帳號:guest(3.149.239.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝承穎
作者(外文):Hsieh, Cheng-Ying
論文名稱(中文):一、 開發具腫瘤標靶能力之硼中子捕獲治療藥劑 二、 Leucettamine B類似物的合成與抗癌活性評估
論文名稱(外文):I. Development of tumor-targeting agents for Boron Neutron Capture Therapy II. Synthesis and bioevaluation of Leucettamine B analogs as the potential anti-cancer agents
指導教授(中文):洪嘉呈
許銘華
指導教授(外文):Horng, Jia-Cherng
Hsu, Ming-Hua
口試委員(中文):王聖凱
陳仁焜
吳駿一
口試委員(外文):Wang, Sheng-Kai
Chen, Jen-Kun
Wu, Chun-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023808
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:144
中文關鍵詞:抗癌藥物硼簇碳硼烷硼中子捕獲治療
外文關鍵詞:anti-cancer drugsboron clustercarboraneBoron Neutron Capture Therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
綜觀人類對抗癌症數十年來的歷史,癌症治療從手術切除、放射治療、化學治療到標靶藥物,科學家一直戮力於開發更有效並更安全的藥物。硼元素是過去在藥物開發上較被忽視的硼元素,但近年來在抗菌、抗病毒以及抗癌上都開始出現以硼元素為核心的藥物設計。此外硼也是硼中子捕獲治療上所必須的元素。本論文將以硼簇及碳硼烷這兩種特殊的硼立體結構做為研究主題;在第一章節中,將探討硼簇在硼中子捕獲治療中的可能性,除了合成硼簇分子外,也透過對硼的修飾使其能以溫和的反應條件與短肽、金奈米粒子及缺氧標靶分子接合。此外為了以非侵入性的方式進行生物分佈的評估,具放射性的碘原子也被接在我們合成的產物上,並在以金奈米粒子為載體的腫瘤造影上取得不錯的成果;儘管另一個缺氧標靶分子的造影結果並不理想,但也揭示了硼簇分子在生物體內有其它未知的機制存在。在第二章節裡,我透過微波輔助縮合反應來合成天然物leucettamine B的類似物,我選擇了多個六環及五環雜環來檢證微波輔助合成的效果;此外多個支鏈末端包含哌啶、吡咯及嗎啉結構的分子也被用來對上述合成產物的氨基進行烷基化反應。其中一個支鏈尾端替換被我們替換成碳硼烷,藉以研究碳硼烷分子在藥物設計上的潛力。最終我們合成的25個類似物對乳腺癌、肝癌及大腸癌等癌細胞株做生物活性測試,其中化合物31與48對腸癌細胞株都顯示出不錯的抑制效果,化合物48更是對乳腺癌、肝癌細胞株都有著明顯的抑制能力,這些初步的研究能協助我們進一步改良藥物,來開發出更具活性的抗癌藥物。
Looking at the history of cancer treatments for decades, it ranged from surgical resection, radiation therapy, chemotherapy to targeted drugs. Scientists have been working to develop more effective and safer drugs. Boron has been neglected in drug development in the past. But in recent years, antibacterial, antiviral, and anticancer drugs have begun to appear in boron-based drug designs. In addition, boron is an essential element for boron neutron capture therapy (BNCT). In this thesis, two special boron clusters, boron clusters, and carboranes are used as research topics. In the first chapter, the possibility of boron clusters in BNCT will be explored. Different boron cluster molecules were synthesized. The modification of boron allows it to bind to short peptides, gold nanoparticles, and hypoxic target molecules under mild reaction conditions. To evaluate the biodistribution in a non-invasive manner, radioactive iodine atoms are also attached to our synthetic products. Good results were obtained on tumor imaging using gold nanoparticles as carriers; although the effect of hypoxic targeting molecule is not ideal, it also revealed that boron cluster molecules have other unknown mechanisms in vivo. In the second chapter, I use microwave-assisted condensation to synthesize the analog of natural leucettamine B. I select several 5- and 6-membered heterocyclic rings to verify the effect of microwave-assisted synthesis. The alkyl branches of pyridine, pyrrole, and morpholine are also using to undergo the N-alkylation of synthetic products. One of them is replaced by carborane to study its potential in drug design. In the end, we synthesize 25 analogs to test the biological activity of cancer cell lines such as breast cancer, liver cancer, and colorectal cancer. Among them, compounds 31 and 48 show good inhibitory effects on intestinal cancer cell lines, and compound 48 also shows inhibitory effects against breast cancer and liver cancer cell lines. These preliminary studies can help us further improve the drug structure to develop more active anticancer drugs.
