a Corrole Ring From a Monopyrrolic Precursor. Crystal and Molecular Structure of (Triphenylphosphine)(5,10,15-triphenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III)-Dichloromethane. Inorganic Chemistry 1994, 33 (6), 1171-1176. 94. Neya, S.; Ohyama, K.; Funasaki, N., An improved synthesis of corrole. Tetrahedron Letters 1997, 38 (23), 4113-4116. 95. Paolesse, R.; Licoccia, S.; Fanciullo, M.; Morgante, E.; Boschi, T., Synthesis and characterization of cobalt(III) complexes of meso-phenyl-substituted corroles. Inorganica Chimica Acta 1993, 203 (1), 107-114. 96. Paolesse, R.; Tassoni, E.; Licoccia, S.; Paci, M.; Boschi, T., One-pot synthesis of corrolates by cobalt catalyzed cyclization of formylpyrroles. Inorganica Chimica Acta 1996, 241 (2), 55-60. 97. Gryko, D. T.; Koszarna, B., Refined methods for the synthesis of meso-substituted A3- and trans-A2B-corroles. Organic & Biomolecular Chemistry 2003, 1 (2), 350-357. 98. Paolesse, R.; Mini, S.; Sagone, F.; Boschi, T.; Jaquinod, L.; J. Nurco, D.; M. Smith, K., 5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction. Chemical Communications 1999, (14), 1307-1308. 99. Sara, N.; Donato, M.; Roberto, P., Novel Aspects of Corrole Chemistry. Mini-Reviews in Organic Chemistry 2005, 2 (4), 355-374. 100. Koszarna, B.; Gryko, D. T., Efficient Synthesis of meso-Substituted Corroles in a H2O−MeOH Mixture. The Journal of Organic Chemistry 2006, 71 (10), 3707-3717. 101. Ooi, S.; Yoneda, T.; Tanaka, T.; Osuka, A., meso-Free Corroles: Syntheses, Structures, Properties, and Chemical Reactivities. Chemistry – A European Journal 2015, 21 (21), 7772-7779. 102. Barata, J. F. B.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Tomé, A. C.; Cavaleiro, J. A. S., Strategies for Corrole Functionalization. Chemical Reviews 2017, 117 (4), 3192-3253. 103. Bucher, C.; Devillers, C. H.; Moutet, J.-C.; Royal, G.; Saint-Aman, E., Ferrocene-appended porphyrins: Syntheses and properties. Coordination Chemistry Reviews 2009, 253 (1–2), 21-36. 104. Nemykin, V. N.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Maximov, A. Y.; Polshin, E. V.; Koposov, A. Y., Mixed-valence states formation in conformationally flexible metal-free 5,10,15,20-tetraferrocenylporphyrin and 5,10-bisferrocenyl-15,20-bisphenylporphyrin. Dalton Transactions 2007, (31), 3378-3389. 105. Devillers, C. H.; Milet, A.; Moutet, J.-C.; Pecaut, J.; Royal, G.; Saint-Aman, E.; Bucher, C., Long-range electronic connection in picket-fence like ferrocene-porphyrin derivatives. Dalton Transactions 2013, 42 (4), 1196-1209. 106. Wang, C.-H.; Wang, C.-T.; Huang, H.-C.; Chang, S.-T.; Liao, F.-Y., High stability pyrolyzed vitamin B12 as a non-precious metal catalyst of oxygen reduction reaction in microbial fuel cells. RSC Advances 2013, 3 (35), 15375-15381. 107. Gryko, D. T.; Piechowska, J.; Jaworski, J. S.; Galezowski, M.; Tasior, M.; Cembor, M.; Butenschon, H., Synthesis and properties of directly linked corrole-ferrocene systems. New Journal of Chemistry 2007, 31 (9), 1613-1619. 108. Pomarico, G.; Galloni, P.; Mandoj, F.; Nardis, S.; Stefanelli, M.; Vecchi, A.; Lentini, S.; Cicero, D. O.; Cui, Y.; Zeng, L.; Kadish, K. M.; Paolesse, R., 5,10,15-Triferrocenylcorrole Complexes. Inorganic Chemistry 2015, 54 (21), 10256-10268. 109. Pomarico, G.; Vecchi, A.; Mandoj, F.; Bortolini, O.; Cicero, D. O.; Galloni, P.; Paolesse, R., The corrole and ferrocene marriage: 5,10,15-triferrocenylcorrolato Cu. Chemical Communications 2014, 50 (31), 4076-4078. 