Acknowledgement I
Abstract II
中文摘要 III
Table of Contents IV
Figures VIII
Tables XI
Abbreviation table XII
Chapter 1 Synthesis of Tumor-targeting Boron Cluster Derivatives as Boron Neutron Capture Therapy Potential Agents 1
1-1 Literature Review 2
1-1-1 Boron 2
1-1-2 Boron Neutron Capture Therapy (BNCT) 2
1-1-3 Drug development of BNCT 4
1-1-4 Cell apoptosis 12
1-1-5 Marker to apoptosis: Bis(Zinc-Dipicolylamine) 14
1-1-6 Research Incentive 18
1-2 Results and Discussion 20
1-2-1 Chemistry 20
1-2-1-1 Synthesis of the boron agents 20
1-2-1-2 Synthesis of BC-peptide conjugate 22
1-2-1-3 Produce the BC-gold nanoparticles 23
1-2-1-4 Synthesis of BC-Zn-DPA 24
1-2-2 Biological evaluation 29
1-2-2-1 Property of BC-peptide conjugates 29
1-2-2-2 Bioevaluation of BC-gold nanoparticles 30
1-2-2-3 Bioevaluation of IBC-DPA (21) 33
1-2-2-4 Analysis of the DPA molecule imaging results 34
1-2-2-5 Conclusions 37
1-3 Experimental Section 39
1-3-1 Chemistry 39
1-3-1-1 Chemicals and characterization methods 39
1-3-1-2 Synthesis of (Bu4N)2[B12H12] (2) 40
1-3-1-3 Synthesis of (Bu4N)[B12H11O(CH2CH2)2O] (3) 41
1-3-1-4 Synthesis of (Bu4N)2[B12H11O(CH2)2O(CH2)2SH] (4) 41
1-3-1-5 Synthesis of (Bu4N)2[B12H11O(CH2)2O(CH2)2N3] (5) 42
1-3-1-6 Peptide synthesis for (6) and (7) 42
1-3-1-7 Synthesis of boron-peptides of (8) and (9) 43
1-3-1-8 The preparation of boron-containing gold nanoparticles (12) 43
1-3-1-9 Radioiodination of AuNPs (13) 43
1-3-1-10 Antibody conjugation of AuNPs (14) 44
1-3-1-11 Synthesis of DPA-NH2 (15) 44
1-3-1-12 Synthesis of BC-DPA (16) 44
1-3-1-13 Synthesis of BC-Zn-DPA (17) 45
1-3-1-14 Synthesis of (Bu4N)2(B12H11I) (19) 45
1-3-1-15 Synthesis of (Bu4N)(B12H11I)-O(CH2CH2)2O (20) 46
1-3-1-16 Synthesis of IBC-DPA (21) 46
1-3-2 Biology 47
1-3-2-1 Circular dichroism (CD) spectroscopy for (8) and (9) 47
1-3-2-2 Cell cultures and xenograft inoculation 47
1-3-2-3 In vitro cellular uptake and internalization assays 47
1-3-2-4 MicroSPECT/CT imaging of radioiodinated AuNPs 48
1-3-2-5 Assessment of radioactivity accumulation in tissues 48
1-3-2-6 Assessment of boron content in tumor and muscle 49
Chapter 2 Leucettamine B Analogs and its Carborane Derivative as Potential Anti-Cancer Agents: Design, Synthesis, and Biological Evaluation 50
2-1 Literature Review 51
2-1-1 Introduction of leucettamine B 51
2-1-2 Heterocyclic rings application in drug development 51
2-1-3 Potential pharmacophore:Carborane 54
2-1-4 Microwave-assisted synthesis in organic reaction 57
2-1-5 Research Incentive 59
2-2 Results and Discussion 61
2-2-1 Chemistry 61
2-2-2 Biological evaluation 65
2-2-3 Conclusions 70
2-3 Experimental Section 72
2-3-1 Chemistry 72
2-3-1-1 Standard procedures for the synthesis of conjugated derivatives from piperonal and various barbituric acids & 5-membered heterocycles. 73
2-3-1-2 Standard procedures for the synthesis of piperonal-alkylheterocycle derivatives from piperonal derivatives with various alkyl chlorides (30–45). 75
2-3-1-3 Synthesis of (Z)-5-(Benzo[d][1,3]dioxol-5-ylmethylene)-3-(prop-2-yn-1-yl)-thiazolidine-2,4-dione (46). 80
2-3-1-4 Synthesis of (Z)-5-(Benzo[d][1,3]dioxol-5-ylmethylene)-3-(1-closo-carbo-ranyl)-2-thioxothiazolidin-4-one (48). 81
2-3-2 Biology 81
References 83
Appendix 101
References

1. Nielsen, F. H.; Eckhert, C. D., Boron. Adv. Nutr. 2019, nmz110.
2. Hunter, J. M.; Nemzer, B. V.; Rangavajla, N.; Bita, A.; Rogoveanu, O. C.; Neamtu, J.; Scorei, I. R.; Bejenaru, L. E.; Rau, G.; Bejenaru, C.; Mogosanu, G. D., The Fructoborates: Part of a Family of Naturally Occurring Sugar-Borate Complexes-Biochemistry, Physiology, and Impact on Human Health: a Review. Biol. Trace Elem. Res. 2019, 188 (1), 11-25.
3. Richardson, P. G.; Hideshima, T.; Anderson, K. C., Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control 2003, 10 (5), 361-369.
4. Ban, H. S.; Nakamura, H., Boron-Based Drug Design. Chem. Rec. 2015, 15 (3), 616-635.
5. Barth, R. F.; Vicente, M. G.; Harling, O. K.; Kiger, W. S., 3rd; Riley, K. J.; Binns, P. J.; Wagner, F. M.; Suzuki, M.; Aihara, T.; Kato, I.; Kawabata, S., Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146-166.
6. Subramanian, C.; Suri, A. K.; Ch Murthy, T. S. R., Development of boron-based materials for nuclear applications. BARC Newsl. 2010, 313, 14-22.
7. Sweet, W. H., Early history of development of boron neutron capture therapy of tumors. J. Neuro-Oncol. 1997, 33 (1-2), 19-26.
8. Nakagawa, Y.; Hatanaka, H., Boron neutron capture therapy. Clinical brain tumor studies. J Neuro-Oncol. 1997, 33 (1-2), 105-115.
9. Wang, L. W.; Wang, S. J.; Chu, P. Y.; Ho, C. Y.; Jiang, S. H.; Liu, Y. W.; Liu, Y. H.; Liu, H. M.; Peir, J. J.; Chou, F. I.; Yen, S. H.; Lee, Y. L.; Chang, C. W.; Liu, C. S.; Chen, Y. W.; Ono, K., BNCT for locally recurrent head and neck cancer: preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor. Appl. Radiat. Isot. 2011, 69 (12), 1803-1806.
10. Wang, L. W.; Chen, Y. W.; Ho, C. Y.; Hsueh Liu, Y. W.; Chou, F. I.; Liu, Y. H.; Liu, H. M.; Peir, J. J.; Jiang, S. H.; Chang, C. W.; Liu, C. S.; Wang, S. J.; Chu, P. Y.; Yen, S. H., Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at Tsing Hua Open-Pool Reactor. Appl. Radiat. Isot. 2014, 88, 23-27.