110. Liu, R.; von Malotki, C.; Arnold, L.; Koshino, N.; Higashimura, H.; Baumgarten, M.; Müllen, K., Triangular Trinuclear Metal-N4 Complexes with High Electrocatalytic Activity for Oxygen Reduction. Journal of the American Chemical Society 2011, 133 (27), 10372-10375. 111. Wu, G.; Nelson, M.; Ma, S.; Meng, H.; Cui, G.; Shen, P. K., Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon 2011, 49 (12), 3972-3982. 112. Shy, H.; Mackin, P.; Orvieto, A. S.; Gharbharan, D.; Peterson, G. R.; Bampos, N.; Hamilton, T. D., The two-step mechanochemical synthesis of porphyrins. Faraday Discussions 2014, 170 (0), 59-69. 113. Barnett, G. H.; Hudson, M. F.; Smith, K. M., Concerning meso-tetraphenylporphyrin purification. Journal of the Chemical Society, Perkin Transactions 1 1975, (14), 1401-1403. 114. M. Drain, C.; Gong, X., Synthesis of meso substituted porphyrins in air without solvents or catalysts. Chemical Communications 1997, (21), 2117-2118. 115. Petit, A.; Loupy, A.; Maiuardb, P.; Momenteaub, M., Microwave Irradiation in Dry Media: A New and Easy Method for Synthesis of Tetrapyrrolic Compounds. Synthetic Communications 1992, 22 (8), 1137-1142. 116. Bakar, M. A.; Sergeeva, N. N.; Juillard, T.; Senge, M. O., Synthesis of Ferrocenyl Porphyrins via Suzuki Coupling and Their Photophysical Properties. Organometallics 2011, 30 (11), 3225-3228. 117. Matino, F.; Schull, G.; Jana, U.; Kohler, F.; Berndt, R.; Herges, R., Single azopyridine-substituted porphyrin molecules for configurational and electronic switching. Chemical Communications 2010, 46 (36), 6780-6782. 118. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry 1997, 62 (21), 7512-7515. 119. Viçosa, A.; Letourneau, J.-J.; Espitalier, F.; Inês Ré, M., An innovative antisolvent precipitation process as a promising technique to prepare ultrafine rifampicin particles. Journal of Crystal Growth 2012, 342 (1), 80-87. 120. Spek, A., Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography 2003, 36 (1), 7-13. 121. Mu, X. H.; Kadish, K. M., In situ FTIR and UV-visible spectroelectrochemical studies of iron nitrosyl porphyrins in nonaqueous media. Inorganic Chemistry 1988, 27 (26), 4720-4725. 122. Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z. J.; Liu, Z.; Zhang, W., Synthesis of a conjugated porous Co(ii) porphyrinylene-ethynylene framework through alkyne metathesis and its catalytic activity study. Journal of Materials Chemistry A 2015, 3 (9), 4954-4959. 123. Fidalgo-Marijuan, A.; Amayuelas, E.; Barandika, G.; Bazán, B.; Urtiaga, M.; Arriortua, M., Coordination and Crystallization Molecules: Their Interactions Affecting the Dimensionality of Metalloporphyrinic SCFs. Molecules 2015, 20 (4), 6683. 124. Adam, F.; Ooi, W.-T., Selective oxidation of benzyl alcohol to benzaldehyde over Co-metalloporphyrin supported on silica nanoparticles. Applied Catalysis A: General 2012, 445–446, 252-260. 125. Barata, J. F. B.; Daniel-da-Silva, A. L.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Trindade, T., Corrole-silica hybrid particles: synthesis and effects on singlet oxygen generation. RSC Advances 2013, 3 (1), 274-280. 126. Kandhadi, J.; Yeduru, V.; Bangal, P. R.; Giribabu, L., Corrole-ferrocene and corrole-anthraquinone dyads: synthesis, spectroscopy and photochemistry. Physical Chemistry Chemical Physics 2015, 17 (40), 26607-26620. 127. Chen, C.-T.; Yeh, H.-C.; Zhang, X.; Yu, J., Olefin-Mediated Interaction Observed for Nickel Tetraphenylporphyrins with an Acceptor Substituted on the β-Carbon. Organic Letters 1999, 1 (11), 1767-1770. 