11. Wang, L. W.; Liu, Y. H.; Chou, F. I.; Jiang, S. H., Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Commun. (Lond.) 2018, 38 (1), 37-43.
12. Lee, J.-C.; Chuang, K.-S.; Hsueh Liu, Y.-W.; Lin, T.-Y.; Teng, Y.-C.; Wang, L.-W., A comparison of dose distributions in gross tumor volume between boron neutron capture therapy alone and combined boron neutron capture therapy plus intensity modulation radiation therapy for head and neck cancer. PLoS One 2019, 14 (4), e0210626.
13. Shen, Y.-F.; Xu, C.; Cheng, L.-J., Deciphering chemical bonding in BnHn2− (n = 2–17): flexible multicenter bonding. RSC Adv. 2017, 7 (58), 36755-36764.
14. Barth, R. F.; Mi, P.; Yang, W., Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38 (1), 35-49.
15. Edvenson, G. M.; Gaines, D. F., Thermal isomerization of regiospecifically boron-10-labeled icosahedral carboranes. Inorg. Chem. 1990, 29 (6), 1210-1216.
16. Hattori, Y.; Kusaka, S.; Mukumoto, M.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M., Biological evaluation of dodecaborate-containing L-amino acids for boron neutron capture therapy. J. Med. Chem. 2012, 55 (15), 6980-6984.
17. Lesnikowski, Z. J.; Paradowska, E.; Olejniczak, A. B.; Studzinska, M.; Seekamp, P.; Schussler, U.; Gabel, D.; Schinazi, R. F.; Plesek, J., Towards new boron carriers for boron neutron capture therapy: metallacarboranes and their nucleoside conjugates. Bioorg. Med. Chem. 2005, 13 (13), 4168-4175.
18. Miura, M.; Micca, P. L.; Heinrichs, J. C.; Gabel, D.; Fairchild, R. G.; Slatkin, D. N., Biodistribution and toxicity of 2,4-divinyl-nido-o-carboranyldeuteroporphyrin IX in mice. Biochem. Pharmacol. 1992, 43 (3), 467-476.
19. Ozawa, T.; Santos, R. A.; Lamborn, K. R.; Bauer, W. F.; Koo, M. S.; Kahl, S. B.; Deen, D. F., In vivo evaluation of the boronated porphyrin TABP-1 in U-87 MG intracerebral human glioblastoma xenografts. Mol. Pharmaceutics 2004, 1 (5), 368-374.
20. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today 2006, 11 (17-18), 812-818.
21. Caruso, G.; Caffo, M.; Alafaci, C.; Raudino, G.; Cafarella, D.; Lucerna, S.; Salpietro, F. M.; Tomasello, F., Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine 2011, 7 (6), 744-752.
22. Mortensen, M. W.; Bjorkdahl, O.; Sorensen, P. G.; Hansen, T.; Jensen, M. R.; Gundersen, H. J.; Bjornholm, T., Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy. Bioconjugate Chem. 2006, 17 (2), 284-290.
23. Achilli, C.; Grandi, S.; Ciana, A.; Guidetti, G. F.; Malara, A.; Abbonante, V.; Cansolino, L.; Tomasi, C.; Balduini, A.; Fagnoni, M.; Merli, D.; Mustarelli, P.; Canobbio, I.; Balduini, C.; Minetti, G., Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomedicine 2014, 10 (3), 589-597.
24. Lee, J. D.; Ueno, M.; Miyajima, Y.; Nakamura, H., Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org. Lett. 2007, 9 (2), 323-326.
25. Justus, E.; Awad, D.; Hohnholt, M.; Schaffran, T.; Edwards, K.; Karlsson, G.; Damian, L.; Gabel, D., Synthesis, liposomal preparation, and in vitro toxicity of two novel dodecaborate cluster lipids for boron neutron capture therapy. Bioconjugate Chem. 2007, 18 (4), 1287-1293.
26. Koganei, H.; Ueno, M.; Tachikawa, S.; Tasaki, L.; Ban, H. S.; Suzuki, M.; Shiraishi, K.; Kawano, K.; Yokoyama, M.; Maitani, Y.; Ono, K.; Nakamura, H., Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. Bioconjugate Chem. 2013, 24 (1), 124-132.
27. Wang, S.; Blaha, C.; Santos, R.; Huynh, T.; Hayes, T. R.; Beckford-Vera, D. R.; Blecha, J. E.; Hong, A. S.; Fogarty, M.; Hope, T. A.; Raleigh, D. R.; Wilson, D. M.; Evans, M. J.; VanBrocklin, H. F.; Ozawa, T.; Flavell, R. R., Synthesis and Initial Biological Evaluation of Boron-Containing Prostate-Specific Membrane Antigen Ligands for Treatment of Prostate Cancer Using Boron Neutron Capture Therapy. Mol. Pharmaceutics 2019, 16 (9), 3831-3841.
28. Schlegel, R. A.; Williamson, P., Phosphatidylserine, a death knell. Cell Death Differ. 2001, 8 (6), 551-563.
29. Allen, T. M.; Williamson, P.; Schlegel, R. A., Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc. Natl. Acad. Sci. U. S. A. 1988, 85 (21), 8067-8071.
30. Williamson, P.; Schlegel, R. A., Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol. Membr. Biol. 1994, 11 (4), 199-216.
31. Hankins, H. M.; Baldridge, R. D.; Xu, P.; Graham, T. R., Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 2015, 16 (1), 35-47.
32. Tait, J. F.; Smith, C.; Wood, B. L., Measurement of phosphatidylserine exposure in leukocytes and platelets by whole-blood flow cytometry with annexin V. Blood Cells, Mol., Dis. 1999, 25 (5-6), 271-278.
33. Fadok, V. A.; Voelker, D. R.; Campbell, P. A.; Cohen, J. J.; Bratton, D. L.; Henson, P. M., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992, 148 (7), 2207-2216.
34. Thorpe, P. E., Targeting anionic phospholipids on tumor blood vessels and tumor cells. Thromb. Res. 2010, 125 Suppl 2, S134-S137.
35. Riedl, S.; Rinner, B.; Asslaber, M.; Schaider, H.; Walzer, S.; Novak, A.; Lohner, K.; Zweytick, D., In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys. Acta, Biomembr. 2011, 1808 (11), 2638-2645.
36. Swairjo, M. A.; Concha, N. O.; Kaetzel, M. A.; Dedman, J. R.; Seaton, B. A., Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 1995, 2 (11), 968-974.
37. Vance, D. H.; Czarnik, A. W., Real-Time Assay of Inorganic Pyrophosphatase Using a High-Affinity Chelation-Enhanced Fluorescence Chemosensor. J. Am. Chem. Soc. 1994, 116 (20), 9397-9398.
38. Ojida, A.; Mito-Oka, Y.; Inoue, M. A.; Hamachi, I., First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution. J. Am. Chem. Soc. 2002, 124 (22), 6256-6258.
39. Ngo, H. T.; Liu, X.; Jolliffe, K. A., Anion recognition and sensing with Zn(ii)–dipicolylamine complexes. Chem. Soc. Rev. 2012, 41 (14), 4928-4965.
40. Chen, K.-H.; Yang, J.-S.; Hwang, C.-Y.; Fang, J.-M., Phospholipid-Induced Aggregation and Anthracene Excimer Formation. Org. Lett. 2008, 10 (20), 4401-4404.
41. Hanshaw, R. G.; Lakshmi, C.; Lambert, T. N.; Johnson, J. R.; Smith, B. D., Fluorescent detection of apoptotic cells by using zinc coordination complexes with a selective affinity for membrane surfaces enriched with phosphatidylserine. Chembiochem 2005, 6 (12), 2214-2220.
42. Smith, B. A.; Akers, W. J.; Leevy, W. M.; Lampkins, A. J.; Xiao, S.; Wolter, W.; Suckow, M. A.; Achilefu, S.; Smith, B. D., Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces. J. Am. Chem. Soc. 2010, 132 (1), 67-69.
43. Liu, Y. W.; Shia, K. S.; Wu, C. H.; Liu, K. L.; Yeh, Y. C.; Lo, C. F.; Chen, C. T.; Chen, Y. Y.; Yeh, T. K.; Chen, W. H.; Jan, J. J.; Huang, Y. C.; Huang, C. L.; Fang, M. Y.; Gray, B. D.; Pak, K. Y.; Hsu, T. A.; Huang, K. H.; Tsou, L. K., Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates. Bioconjugate Chem. 2017, 28 (7), 1878-1892.
44. Geis, V.; Guttsche, K.; Knapp, C.; Scherer, H.; Uzun, R., Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2-. Dalton Trans. 2009, (15), 2687-2694.
45. Semioshkin, A. A.; Sivaev, I. B.; Bregadze, V. I., Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, (8), 977-992.
46. Semioshkin, A.; Laskova, J.; Ilinova, A.; Bregadze, V.; Lesnikowski, Z. J., Reactions of oxonium derivatives of [B12H12]2− with sulphur nucleophiles. Synthesis of novel B12-based mercaptanes, sulfides and nucleosides. J. Organomet. Chem. 2011, 696 (2), 539-543.
47. Koganei, H.; Tachikawa, S.; El-Zaria, M. E.; Nakamura, H., Synthesis of oligo-closo-dodecaborates by Hüisgen click reaction as encapsulated agents for the preparation of high-boron-content liposomes for neutron capture therapy. New J. Chem. 2015, 39 (8), 6388-6394.
48. Bechara, C.; Sagan, S., Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013, 587 (12), 1693-1702.
49. Shin, M. C.; Zhang, J.; Min, K. A.; Lee, K.; Byun, Y.; David, A. E.; He, H.; Yang, V. C., Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J. Biomed. Mater. Res., Part A 2014, 102 (2), 575-587.
50. Fields, G. B.; Prockop, D. J., Perspectives on the synthesis and application of triple-helical, collagen-model peptides. Pept. Sci. 1996, 40 (4), 345-357.
51. Fields, G. B., Synthesis and biological applications of collagen-model triple-helical peptides. Org. Biomol. Chem. 2010, 8 (6), 1237-1258.
52. Cioran, A. M.; Musteti, A. D.; Teixidor, F.; Krpetic, Z.; Prior, I. A.; He, Q.; Kiely, C. J.; Brust, M.; Vinas, C., Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity. J. Am. Chem. Soc. 2012, 134 (1), 212-221.
53. Knoth, W. H.; Miller, H. C.; Sauer, J. C.; Balthis, J. H.; Chia, Y. T.; Muetterties, E. L., Chemistry of Boranes. IX. Halogenation of B10H102- and B12H122-. Inorg. Chem. 1964, 3 (2), 159-167.
54. Semioshkin, A.; Bregadze, V.; Godovikov, I.; Ilinova, A.; Laskova, J.; Starikova, Z., Synthesis and structure of 1-iodo-7-dioxonium-decahydro-closo-dodecaborate. J. Organomet. Chem. 2011, 696 (15), 2760-2762.
55. Kubota, T.; Kuroda, S.; Kanaya, N.; Morihiro, T.; Aoyama, K.; Kakiuchi, Y.; Kikuchi, S.; Nishizaki, M.; Kagawa, S.; Tazawa, H.; Fujiwara, T., HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine 2018, 14 (6), 1919-1929.
56. Mizutani, H.; Tada-Oikawa, S.; Hiraku, Y.; Kojima, M.; Kawanishi, S., Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005, 76 (13), 1439-1453.
57. Stasko, D.; Reed, C. A., Optimizing the Least Nucleophilic Anion. A New, Strong Methyl+ Reagent. J. Am. Chem. Soc. 2002, 124 (7), 1148-1149.
58. Kim, K.-C.; Reed, C. A.; Long, G. S.; Sen, A., Et2Al+ Alumenium Ion-like Chemistry. Synthesis and Reactivity toward Alkenes and Alkene Oxides. J. Am. Chem. Soc. 2002, 124 (26), 7662-7663.