128. Buchler, J. W., 10 - Synthesis and Properties of Metalloporphyrins A2 - DOLPHIN, DAVID. In The Porphyrins, Academic Press: 1978; pp 389-483. 129. Huang, X.; Nakanishi, K.; Berova, N., Porphyrins and metalloporphyrins: Versatile circular dichroic reporter groups for structural studies. Chirality 2000, 12 (4), 237-255. 130. Yun, L.; Vazquez-Lima, H.; Fang, H.; Yao, Z.; Geisberger, G.; Dietl, C.; Ghosh, A.; Brothers, P. J.; Fu, X., Synthesis and Reactivity Studies of a Tin(II) Corrole Complex. Inorganic Chemistry 2014, 53 (13), 7047-7054. 131. Mahammed, A.; Botoshansky, M.; Gross, Z., Chlorinated corroles. Dalton Transactions 2012, 41 (36), 10938-10940. 132. van Veen, J. A. R.; Colijn, H. A.; van Baar, J. F., On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochimica Acta 1988, 33 (6), 801-804. 133. Levy, N.; Mahammed, A.; Kosa, M.; Major, D. T.; Gross, Z.; Elbaz, L., Metallocorroles as Nonprecious-Metal Catalysts for Oxygen Reduction. Angewandte Chemie International Edition 2015, 54 (47), 14080-14084. 134. Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H.; Marques, A. L. B.; Marques, E. P.; Wang, H.; Zhang, J., A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochimica Acta 2008, 53 (15), 4937-4951. 135. Zhang, L.; Zhang, J.; Wilkinson, D. P.; Wang, H., Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. Journal of Power Sources 2006, 156 (2), 171-182. 136. Lalande, G.; Côté, R.; Tamizhmani, G.; Guay, D.; Dodelet, J. P.; Dignard-Bailey, L.; Weng, L. T.; Bertrand, P., Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta 1995, 40 (16), 2635-2646. 137. Wang, C.-H.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Wu, J. C.-S.; Chen, L.-C.; Chen, K.-H., Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond and Related Materials 2011, 20 (3), 322-329. 138. Elumeeva, K.; Ren, J.; Antonietti, M.; Fellinger, T.-P., High Surface Iron/Cobalt-Containing Nitrogen-Doped Carbon Aerogels as Non-Precious Advanced Electrocatalysts for Oxygen Reduction. ChemElectroChem 2015, 2 (4), 584-591. 139. Deng, J.; Ren, P.; Deng, D.; Bao, X., Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition 2015, 54 (7), 2100-2104. 140. Kong, A.; Zhang, Y.; Chen, Z.; Chen, A.; Li, C.; Wang, H.; Shan, Y., One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction. Carbon 2017, 116, 606-614. 141. Freel, J.; Wheeler, B. R.; Galwey, A. K., Kinetic study of the oxidation of the carbides of iron. Transactions of the Faraday Society 1970, 66 (0), 1015-1024. 142. Manzoli, M.; Boccuzzi, F., Characterisation of Co-based electrocatalytic materials for O2 reduction in fuel cells. Journal of Power Sources 2005, 145 (2), 161-168. 143. Pylypenko, S.; Mukherjee, S.; Olson, T. S.; Atanassov, P., Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochimica Acta 2008, 53 (27), 7875-7883. 144. Wang, C.-H.; Hsu, H.-C.; Chang, S.-T.; Du, H.-Y.; Chen, C.-P.; Wu, J. C.-S.; Shih, H.-C.; Chen, L.-C.; Chen, K.-H., Platinum nanoparticles embedded in pyrolyzed nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction activity. Journal of Materials Chemistry 2010, 20 (35), 7551-7557. 145. Hussain, H. B.; Wilson, K. A.; Wetmore, S. D., Serine and Cysteine π-Interactions in Nature: A Comparison of the Frequency, Structure, and Stability of Contacts Involving Oxygen and Sulfur. Australian Journal of Chemistry 2015, 68 (3), 385-395. 146. Yang, D.-S.; Song, M. Y.; Singh, K. P.; Yu, J.-S., The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chemical Communications 2015, 51 (12), 2450-2453. 