59. Sivaev, I. B.; Kulikova, N. Y.; Nizhnik, E. A.; Vichuzhanin, M. V.; Starikova, Z. A.; Semioshkin, A. A.; Bregadze, V. I., Practical synthesis of 1,4-dioxane derivative of the closo-dodecaborate anion and its ring opening with acetylenic alkoxides. J. Organomet. Chem. 2008, 693 (3), 519-525.
60. Kumar, S.; Aaron, J.; Sokolov, K., Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3 (2), 314-320.
61. Chan, G. W.; Mong, S.; Hemling, M. E.; Freyer, A. J.; Offen, P. H.; DeBrosse, C. W.; Sarau, H. M.; Westley, J. W., New Leukotriene B4 Receptor Antagonist: Leucettamine A and Related Imidazole Alkaloids from the Marine Sponge Leucetta microraphis. J. Nat. Prod. 1993, 56 (1), 116-121.
62. Debdab, M.; Carreaux, F.; Renault, S.; Soundararajan, M.; Fedorov, O.; Filippakopoulos, P.; Lozach, O.; Babault, L.; Tahtouh, T.; Baratte, B.; Ogawa, Y.; Hagiwara, M.; Eisenreich, A.; Rauch, U.; Knapp, S.; Meijer, L.; Bazureau, J. P., Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. J. Med. Chem. 2011, 54 (12), 4172-4186.
63. Loaec, N.; Attanasio, E.; Villiers, B.; Durieu, E.; Tahtouh, T.; Cam, M.; Davis, R. A.; Alencar, A.; Roue, M.; Bourguet-Kondracki, M. L.; Proksch, P.; Limanton, E.; Guiheneuf, S.; Carreaux, F.; Bazureau, J. P.; Klautau, M.; Meijer, L., Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Mar. Drugs 2017, 15 (10), 316-330.
64. Pozo, N.; Zahonero, C.; Fernández, P.; Liñares, J. M.; Ayuso, A.; Hagiwara, M.; Pérez, A.; Ricoy, J. R.; Hernández-Laín, A.; Sepúlveda, J. M.; Sánchez-Gómez, P., Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth. J. Clin. Invest. 2013, 123 (6), 2475-2487.
65. Gruber, W.; Hutzinger, M.; Elmer, D. P.; Parigger, T.; Sternberg, C.; Cegielkowski, L.; Zaja, M.; Leban, J.; Michel, S.; Hamm, S.; Vitt, D.; Aberger, F., DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance. Oncotarget 2016, 7 (6), 7134-7148.
66. Iwai, K.; Yaguchi, M.; Nishimura, K.; Yamamoto, Y.; Tamura, T.; Nakata, D.; Dairiki, R.; Kawakita, Y.; Mizojiri, R.; Ito, Y.; Asano, M.; Maezaki, H.; Nakayama, Y.; Kaishima, M.; Hayashi, K.; Teratani, M.; Miyakawa, S.; Iwatani, M.; Miyamoto, M.; Klein, M. G.; Lane, W.; Snell, G.; Tjhen, R.; He, X.; Pulukuri, S.; Nomura, T., Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol. Med. 2018, 10 (6), e8289.
67. Goodwin, C. S.; McCulloch, R. K.; Armstrong, J. A.; Wee, S. H., Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J. Med. Microbiol. 1985, 19 (2), 257-267.
68. Mac, D. S.; Kumar, R.; Goodwin, D. W., Anterograde amnesia with oral lorazepam. J. Clin. Psychiatry 1985, 46 (4), 137-138.
69. Forbes, G. M.; Glaser, M. E.; Cullen, D. J.; Warren, J. R.; Christiansen, K. J.; Marshall, B. J.; Collins, B. J., Duodenal ulcer treated with Helicobacter pylori eradication: seven-year follow-up. Lancet 1994, 343 (8892), 258-260.
70. Hahn, W. C.; Weinberg, R. A., Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2002, 2 (5), 331-341.
71. Luo, J.; Solimini, N. L.; Elledge, S. J., Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009, 136 (5), 823-837.
72. Amy, B. W.; McManus, W. F.; Goodwin, C. W., Jr.; Pruitt, B. A., Jr., Lightning injury with survival in five patients. JAMA, J. Am. Med. Assoc. 1985, 253 (2), 243-245.
73. Debdab, M.; Renault, S.; Lozach, O.; Meijer, L.; Paquin, L.; Carreaux, F.; Bazureau, J. P., Synthesis and preliminary biological evaluation of new derivatives of the marine alkaloid leucettamine B as kinase inhibitors. Eur. J. Med. Chem. 2010, 45 (2), 805-810.
74. Goodwin, L. G.; Bruce-Chwatt, L. J., Cecil Arthur Hoare. Biogr. Mem. Fellows R. Soc. 1985, 31, 293-323.
75. Arima, T.; Uemura, T.; Yamamoto, T., Structural features of the basal lamina in Reissner's membrane of the guinea pig. Acta Oto-laryngol. 1985, 100 (3-4), 194-200.
76. Duskova, J.; Schreiber, V.; Jahodova, J., Electron microscopy changes in hypophyseal lactotrophs in rats after the administration of metoclopramide. Cesk. Patol. 1985, 21 (3), 191-196.
77. Vasquez, G. M.; Qualls, F.; White, D., Morphogenesis of Stigmatella aurantiaca fruiting bodies. J. Bacteriol. 1985, 163 (2), 515-521.
78. Tsai, C. Y.; Kapoor, M.; Huang, Y. P.; Lin, H. H.; Liang, Y. C.; Lin, Y. L.; Huang, S. C.; Liao, W. N.; Chen, J. K.; Huang, J. S.; Hsu, M. H., Synthesis and Evaluation of Aminothiazole-Paeonol Derivatives as Potential Anticancer Agents. Molecules 2016, 21 (2), 145.