147. Shi, J.; Zhou, X.; Xu, P.; Qiao, J.; Chen, Z.; Liu, Y., Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta 2014, 145, 259-269. 148. Li, X.; Popov, B. N.; Kawahara, T.; Yanagi, H., Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. Journal of Power Sources 2011, 196 (4), 1717-1722. 149. Zhang, J.; He, D.; Su, H.; Chen, X.; Pan, M.; Mu, S., Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. Journal of Materials Chemistry A 2014, 2 (5), 1242-1246. 150. Wang, Z.-L.; Hao, X.-F.; Jiang, Z.; Sun, X.-P.; Xu, D.; Wang, J.; Zhong, H.-X.; Meng, F.-L.; Zhang, X.-B., C and N Hybrid Coordination Derived Co–C–N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (48), 15070-15073. 151. Yu, J.; Zhong, Y.; Zhou, W.; Shao, Z., Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources 2017, 338, 26-33. 152. Zhang, J.; Zhao, L.; Liu, A.; Li, X.; Wu, H.; Lu, C., Three-dimensional MoS2/rGO hydrogel with extremely high double-layer capacitance as active catalyst for hydrogen evolution reaction. Electrochimica Acta 2015, 182, 652-658. 153. Trasatti, S.; Petrii, O. A., Real surface area measurements in electrochemistry. In Pure and Applied Chemistry, 1991; Vol. 63, p 711. 154. Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y., Electrochemical Tuning of MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano 2014, 8 (5), 4940-4947. 155. Liang, Y.; Liu, P.; Xiao, J.; Li, H.; Wang, C.; Yang, G., A microfibre assembly of an iron-carbon composite with giant magnetisation. 2013, 3, 3051. 156. Andrej, F.; Ulf, J.; Jun, L.; Lars, H.; Martin, M., Structure and bonding in amorphous iron carbide thin films. Journal of Physics: Condensed Matter 2015, 27 (4), 045002. 157. Goretzki, H.; Rosenstiel, P. v.; Mandziej, S., Small area MXPS- and TEM-measurements on temper-embrittled 12% Cr steel. Fresenius' Zeitschrift für analytische Chemie 1989, 333 (4), 451-452. 158. Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science 2012, 5 (7), 7936-7942. 159. Liu, G.; Li, X.; Ganesan, P.; Popov, B. N., Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Applied Catalysis B: Environmental 2009, 93 (1–2), 156-165. 160. Morozan, A.; Jegou, P.; Jousselme, B.; Palacin, S., Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction. Physical Chemistry Chemical Physics 2011, 13 (48), 21600-21607. 161. Huang, J.-W.; Liu, Z.-L.; Gao, X.-R.; Yang, D.; Peng, X.-Y.; Ji, L.-N., Hydroxylation of cyclohexane catalyzed by iron(III)—metal-free porphyrin dimer with molecular oxygen: The effect of the steric hindrance and the intramolecular interaction between the two prophyrin rings. Journal of Molecular Catalysis A: Chemical 1996, 111 (3), 261-266. 162. Castle, J. E., Practical surface analysis by Auger and X-ray photoelectron spectroscopy. D. Briggs and M. P. Seah (Editors). John Wiley and Sons Ltd, Chichester, 1983, 533 pp., £44.50. Surface and Interface Analysis 1984, 6 (6), 302-302. 163. Li, S.; Zhang, L.; Kim, J.; Pan, M.; Shi, Z.; Zhang, J., Synthesis of carbon-supported binary FeCo–N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochimica Acta 2010, 55 (24), 7346-7353. 164. Biloul, A.; Coowar, F.; Contamin, O.; Scarbeck, G.; Savy, M.; van den Ham, D.; Riga, J.; Verbist, J. J., Oxygen reduction in an acid medium: electrocatalysis by CoNPc(1,2) impregnated on a carbon black support; effect of loading and heat treatment. Journal of Electroanalytical Chemistry 1993, 350 (1), 189-204. 165. Tiwari, J. N.; Nath, K.; Kumar, S.; Tiwari, R. N.; Kemp, K. C.; Le, N. H.; Youn, D. H.; Lee, J. S.; Kim, K. S., Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. 2013, 4, 2221.
|