79. Hsieh, C. Y.; Ko, P. W.; Chang, Y. J.; Kapoor, M.; Liang, Y. C.; Lin, H. H.; Horng, J. C.; Hsu, M. H., Design and Synthesis of Benzimidazole-Chalcone Derivatives as Potential Anticancer Agents. Molecules 2019, 24 (18), 3259.
80. Chuang, H.; Huang, L.-C. S.; Kapoor, M.; Liao, Y.-J.; Yang, C.-L.; Chang, C.-C.; Wu, C.-Y.; Hwu, J. R.; Huang, T.-J.; Hsu, M.-H., Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MedChemComm 2016, 7 (5), 832-836.
81. Singh, P.; Kaur, M.; Verma, P., Design, synthesis and anticancer activities of hybrids of indole and barbituric acids--identification of highly promising leads. Bioorg. Med. Chem. Lett. 2009, 19 (11), 3054-3058.
82. Calamai, E.; Dall'Angelo, S.; Koss, D.; Domarkas, J.; McCarthy, T. J.; Mingarelli, M.; Riedel, G.; Schweiger, L. F.; Welch, A.; Platt, B.; Zanda, M., 18F-barbiturates are PET tracers with diagnostic potential in Alzheimer's disease. Chem. Commun. 2013, 49 (8), 792-794.
83. Wang, J.; Radomski, M. W.; Medina, C.; Gilmer, J. F., MMP inhibition by barbiturate homodimers. Bioorg. Med. Chem. Lett. 2013, 23 (2), 444-447.
84. Ali, A. M.; Saber, G. E.; Mahfouz, N. M.; El-Gendy, M. A.; Radwan, A. A.; Hamid, M. A., Synthesis and three-dimensional qualitative structure selectivity relationship of 3,5-disubstituted-2,4-thiazolidinedione derivatives as COX2 inhibitors. Arch. Pharmacal Res. 2007, 30 (10), 1186-1204.
85. Chandrappa, S.; Benaka Prasad, S. B.; Vinaya, K.; Ananda Kumar, C. S.; Thimmegowda, N. R.; Rangappa, K. S., Synthesis and in vitro antiproliferative activity against human cancer cell lines of novel 5-(4-methyl-benzylidene)-thiazolidine-2,4-diones. Invest. New Drugs 2008, 26 (5), 437-444.
86. Parekh, N. M.; Juddhawala, K. V.; Rawal, B. M., Antimicrobial activity of thiazolyl benzenesulfonamide-condensed 2,4-thiazolidinediones derivatives. Med. Chem. Res. 2013, 22 (6), 2737-2745.
87. Chadha, N.; Bahia, M. S.; Kaur, M.; Silakari, O., Thiazolidine-2,4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem. 2015, 23 (13), 2953-2974.
88. Ma, L.; Pei, H.; Lei, L.; He, L.; Chen, J.; Liang, X.; Peng, A.; Ye, H.; Xiang, M.; Chen, L., Structural exploration, synthesis and pharmacological evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives as iNOS inhibitors against inflammatory diseases. Eur. J. Med. Chem. 2015, 92, 178-190.
89. Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R. K., Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem. 2017, 75, 406-423.
90. Whiting, E.; Raje, M. R.; Chauhan, J.; Wilder, P. T.; Van Eker, D.; Hughes, S. J.; Bowen, N. G.; Vickers, G. E. A.; Fenimore, I. C.; Fletcher, S., Discovery of Mcl-1 inhibitors based on a thiazolidine-2,4-dione scaffold. Bioorg. Med. Chem. Lett. 2018, 28 (3), 523-528.
91. Abdellatif, K. R. A.; Fadaly, W. A. A.; Kamel, G. M.; Elshaier, Y.; El-Magd, M. A., Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-gamma agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg. Chem. 2019, 82, 86-99.
92. Marc, G.; Stana, A.; Oniga, S. D.; Pirnau, A.; Vlase, L.; Oniga, O., New Phenolic Derivatives of Thiazolidine-2,4-dione with Antioxidant and Antiradical Properties: Synthesis, Characterization, In Vitro Evaluation, and Quantum Studies. Molecules 2019, 24 (11), 2060-2078.
93. Pathania, S.; Narang, R. K.; Rawal, R. K., Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486-508.
94. Powers, J. P.; Piper, D. E.; Li, Y.; Mayorga, V.; Anzola, J.; Chen, J. M.; Jaen, J. C.; Lee, G.; Liu, J.; Peterson, M. G.; Tonn, G. R.; Ye, Q.; Walker, N. P.; Wang, Z., SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J. Med. Chem. 2006, 49 (3), 1034-1046.
95. Irvine, M. W.; Patrick, G. L.; Kewney, J.; Hastings, S. F.; MacKenzie, S. J., Rhodanine derivatives as novel inhibitors of PDE4. Bioorg. Med. Chem. Lett. 2008, 18 (6), 2032-2037.
96. Anh Hle, T.; Cuc, N. T.; Tai, B. H.; Yen, P. H.; Nhiem, N. X.; Thao do, T.; Nam, N. H.; Van Minh, C.; Van Kiem, P.; Kim, Y. H., Synthesis of chromonylthiazolidines and their cytotoxicity to human cancer cell lines. Molecules 2015, 20 (1), 1151-1160.
97. Bathula, C.; Tripathi, S.; Srinivasan, R.; Jha, K. K.; Ganguli, A.; Chakrabarti, G.; Singh, S.; Munshi, P.; Sen, S., Synthesis of novel 5-arylidenethiazolidinones with apoptotic properties via a three component reaction using piperidine as a bifunctional reagent. Org. Biomol. Chem. 2016, 14 (34), 8053-8063.
98. Bataille, C. J.; Brennan, M. B.; Byrne, S.; Davies, S. G.; Durbin, M.; Fedorov, O.; Huber, K. V.; Jones, A. M.; Knapp, S.; Liu, G.; Nadali, A.; Quevedo, C. E.; Russell, A. J.; Walker, R. G.; Westwood, R.; Wynne, G. M., Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family. Bioorg. Med. Chem. 2017, 25 (9), 2657-2665.
99. Marton, J.; Enisz, J.; Hosztafi, S.; Timar, T., Preparation and fungicidal activity of 5-substituted hydantoins and their 2-thio analogs. J. Agric. Food Chem. 1993, 41 (1), 148-152.
100. El-Deeb, I. M.; Bayoumi, S. M.; El-Sherbeny, M. A.; Abdel-Aziz, A. A., Synthesis and antitumor evaluation of novel cyclic arylsulfonylureas: ADME-T and pharmacophore prediction. Eur. J. Med. Chem. 2010, 45 (6), 2516-2530.
101. Iqbal, Z.; Ali, S.; Iqbal, J.; Abbas, Q.; Qureshi, I. Z.; Hameed, S., Dual action spirobicycloimidazolidine-2,4-diones: antidiabetic agents and inhibitors of aldose reductase-an enzyme involved in diabetic complications. Bioorg. Med. Chem. Lett. 2013, 23 (2), 488-491.
102. Angeli, A.; Di Cesare Mannelli, L.; Ghelardini, C.; Peat, T. S.; Bartolucci, G.; Menicatti, M.; Carta, F.; Supuran, C. T., Benzensulfonamides bearing spyrohydantoin moieties act as potent inhibitors of human carbonic anhydrases II and VII and show neuropathic pain attenuating effects. Eur. J. Med. Chem. 2019, 177, 188-197.
103. Pershadsingh, H. A.; Szollosi, J.; Benson, S.; Hyun, W. C.; Feuerstein, B. G.; Kurtz, T. W., Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993, 21 (6 Pt 2), 1020-1023.
104. Issa, F.; Kassiou, M.; Rendina, L. M., Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem. Rev. 2011, 111 (9), 5701-5722.
105. Scholz, M.; Hey-Hawkins, E., Carbaboranes as pharmacophores: properties, synthesis, and application strategies. Chem. Rev. 2011, 111 (11), 7035-7062.
106. Calabrese, G.; Nesnas, J. J.; Barbu, E.; Fatouros, D.; Tsibouklis, J., The formulation of polyhedral boranes for the boron neutron capture therapy of cancer. Drug Discovery Today 2012, 17 (3-4), 153-159.
107. Lesnikowski, Z. J., Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J. Med. Chem. 2016, 59 (17), 7738-7758.
108. Stockmann, P.; Gozzi, M.; Kuhnert, R.; Sarosi, M. B.; Hey-Hawkins, E., New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem. Soc. Rev. 2019, 48 (13), 3497-3512.
109. Beer, M. L.; Lemon, J.; Valliant, J. F., Preparation and evaluation of carborane analogues of tamoxifen. J. Med. Chem. 2010, 53 (22), 8012-8020.
110. Scholz, M.; Bensdorf, K.; Gust, R.; Hey-Hawkins, E., Asborin: the carbaborane analogue of aspirin. ChemMedChem 2009, 4 (5), 746-748.
111. Scholz, M.; Kaluderovic, G. N.; Kommera, H.; Paschke, R.; Will, J.; Sheldrick, W. S.; Hey-Hawkins, E., Carbaboranes as pharmacophores: similarities and differences between aspirin and asborin. Eur. J. Med. Chem. 2011, 46 (4), 1131-1139.
112. Lee, M. W., Jr.; Sevryugina, Y. V.; Khan, A.; Ye, S. Q., Carboranes increase the potency of small molecule inhibitors of nicotinamide phosphoribosyltranferase. J. Med. Chem. 2012, 55 (16), 7290-7294.
113. Kuhnert, R.; Sarosi, M. B.; George, S.; Lonnecke, P.; Hofmann, B.; Steinhilber, D.; Steinmann, S.; Schneider-Stock, R.; Murganic, B.; Mijatovic, S.; Maksimovic-Ivanic, D.; Hey-Hawkins, E., Carborane-Based Analogues of 5-Lipoxygenase Inhibitors Co-inhibit Heat Shock Protein 90 in HCT116 Cells. ChemMedChem 2019, 14 (2), 255-261.
114. Kappe, C. O., Controlled microwave heating in modern organic synthesis. Angew. Chem., Int. Ed. Engl. 2004, 43 (46), 6250-6284.
115. Woodward, J. R.; Jackson, R. J.; Timmel, C. R.; Hore, P. J.; McLauchlan, K. A., Resonant radiofrequency magnetic field effects on a chemical reaction. Chem. Phys. Lett. 1997, 272 (5), 376-382.
116. Schanche, J. S., Microwave synthesis solutions from Personal Chemistry. Mol. Diversity 2003, 7 (2-4), 293-300.
117. Stadler, A.; Yousefi, B. H.; Dallinger, D.; Walla, P.; Van der Eycken, E.; Kaval, N.; Kappe, C. O., Scalability of Microwave-Assisted Organic Synthesis. From Single-Mode to Multimode Parallel Batch Reactors. Org. Process Res. Dev. 2003, 7 (5), 707-716.
118. Leadbeater, N. E.; Marco, M., Ligand-Free Palladium Catalysis of the Suzuki Reaction in Water Using Microwave Heating. Org. Lett. 2002, 4 (17), 2973-2976.
119. Walla, P.; Kappe, C. O., Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chlorides. Chem. Commun. 2004, (5), 564-565.
120. Lehmann, F.; Pilotti, Å.; Luthman, K., Efficient large scale microwave assisted Mannich reactions using substituted acetophenones. Mol. Diversity 2003, 7 (2), 145-152.
121. Hwu, J. R.; Hsu, M. H.; Huang, R. C., New nordihydroguaiaretic acid derivatives as anti-HIV agents. Bioorg. Med. Chem. Lett. 2008, 18 (6), 1884-1888.
122. Hu, Y.; Chen, Z. C.; Le, Z. G.; Zheng, Q. G., Organic Reactions in Ionic Liquids: Ionic Liquid Promoted Knoevenagel Condensation of Aromatic Aldehydes with (2‐Thio)Barbituric Acid. Synth. Commun. 2004, 34 (24), 4521-4529.
123. Alcerreca, G.; Sanabria, R.; Miranda, R.; Arroyo, G.; Tamariz, J.; Delgado, F., Preparation of Benzylidene Barbituric Acids Promoted by Infrared Irradiation in Absence of Solvent. Synth. Commun. 2000, 30 (7), 1295-1301.
124. Zhou, J. F.; Song, Y. Z.; Zhu, F. X.; Zhu, Y. L., Facile Synthesis of 5‐Benzylidene Rhodamine Derivatives under Microwave Irradiation. Synth. Commun. 2006, 36 (22), 3297-3303.
125. Khodair, A. I.; Gesson, J. P., A new approach for the N- and S-galactosylation of 5-arylidene-2-thioxo-4-thiazolidinones. Carbohydr. Res. 2011, 346 (18), 2831-2837.
126. Chinthala, Y.; Kumar Domatti, A.; Sarfaraz, A.; Singh, S. P.; Kumar Arigari, N.; Gupta, N.; Satya, S. K.; Kotesh Kumar, J.; Khan, F.; Tiwari, A. K.; Paramjit, G., Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. Eur. J. Med. Chem. 2013, 70, 308-314.
127. Brun, E.; Safer, A.; Carreaux, F.; Bourahla, K.; L'Helgoua'ch J, M.; Bazureau, J. P.; Villalgordo, J. M., Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions. Molecules 2015, 20 (6), 11617-11631.
128. Otero, R.; Seoane, S.; Sigueiro, R.; Belorusova, A. Y.; Maestro, M. A.; Perez-Fernandez, R.; Rochel, N.; Mourino, A., Carborane-based design of a potent vitamin D receptor agonist. Chem. Sci. 2016, 7 (2), 1033-1037.
129. Nishino, K.; Uemura, K.; Gon, M.; Tanaka, K.; Chujo, Y., Enhancement of Aggregation-Induced Emission by Introducing Multiple o-Carborane Substitutions into Triphenylamine. Molecules 2017, 22 (11), 2009.
130. Jin, H.; Bae, H. J.; Kim, S.; Lee, J. H.; Hwang, H.; Park, M. H.; Lee, K. M., 2-Phenylpyridine- and 2-(benzo[b]thiophen-2-yl)pyridine-based o-carboranyl compounds: impact of the structural formation of aromatic rings on photophysical properties. Dalton Trans. 2019, 48 (4), 1467-1476.
131. Toppino, A.; Genady, A. R.; El-Zaria, M. E.; Reeve, J.; Mostofian, F.; Kent, J.; Valliant, J. F., High yielding preparation of dicarba-closo-dodecaboranes using a silver(I) mediated dehydrogenative alkyne-insertion reaction. Inorg. Chem. 2013, 52 (15), 8743-8749.
132. Asawa, Y.; Katsuragi, K.; Sato, A.; Yoshimori, A.; Tanuma, S. I.; Nakamura, H., Structure-based drug design of novel carborane-containing nicotinamide phosphoribosyltransferase inhibitors. Bioorg. Med. Chem. 2019, 27 (13), 2832-2844.
133. Keiser, M. J.; Roth, B. L.; Armbruster, B. N.; Ernsberger, P.; Irwin, J. J.; Shoichet, B. K., Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25 (2), 197-206.
134. Tam, B. Y.; Chiu, K.; Chung, H.; Bossard, C.; Nguyen, J. D.; Creger, E.; Eastman, B. W.; Mak, C. C.; Ibanez, M.; Ghias, A.; Cahiwat, J.; Do, L.; Cho, S.; Nguyen, J.; Deshmukh, V.; Stewart, J.; Chen, C.-W.; Barroga, C.; Dellamary, L.; Kc, S. K.; Phalen, T. J.; Hood, J.; Cha, S.; Yazici, Y., The CLK inhibitor SM08502 induces anti-tumor activity and reduces Wnt pathway gene expression in gastrointestinal cancer models. Cancer Lett. 2020, 473, 186-197.
135. Araki, S.; Dairiki, R.; Nakayama, Y.; Murai, A.; Miyashita, R.; Iwatani, M.; Nomura, T.; Nakanishi, O., Inhibitors of CLK Protein Kinases Suppress Cell Growth and Induce Apoptosis by Modulating Pre-mRNA Splicing. PLoS One 2015, 10 (1), e0116929.
136. Li, X.; Wu, Z.; An, X.; Mei, Q.; Bai, M.; Hanski, L.; Li, X.; Ahola, T.; Han, W., Blockade of the LRP16-PKR-NF-κB signaling axis sensitizes colorectal carcinoma cells to DNA-damaging cytotoxic therapy. eLife 2017, 6, e27301.
137. Grassilli, E.; Ianzano, L.; Bonomo, S.; Missaglia, C.; Cerrito, M. G.; Giovannoni, R.; Masiero, L.; Lavitrano, M., GSK3A Is Redundant with GSK3B in Modulating Drug Resistance and Chemotherapy-Induced Necroptosis. PLoS One 2014, 9 (7), e100947.
138. Schaeffer, R., A NEW TYPE OF SUBSTITUTED BORANE. J. Am. Chem. Soc. 1957, 79 (4), 1006-1007.
139. José Daniel Figueroa-Villar, C. L. C., and Elizabete Rangel Cruz, Synthesis of 6-Phenylaminofuro[2,3-d]pyrimidine-2,4(1H,3H)-diones from Barbiturylbenzylidenes and Isonitriles. Heterocycles 1992, 34, 891 - 894.
140. Pinson, J. A.; Schmidt-Kittler, O.; Zhu, J.; Jennings, I. G.; Kinzler, K. W.; Vogelstein, B.; Chalmers, D. K.; Thompson, P. E., Thiazolidinedione-based PI3Kalpha inhibitors: an analysis of biochemical and virtual screening methods. ChemMedChem 2011, 6 (3), 514-522.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *